2023.09.01@ PPP

原始ブラックホール研究の最前線 ― 原始ブラックホールは自然科学なのか? ―

名古屋大学 高等研究院 · 物理 C 研 多田祐一郎

Escrivà, Kühnel, YT "Primordial Black Holes" (2022) "Listening to the dark Universe: black holes in the era of gravitational-wave astronomy"

原始ブラックホールは・・・ - 仮説上のブラックホール

- 列なない

注意事項

- 作り得る物理も検証されていない

でもあれば楽しい…!

1. 自己紹介 3. インフレーションと原始ブラックホール 4. 最近の話 5. まとめ

2. 暗黒物質としての原始ブラックホール

多田祐一郎(ただゆういちろう)

'08-'12 東京大学理学部物理学科
'12-'17 東京大学院 村山斉 (IPMU), 川崎雅裕 (ICRR)
'17-'18 小天体物理学研究所 S. Renaux-Petel
'18-'21 名古屋大学 (学振 PD) 杉山直
'21- 名古屋大学 (YLC 特任助教)市來淨與

自己紹介

▶ 初期宇宙の理論研究
= インフレーション ↔ 観測

原始ブラックホール研究の最前線 多田祐一郎

2. 暗里物質としての原始ブラックホール

原始ブラックホール

Carr & Hawking '74

多田祐一郎

- ~ $\mathcal{O}(1)$ 密度ゆらぎ (Carr '75)
- Isocurvature (Dolgov & Silk '93)
- Quark Confinement (Dvali+ '21)
- Collapse of topological defect (Hawking '89)
- Bubble collision (Hawking+ '82)
- Particle trapping in bubble (Baker+ '21)
- Asynchronous 1st PT (Liu+ '21)

原始ブラックホール研究の最前線

- Scalar 5th force (Flores & Kusenko '20)

星形成前 冶ブラックホール (Primordial Black Hole)

- 暗黒物質 (Chapline '75)
- LVK merger GW? (Sasaki+ '16)
 - SMBH seeds? (Düchting '04)
 - OGLE lensing obj.? (Niikura+ '19)
- Planet 9? (Scholtz & Unwin '19)
- Trigger of r–process? (Fuller+ '17)
- Baryogenesis? (Baumann+ '07)
- JWST luminous gals? (Hutsi+ '22)

原始ブラックホール

Carr & Hawking '74

多田祐一郎

Date of paper

星形成前

(Primordial Black Hole)

ラックホール

- ~ Ø(1) 密度ゆらぎ (Carr '7
- Isocurvature (Dolgov & Silk '93
- Quark Confinement (Dvali+
- Collapse of topological de
- Bubble collision (Hawking+ '81975
- Particle trapping in bubble (Baker+ '21)
- Asynchronous 1st PT (Liu+ '21)

原始ブラックホール研究の最前線

- Scalar 5th force (Flores & Kusenko '20)

329 in 2022

1黑彻筫 (Chapline '75) K merger GW? (Sasaki+'16) 1BH seeds? (Düchting '04) 3LE lensing obj.? (Niikura+ '19) 2023 anet 9? (Scholtz & Unwin '19)

- Trigger of r-process? (Fuller+ '17)
- Baryogenesis? (Baumann+ '07)
- JWST luminous gals? (Hutsi+ '22)

2. 暗黒物質としての原始 BH

観測制限

原始ブラックホール研究の最前線 多田祐一郎

2. 暗黒物質としての原始 BH

Positivist Perspective?

原始ブラックホール研究の最前線

多田祐一郎

2. 暗黒物質としての原始 BH

9 /40

Evidence?1

原始ブラックホール研究の最前線 多田祐一郎

FAR $[yr^{-1}]$	$\ln \mathcal{L}$	UTC time	mass 1 $[M_{\odot}]$	mass 2	$[M_{\odot}]$	spin1z	spin2z	Network	SNR	H1 SNR	L1 SNI
0.1674	8.457	2017-03-15 15:51:30	3.062	0.928	31	0.08254	-0.09841	8.527	7	8.527	-
0.2193	8.2	2017-07-10 17:52:43	2.106	0.2759		0.08703	0.0753	8.157		-	8.157
0.4134	7.585	2017-04-01 01:43:34	4.897	0.779)5	-0.05488	-0.04856	8.672	2	6.319	5.939
1.2148	6.589	2017-03-08 07:07:18	2.257	0.6997		-0.03655	-0.04473	8.535		6.321	5.736
											Phukon+'
FAR $[yr^{-1}]$	Pipeli	ne GPS time	$m_1 [M_\odot]$ m	$n_2 [M_\odot]$	χ_1	χ_2	H SNR	L SNR	V SN	R Netw	ork SNR
0.20	GstL	AL 1267725971.02	0.78	0.23	0.57	0.02	6.31	6.28	-	3	8.90
1.37	MBT	A 1259157749.53	0.40	0.24	0.10	-0.05	6.57	5.31	5.81	. 1	0.25
1.56	GstL	1264750045.02	1.52	0.37	0.49	0.10	6.74	6.10	_	(9.10
											LVK '2

$FAR [yr^{-1}]$	$\ln \mathcal{L}$ UTC time matrix		mass 1 $[M_{\odot}]$ mass 2 $[M_{\odot}]$		spin1z spin2z		Network SNR		H1 SNR	L1 SNI	
0.1674	8.457	2017-03-15 15:51:30	3.062	0.9281		0.08254	-0.09841	8.527		8.527	-
0.2193	8.2	2017-07-10 17:52:43	2.106	0.2759		0.08703	0.0753	8.157		-	8.157
0.4134	7.585	2017-04-01 01:43:34	4.897	0.7795		-0.05488	-0.04856	8.672		6.319	5.939
1.2148	6.589	2017-03-08 07:07:18	2.257	0.6997		-0.03655	-0.04473	8.535		6.321	5.736
											Phukon+ '
FAR $[yr^{-1}]$	Pipeli	ine GPS time	$m_1 [M_\odot]$ n	$n_2 [M_\odot]$	χ_1	χ_2	H SNR	L SNR	V SN	IR Netw	ork SNR
0.20	GstL	AL 1267725971.02	0.78	0.23	0.57	0.02	6.31	6.28	-		8.90
1.37	MBT	A 1259157749.53	0.40	0.24	0.10	-0.05	6.57	5.31	5.81	l 1	0.25
1.56	GstL	AL 1264750045.02	1.52	0.37	0.49	0.10	6.74	6.10	-		9.10
											LVK 'Z

 $M < M_{\odot}$

Evidence? 2

原始ブラックホール研究の最前線 多田祐一郎 Sasaki, Suyama, Tanaka, Yokoyama '18

2. 暗黒物質としての原始 BH

(indirect) Evidence? 3

induced GW b.g.

多田祐一郎

原始ブラックホール研究の最前線

if $M_{\rm BH} \sim 10^{20} \, {\rm g}$ → 100% Dark Matter

Radiation Era

2. 暗黒物質としての原始 BH

 $\frac{\delta \rho}{\sim}$ ~ .

0

 $\mathcal{P}_{\zeta} \sim 10^{-2}$

3. インフレーションと原始ブラックホール

Ordinary matter particles are coupled to light and What's Inflation? talk matter particles start building structures

cosmicInflation

BigBang

Oriomoffuctuations

Particles form

- Accelerated Expansion of the Early U.
- Did it really happen?
- What kind of obj. drove it?

380 000 -

100 4

原始ブラックホール研究の最前線 多田祐一郎

10³⁰ seconds ond successful the second sec

原始ブラックホール研究の最前線 多田祐一郎 "Horizon" of the expanding U.

3. インフレーションと原始 BH

原始ブラックホール研究の最前線 多田祐一郎 "Horizon" of the expanding U.

micro Quantum perturbation

原始ブラックホール研究の最前線 多田祐一郎

"Horizon" of the expanding U.

Macro "Classical" perturbation cf. Schrödinger's Cat

原始ブラックホール研究の最前線 多田祐一郎 "Horizon" of the expanding U.

原始ブラックホール研究の最前線 多田祐一郎 "Horizon" of the expanding U.

H size during inflation

原始ブラックホール研究の最前線 多田祐一郎

Energy = Mass

current H size

Inflation Theories

Just to realise an Accelerated Expansion (= Dark Energy = almost const. energy), you only need homogeneous VEV of some scalar $\phi(t)$ with the potential $V(\phi)$.

原始ブラックホール研究の最前線 多田祐一郎

"Inflation of the # of inflation theories" by T. Matsubara

多田祐一郎 原始ブラックホール研究の最前線

Large PTB?

原始ブラックホール研究の最前線 多田祐一郎

Lyth, Malik, Sasaki '05

- 時間のずれ $\delta N(\mathbf{x})$ は超ホライズン保存量 - 曲率ゆらぎ $\zeta(\mathbf{x})$ に等しい

e-folds: $dN = Hdt = \frac{a}{a}dt$

 $\operatorname{local U:} ds^{2} = -dt^{2} + a^{2}(t)e^{2\zeta(t,\mathbf{x})}d\mathbf{x}^{2}$

 $\zeta(\mathbf{x}) = \delta N(\mathbf{x}) \simeq -\overline{H} \frac{\delta \phi(\mathbf{x})}{\overline{\dot{\phi}}}$

Large PTB?

多田祐一郎

原始ブラックホール研究の最前線

Lyth, Malik, Sasaki '05

- 時間のずれ $\delta N(\mathbf{x})$ は超ホライズン保存量
- 曲率 ϕ らぎ $\zeta(\mathbf{x})$ に等しい

e-folds: $dN = Hdt = \frac{\dot{a}}{a}dt$ local U.: $ds^2 = -dt^2 + a^2(t)e^{2\zeta(t,\mathbf{x})}d\mathbf{x}^2$

 $\zeta(\mathbf{x}) = \delta N(\mathbf{x}) \simeq -\overline{H} \frac{\delta \phi(\mathbf{x})}{\overline{\dot{\phi}}}$

Exp.-tail

多田祐一郎

原始ブラックホール研究の最前線

 $\delta\phi \rightarrow \zeta = \delta N$: non-linear relation

Triangle study

 $\boldsymbol{\Sigma}$

$$\mathscr{C}(r) = \frac{2}{3} \left[1 - (1 + r\zeta'(r))^2 \right]$$

$$\overline{\mathscr{C}} = \frac{1}{V_{R_m}} \int_0^{R_m} 4\pi R^2 \mathscr{C} dR > \overline{\mathscr{C}}_{th} = \frac{2}{5} \quad \text{Atal+ 19}$$

$$M \sim M_{R_m} (\overline{\mathscr{C}} - \overline{\mathscr{C}}_{th})^{0.36} \quad \text{Choptuik+ '93}$$
Num. Rel.
$$PBH \text{ abundance}$$

PBH abundance

原始ブラックホール研究の最前線 多田祐一郎

 $d\pi(N, \mathbf{x})$

 $3M_{\rm Pl}^2 H^2(N, \mathbf{x}) = \frac{1}{2}$ $dW(N, \mathbf{x}) dW(N', \mathbf{y}) = -\frac{1}{2}$

原始ブラックホール研究の最前線 多田祐一郎

= 超ホライズン粗視化場のEFT = 局所的に一様等方 + 相関ありブラウン運動

$$\frac{\pi(N, \mathbf{x})}{H(N, \mathbf{x})} dN + \frac{H(N, \mathbf{x})}{2\pi} dW(N, \mathbf{x}),$$

$$\left(-3\pi(N, \mathbf{x}) - \frac{V'(\phi(N, \mathbf{x}))}{H(N, \mathbf{x})}\right) dN,$$

$$\frac{1}{2}\pi^2(N, \mathbf{x}) + V(\phi(N, \mathbf{x})),$$

$$\frac{\sin k_{\sigma}(N) |\mathbf{x} - \mathbf{y}|}{k_{\sigma}(N) |\mathbf{x} - \mathbf{y}|} \delta_{NN'} dN$$

STOLAS

Mizuguchi, Murata, YT in prep.

Ex. 1: Chaotic $V = \frac{1}{2}m^2\phi^2$

N = 5.5

Ex. 2: Inflection

原始ブラックホール研究の最前線 多田祐一郎 ϕ

STOLAS

Mizuguchi, Murata, YT in prep.

N = 5.5

Ex. 2: Inflection

原始ブラックホール研究の最前線 多田祐一郎

31/40

原始ブラックホール研究の最前線 多田祐一郎

Importance Sampling

Ex.1: Chaotic

原始ブラックホール研究の最前線 多田祐一郎

Intentionally large noise (a) N = 3

Ex. 2 : Inflection

Importance Sampling

Ex.1: Chaotic

多田祐一郎

原始ブラックホール研究の最前線

Triangle study

 \geq

$$\mathscr{C}(r) = \frac{2}{3} \left[1 - (1 + r\zeta'(r))^2 \right]$$

$$\overline{\mathscr{C}} = \frac{1}{V_{R_m}} \int_0^{R_m} 4\pi R^2 \mathscr{C} dR > \overline{\mathscr{C}}_{th} = \frac{2}{5} \quad \text{Atal+ 19}$$

$$M \sim M_{R_m} (\overline{\mathscr{C}} - \overline{\mathscr{C}}_{th})^{0.36} \quad \text{Choptuik+ '93}$$
Num. Rel.
$$PBH \text{ abundance}$$

PBH abundance

原始ブラックホール研究の最前線 多田祐一郎

4. 最近の话

Pulsar Timing Array

The NANOGrav 15-year Data Set: Search for Signals from New Physics

原始ブラックホール研究の最前線 多田祐一郎

2306.16219

cf. Terada-san's poster, Lee-san's talk

4. 最近の話

One-loop on CMB

2211.03395 Ruling Out Primordial Black Hole Formation From Single-Field Inflation

原始ブラックホール研究の最前線 多田祐一郎

Jason Kristiano^{1,2,*} and Jun'ichi Yokoyama^{1,2,3,4,†}

 $\mathscr{P}_{\zeta}^{\text{tree}}(k_{\text{CMB}}) \sim \Delta \mathscr{P}_{\zeta}^{1-\text{loop}}(k_{\text{CMB}})$

4. 最近の話

- ζ は漸近 dilatation の NG boson (cf. Sugishita-san's talk)

- (古典的に) soft ζ は保存量

(Lyth, Malik, Sasaki '05)

Maldacena's consistency relation ('03)

$$S^{(3)}[\zeta] \qquad \langle \zeta_{k_{\rm L}} \zeta_{k_{\rm S}} \zeta_{k_{\rm S}} \rangle \propto \mathscr{P}_{\zeta}(k_{\rm L}) \frac{\mathrm{d}\mathscr{P}_{\zeta}}{\mathrm{d}\, \mathrm{d}\, \mathrm{d}\,$$

まとめ 原始ブラックホールの直接的/間接的証拠はまだないが 見つかったら一発大逆転なので注視しよう