
ABSTRACT
We develop a scheme to compute the spectrum of transfer matrix of two dimensional Ising Model by using tensor network. The first step is to 
represent transfer matrix in terms of tensor network and then it is coarse grained by using Higher Order Tensor Renormalization Group. From the 
coarse-grained tensor, we obtain approximation of the transfer matrix and then it is diagonalized to get the eigenvalues and eigenvectors. Using 
the eigenvalues, several important quantities such as energy gap and free energy of finite system can be computed. Furthermore, by computing 
an impurity tensor network, quantum number of the energy state can be classified. 
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INTRODUCTION
qTransfer matrix method is  a tool to evaluate the partition function
qThe eigenvalues of transfer matrix can be used to compute the energy gap, 

correlation length, free energy, etc.
qThe eigenvector is important to determine the quantum number of the energy 

spectrum.
qDirect diagonalization of transfer matrix is very hard because its dimension is equal

to exponential of system size.
qOne way to diagonalize transfer matrix is by using tensor network (TN) based

algorithm i.e. Higher Order Tensor Renormalization Group (HOTRG)  [2]. 
qThis algorithm truncates the bond dimension of tensor into cutoff 𝜒. 
qWith this technique, the dimension of transfer matrix is reduced into 𝜒!. 

METHODS
To compute the approximate energy gap and quantum number by using transfer matrix 
formalism combined with tensor network algorithm , we follow the steps below:
1. Define 2D Ising Model in the transfer matrix formalism. 
    

 
                                                                              

Figure 1. Transfer matrix formalism on 2D Ising Model. The transfer matrix 𝒯	of the model 
contain the information of nearest neighbor interaction in 𝑥 and 𝑦 direction.
2. Find the tensor network (TN) representation of transfer matrix 𝓣

Figure 2. TN representation of transfer matrix

3. Full Contraction of TN

Figure 3:  Full contraction of initial TN before coarse graining 

4. Coarse grain the tensor network by using HOTRG algorithm  

          

Figure 4: Coarse graining of TN with HOTRG
5. Compute impurity matrix by HOTRG to find quantum number

Figure 5:  Coarse graining of TN representation of impurity matrix &𝑂, where &𝑂 = 𝑈"𝑂𝑈 is unitary 
transformation of  arbitrary operator 𝑂. 
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Initial TN Representation

Diagonalization of the coarse grained 
tensor !𝒯(")  

!𝒯(") = 𝑊𝜆$𝑊%  
𝜆$ =Eigenvalues 
𝑊 = Eigenvector

To classify quantum number, compute:
!𝐵 ≈ 𝜆$&'/)𝑊% !𝑂(")𝑊𝜆$&'/)

𝜆$ ≈ 𝜆*!, approximate eigenvalues
𝑊 = approximate eigenvector
!𝑂(") =impurity tensor after coarse 
graining
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𝒯 is transfer matrix , 𝑠 = +1,−1 , 𝛽 is inverse of temperature

Unitary transformation of transfer 
matrix 𝒯 into its TN representation &𝒯
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𝑢 is local unitary matrix
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Correlation function in TN representation 
of transfer matrix
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Rank−4 tensor of each lattice site in TN representation of transfer 
matrix

𝑢!/ 𝜆/
[&]

𝑢!0∗ 𝜆0
[&]

𝑢!2∗ 𝜆2
[&]

𝑢!3

𝐴:

𝑢!/ 𝜆/
[&]

𝑢!0∗

𝑢!2∗ 𝜆2
[&]

𝑢!3 𝜆3
[&]

𝐴J

The relative error of free energy is 

𝛿𝑓 =
|𝑓%&'() − 𝑓*#+,-|

|𝑓*#+,-|
Where 𝑓%&'()  is the approximate free energy computed 
with HOTRG algorithm with 𝜒 = 100 and 𝑓*#+,- is computed 
by following  formulation in [1].

The relative error is around ~10./ . The error is getting 
slightly larger when system size is larger because of coarse 
graining. 
Furthermore, the error near T0 =

!
123(56 !)

is getting 
significant at larger system. 
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𝐸& = Energy of state 𝑎
𝐸' = Ground state energy

 

𝜔&.(&/0 =exact energy gap [1]
 

RESULTS

q The numerical result with 𝜒 = 100 shows that error of the approximate energy spectrum is relatively 
small. However the error gets larger as the system size increases.

qThe quantum number computed from HOTRG at at 𝑇 = 2.264 and 𝑇 = 2.274 shows good agreement 
with the exact result up to  first 16 eigenvalues for 𝐿$ = 258. 

q The quantum number accuracy highly depends on the error of the energy gap. When the error of the 
energy gap is large, energy gap of each state can not be distinguished. Thus, quantum number of 
those indiscernible approximate energy gap are not able to be judged correctly.

CONCLUSION
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As the first step, we compute the eigenvalues of transfer matrix of 2D Ising model of finite system sizes. 
From the eigenvalues 𝜆9, the energy gap 𝜔+ and its relative error 𝛿𝜔+ can be obtained by using the 
following equations

q Three lowest energy gap 𝝎𝟏, 𝝎𝟐, 𝝎𝟑 over several system size and the relative error

                                        (a)                                                                                    (b)
Figure 6. (a). Three lowest energy gap for system wth linear size on 𝑦 L= = 2>, 2/, and 258 computed by 
HOTRG with 𝜒 = 100 . It can be seen that when system size gets larger, 𝜔5 below 𝑇, gets closer to zero 
which means the first energy state and ground state degenerate. (b) The relative error of three lowest 
energy gap over several linear size 𝐿$. The error is getting larger when system size is getting larger. 
q A|𝑩𝒃𝒂| elements to determine quantum number of eigenstates at  𝑻 = 𝟐. 𝟐𝟔𝟒 < 𝑻𝒄 and 𝑻 = 𝟐. 𝟐𝟕𝟒 >

𝑻𝒄 and 𝑳𝒚 = 𝟐𝟏𝟎

  
                                            (a)                                                                                 (b)                                                                                                                          
 Figure 7. First sixteen elements of matrix &𝐵 for system at 𝑇 = 2.264	(a), and  (b) 𝑇 = 2.274	. State 𝑎 with 
nonzero  &𝐵D+  shows the state has quantum number q = (−) . 
 The matrix element is given by &𝐵D+ = ⟨𝑎|𝑠|𝑏⟩, 𝑠 is spin operator with quantum number (−). The ground 
state which is given by 𝑏 = 0 always has quantum number 𝑞 = (+). Thus &𝐵8+ is equal to zero if state 𝑎 
has quantum number q = (+) because &𝐵8+ = ⟨+| − + = 0 . Therefore, from Fig.7 it can be deduced that 
for system with 𝐿$ = 258 at 𝑇 = 2.264 state 𝑎 = 0,2,6,7,8,9,12 have quantum number q = (+).  This result is 
summarized and compared with exact quantum number in Table 1.

Table 1. Comparison of exact and approximate quantum number. The exact quantum number is computed 
by following formula derived by [1]. 
q Relative error of free energy of finite system

Figure 8. Relative error of free energy of finite system with size 𝐿#×𝐿$ = 258×258, 2/×2/, 2>×2>, computed 
by HOTRG with 𝜒 = 100
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