Transfer Matrix Spectrum of 2D Ising Model by Tensor Network

Shinji Takeda', Fathiyya Izzatun Az Zahra
lInstitute of Theoretical Physics, Kanazawa University

ABSTRACT

We develop a scheme to compute the spectrum of transfer matrix of two dimensional Ising Model by using tensor network. The first step is to
represent transfer matrix in terms of tensor network and then it is coarse grained by using Higher Order Tensor Renormalization Group. From the
coarse-grained tensor, we obtain approximation of the transfer matrix and then it is diagonalized to get the eigenvalues and eigenvectors. Using
the eigenvalues, several important quantities such as energy gap and free energy of finite system can be computed. Furthermore, by computing
be classified.

an impurity tensor network, quantum number of the energy state can

INTRODUCTION

dTransfer matrix method is a tool to evaluate the partition function

dThe eigenvalues of transfer matrix can be used to compute the energy gap,
correlation length, free energy, etc.

dThe eigenvector is important to determine the quantum number of the energy
spectrum.

A Direct diagonalization of transfer matrix is very hard because its dimension is equal
to exponential of system size.

dOne way to diagonalize transfer matrix is by using tensor network (TN) based
algorithm i.e. Higher Order Tensor Renormalization Group (HOTRG) [2].

dThis algorithm truncates the bond dimension of tensor into cutoff y.

QAWith this technique, the dimension of transfer matrix is reduced into y?2.

S Emhops

To compute the approximate energy gap and quantum number by using transfer matrix
formalism combined with tensor network algorithm , we follow the steps below:
1. Define 2D Ising Model in the transfer matrix formalism.
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Figure 1. Transfer matrix formalism on 2D Ising Model. The transfer matrix 7 of the model

contain the information of nearest neighbor interaction in x and y direction.
2. Find the tensor network (TN) representation of transfer matrix 77
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4. Coarse grain the tensor network by using HOTRG algorithm
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Figure 4: Coarse graining of TN with HOTRG
5. Compute impurity matrix by HOTRG to find quantum numbe!
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Figure 5: Coarse graining of TN representation of impurity matrix O, where 0 = UTOU is unitary
transformation of arbitrary operator O.

RESULTS

As the first step, we compute the eigenvalues of transfer matrix of 2D Ising model of finite system sizes.
From the eigenvalues A', the energy gap w, and its relative error dw, can be obtained by using the

following equations Swg

Ay E, = Energy of state a | HOTRG _ exact |
Wq = Eq —Eo = — L, In 2 E, = Ground state energy = gt wg**°* =exact energy gap [1]

1 Three lowest energy gap w1, w,, w3 over several system size and the relative error
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Figure 6. (a). Three lowest energy gap for system wth linear size on y L, = 2%, 2°, and 2'° computed by
HOTRG with y = 100 . It can be seen that when system size gets larger, w; below T, gets closer to zero
which means the first energy state and ground state degenerate. (b) The relative error of three lowest
energy gap over several linear size L,,. The error is getting larger when system size is getting larger.

Q |B,,| elements to determine quantum number of eigenstates at T =2.264 <T.and T = 2.274 >
T.and L, = 210
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Figure 7. First sixteen elements of matrix B for system at T = 2.264 (a), and (b) T = 2.274 . State a with

nonzero |B,,| shows the state has quantum number q = (-) .

The matrix element is given by B,, = (a|s|b), s is spin operator with quantum number (=). The ground
state which is given by b = 0 always has quantum number g = (+). Thus B,, is equal to zero if state a
has quantum number q = (+) because B,, = (+| — |[+) = 0 . Therefore, from Fig.7 it can be deduced that
for system with L, = 2'° at T = 2.264 state a = 0,2,6,7,8,9,12 have quantum number q = (+). This result is

summarized and compared with exact quantum number in Table 1.
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Table 1. Comparison of exact and approximate quantum number. The exact quantum number is computed
by following formula derived by [1].
1 Relative error of free enerqgy of finite system

The relative error of free energy is
5f _ |fHOTRG o fexactl
|fexact|

Where fyorrc 1S the approximate free energy computed
with HOTRG algorithm with y = 100 and f,,4c: IS computed
by following formulation in [1].
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Figure 8. Relative error of free energy of finite system with size L, XL, = 2'°x21°, 2°x27, 25x2%, computed
by HOTRG with ¥ = 100

CONCLUSION

 The numerical result with y = 100 shows that error of the approximate energy spectrum is relatively
small. However the error gets larger as the system size increases.

dThe quantum number computed from HOTRG at at T = 2.264 and T = 2.274 shows good agreement
with the exact result up to first 16 eigenvalues for L, = 2*°.

 The quantum number accuracy highly depends on the error of the energy gap. When the error of the
energy gap is large, energy gap of each state can not be distinguished. Thus, quantum number of
those indiscernible approximate energy gap are not able to be judged correctly.

[1] B. Kaufman, Phys. Rev. 76(8), 1232-1252, (1949)
[2] Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T. Xiang, Phys. Rev. B 86, 045139, (2012)



