Quantum error correction and high energy theory

Tatsuma Nishioka (Osaka)

2023/8/29 @ PPP2023

Introduction

Quantum error correction (QEC)

- important framework in realizing fault-tolerent quantum computation
- · add redundancy to embed quantum states into a larger Hilbert space

 $\mathcal{C}=\mathsf{quantum}$ states to be protected $\,\subset\,\mathcal{H}=\mathsf{larger}$ Hilbert space

similar to the structure of gauge theories:

C: physical space (observables), \mathcal{H} : total state space

Quantum error correction and high energy physics

QEC has (unexpected) applications in high energy theory:

• AdS/CFT as QEC: [Almheiri-Dong-Harlow 14, Pastawski-Yoshida-Harlow-Preskill 15, . . .]

 ${\mathcal C}:$ effective theory on AdS , ${\mathcal H}:$ CFT on the boundary

• A certain class of (1+1)-dim. CFTs: [Harvey-Moore 20, Dymarsky-Shapere 20, . . .]

 $\mathcal{C}:$ a certain type of operators , $\mathcal{H}:$ CFT $_2$

Table of contents

Quantum error correction

Applications

Toy model of holography

 \mathbb{Z}_2 gauge theory

2d CFT

Summary

Quantum error correction

Classical error correction

· Communication over noisy channel (e.g. phone, radio, etc.)

```
sender: 01001010 \cdots \xrightarrow{\text{noisy channel}} receiver: 00101110 \cdots
```

- How to protect messages against errors?
- Example: Repetition code
 - Encoding: repeat each bit three times, 0 o 000 , 1 o 111
 - Decoding: majority vote, 010 o 000, 110 o 111
 - · Can correct one bit-flip error, and reduce the error probability

Quantum error correction



- \cdot Message $\;\Rightarrow\;$ quantum state $|\psi
 angle$
- \cdot Codeword \Rightarrow logical state $|\psi_L
 angle$
- Received codeword \Rightarrow errored state $E |\psi_L\rangle$

Error models

• One qubit error operator: $E = e_1 I + e_2 X + e_3 Y + e_4 Z$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

• Error types:

Bit flip
$$X\,|a\rangle = |a+1\rangle$$
 Phase flip
$$Z\,|a\rangle = (-1)^a\,|a\rangle$$
 Bit & phase flip
$$Y\,|a\rangle = \mathrm{i}\,(-1)^a\,|a+1\rangle$$

To correct the most general possible error, it is sufficient to correct just X
and Z errors

Quantum analog of repetition codes?

Quantum analog of repetition codes

$$|0\rangle \rightarrow |000\rangle$$
, $|1\rangle \rightarrow |111\rangle$

 However, there is no device to copy an unknown quantum state (no-cloning theorem)

$$|\psi\rangle \not\rightarrow |\psi\rangle \otimes |\psi\rangle$$

How to encode a quantum state into a three-qubit state without cloning?

$$|\psi\rangle = a |0\rangle + b |1\rangle \quad \xrightarrow{?} \quad a |000\rangle + b |111\rangle \neq |\psi\rangle^{\otimes 3}$$

Stabilizer formalism

• Let ${\cal S}$ be a stabilizer group generated by a set of (n-k) independent operators (stabilizer generators):

$$M_i M_j = M_j M_i , \qquad M_i^2 = I^{\otimes n}$$

· Let $|\psi_L\rangle \in (\mathbb{C}^2)^{\otimes n}$ be a logical state in an n qubit system defined by

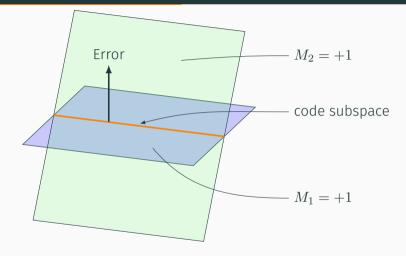
$$M |\psi_L\rangle = |\psi_L\rangle \qquad \forall M \in \mathcal{S}$$

Such a state can be constructed as

$$|\psi_L
angle = \prod_{i=1}^{n-k} \left[\frac{1+M_i}{2} \right] |\phi
angle \qquad ext{for any } |\phi
angle$$

• The set of logical states forms an [[n,k]] quantum code when $-I \notin \mathcal{S}$

Geometry of stabilizer codes



Errors map a state in the code subspace to the outside

Three qubit bit-flip code ([[3,1]] code)

• Encode one-qubit states into three-qubit states:

$$|0\rangle \longrightarrow |0_L\rangle \equiv |000\rangle$$
, $|1\rangle \longrightarrow |1_L\rangle \equiv |111\rangle$
 $|\psi\rangle = a |0\rangle + b |1\rangle \longrightarrow |\psi_L\rangle = a |0_L\rangle + b |1_L\rangle$

• The logical state $|\psi_L\rangle$ is the simultaneous eigenstate of the generators:

$$M_i |\psi_L\rangle = |\psi_L\rangle \ (i=1,2) \ , \qquad M_1 \equiv Z \, Z \, I \ , \qquad M_2 \equiv I \, Z \, Z$$

 \cdot The X error can be detected by measuring M_1, M_2 , e.g.

$$M_1 (X I I | \psi_L \rangle) = -X I I | \psi_L \rangle$$

$$M_2 (X I I | \psi_L \rangle) = +X I I | \psi_L \rangle$$

Detection and correction of X error

• The eigenvalues of (M_1, M_2) determine the error syndromes:

M_1	M_2	Error
1	1	no error
1	-1	IIX
-1	1	XII
-1	-1	IXI

- The detected X error on the i^{th} qubit can be corrected by acting with X on the qubit since $X^2=I$

This code can detect and correct one X error but cannot detect Z errors

Five-qubit code ([[5,1]] code)

Stabilizer generators

$$[M_i, X_L] = [M_i, Z_L] = 0$$
, $\{X_L, Z_L\} = 0$

Logical states

$$|0_L\rangle = \prod_{i=1}^4 \frac{1+M_i}{2} |0^{\otimes 5}\rangle$$
$$|1_L\rangle = X_L |0_L\rangle$$

 $Z_L |0_L\rangle = |0_L\rangle$, $Z_L |1_L\rangle = -|1_L\rangle$

This is the smallest code encoding a one-qubit state and protecting against one-qubit errors

Error syndrome

- There are 15 single-qubit errors
- The error syndromes can take $2^4 = 16$ distinct values

	$I^{\otimes 5}$															
M_1	0	0	1	1	0	0	1	0	0	1	0	1	1	1	1	0
M_2	0	0	0	1	1	0	0	1	0	0	1	0	1	1	1	1
M_3	0	0	0	0	1	1	0	0	1	0	0	1	0	1	1	1
M_4	0	1	0	0	0	1	1	0	0	1	0	0	1	0	1	1

- The 15 errors + no error state are one-to-one to the syndrome values
- The five-qubit code is nondegenerate and perfect

Applications

Five-qubit code as quantum secret sharing

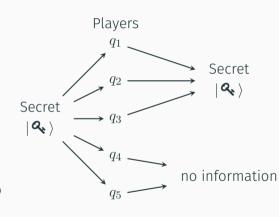
 Five-qubit code has a nice structure known as quantum secret sharing (QSS)

$$\begin{array}{ccc} \text{Logical qubit} & \rightarrow & \text{Secret} \\ \text{Five qubits} & \rightarrow & \text{Players} \end{array}$$

 Any set of three players A (and more) can reconstruct the secret:

$$\exists U_A \quad \text{s.t.} \quad (U_A \otimes I_{\bar{A}}) \ |\psi_L\rangle = |\psi\rangle \otimes |\chi_A\rangle$$

 $(|\chi_A\rangle$: product of EPR pairs)



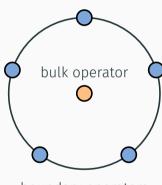
Toy model of holography

Five-qudit code as a model of holography

Logical qubit \rightarrow Bulk operator

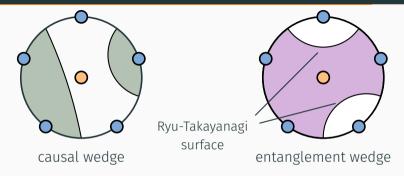
Five qubits \rightarrow Boundary operators

QSS ightarrow Reconstruction of bulk op. from a bdy subreagion



boundary operators

Holography and entanglement wedge



- Entanglement wedge reconstruction conjecture:
 In holographic models, bulk operators in an entanglement wedge can be reconstructed from operators on the boundary
- QSS property implies entanglement wedge reconstruction

Realization of stabilizer code in physical system

• For stabilizer generators M_i $(i=1,\cdots,n-k)$, the Hamiltonian whose ground state equals the code subspace is given by

$$H = -\sum_{i} J_{i} M_{i} \qquad J_{i} > 0$$

- Example: n qubit repetition code ([[n, 1]] code) $\Rightarrow M_i = Z_i Z_{i+1}$
 - · Realized by 1d ferromagnetic Ising model:

$$H = -\sum_{i} J Z_i Z_{i+1} \qquad J > 0$$

• Ground states spanned by $|0_L\rangle=|0\rangle^{\otimes n}$, $|1_L\rangle=|1\rangle^{\otimes n}$:

$$|\mathsf{GS}\rangle = a |0_L\rangle + b |1_L\rangle \qquad (|a|^2 + |b|^2 = 1)$$

Toric code [Kitaev 03]

Stabilizer generators:

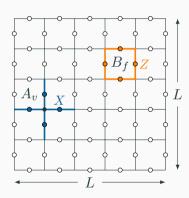
$$A_v = \prod_{e \in v} X_e , \qquad B_f = \prod_{e \in f} Z_e$$

- $\exists 2L^2 2$ generators $(\prod_v A_v = 1, \prod_f B_f = 1)$ $\Rightarrow [[2L^2, 2]]$ quantum code
- Hamiltonian

$$H = -J_e \sum_{v} A_v - J_m \sum_{f} B_f$$

 $\Rightarrow \mathbb{Z}_2$ gauge theory

Locate 1 qubit on each edge $\Rightarrow \exists 2L^2$ qubits in total



 $L \times L$ lattice on a torus

v: vertex, e: edge, f: face

2d CFT from QEC

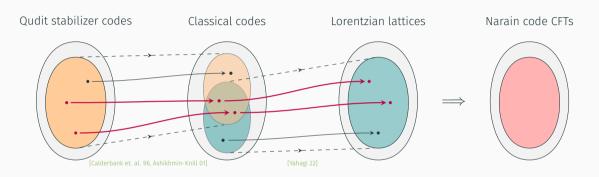
• It has been well-known that 2d CFTs can be constructed from certain classical codes [Frenkel-Lepowsky-Meurman 88, ArneDolan-Goddard-Montegue 90, 94, Gaiotto-Johnson-Freyd 18, Kawabata-Yahagi 23, . . .]

Classical codes \longrightarrow Euclidean lattices \longrightarrow Chiral CFTs

Recently, this construction was generalized to quantum codes [Dymarsky-Shapere 20, Yahagi 22, Kawabata-TN-Okuda 22, Alam-Kawabata-TN-Okuda-Yahagi 23]

Quantum codes → Lorentzian lattices → Non-chiral CFTs

Narain code CFTs



- The resulting CFTs are bosonic CFTs of Narain type
- Some of them yield SUSY CFTs by fermionization [Kawabata-TN-Okuda 23]

Summary

Summary

The structure of QEC has senn applications in high energy physics

Holography:

There is a class of QEC known as holographic codes which admit a holographic interpretation [Pastawski-Preskill 17, · · ·]

· QFT:

There are examples of QFTs with QEC structures, including discrete gauge theory, topological phases, fractons, code CFTs, ...

More applications of QEC to QFT?