

Tevatronにおける B物理の最新結果

ロ今後の展望

B

Heavy Flavor Physics @ Tevatron B、D物理の最新結果

Rare decays CKM/CP violation Spectroscopy

Why Heavy Flavor?

HF approaches the structure of matter and its interactions

Can access energy scales beyond the energy frontier machines

There are a lot of puzzles (or hints to new physics):

Many results are on 浅井さん's border line (~2o)

4

□ Same sign dimuon charge asymmetry □ CPV in B_s mixing, CPV (tree) ≠ CPV (penguin) ···· □ A_{FB} in B→K^(*)µµ, large BR (B→ τ v) ····

B production@Tevatron [©] Pros □ Large cross-section (~3-5 µ barn) All species of b-hadrons $\square B_{\mu}, B_d, B_s, B_c, \Lambda_b, \Sigma_b \cdots$ **8** Cons **QCD** background $x10^3$ larger than σ (bb) □ Collision rate ~2MHz → tape writing limit ~100Hz Sophisticated triggers are very important! **Tevatron B-production enables :** explore various rare decays measure precise CPV parameters - study wide mass range of b hadrons

Tevatron

■ pp̄ collisions at √s=1.96 TeV

- Typical initial luminosities of 3.5x10³²cm⁻²s⁻¹
- >50 pb⁻¹ collected per week (2.5fb⁻¹ per year)
- >8.7fb⁻¹ data on tape
 - Expect >10fb⁻¹ until end of FY2011 (Sept.30)
- Today we cover 2.9-6.1fb⁻¹ of data

Active HF programs (NOT ALL!)

BSM A_{FB} (B→Kµµ) $B \rightarrow \mu \mu$ $D \rightarrow \mu \mu$ sin2 β_s **XYZ** mesons ASL $B_s \rightarrow D_s D_s$ **D** mixing **B**→hh $B_s \rightarrow \mu D_s X$ D→hh **B**→DK $B_s \rightarrow J/\psi f_0$ $B_s \rightarrow J/\psi K_s$ Lifetimes

CKM

 $B_s \rightarrow J/\psi K^*$

QCD Β→φφ **B**-production c-baryons b-baryons Ψ & Y production

Many ongoing analyses!

Active HF programs (NOT ALL!)

BSM A_{FB} (B→Kμμ) $B \rightarrow \mu \mu$ $D \rightarrow \mu \mu$ sin2 B_s A_{SL} XYZ mesons $B_s \rightarrow D_s D_s$ **D** mixing $B_s \rightarrow \mu D_s X$ **B**→hh D→hh CKM QCD **B**→DK B→φφ $B_s \rightarrow J/\psi f_0$ **B**-production $B_s \rightarrow J/\psi K_s$ c-baryons Lifetimes b-baryons $B_s \rightarrow J/\psi K^*$ Ψ & Y production

Focus on the latest results

□B_s→µµ

40 20 0

0.8

0.85

0.9

\$

 $\sqrt{BR}(B_s \rightarrow \mu\mu) < 3.6(4.3) \times 10^{-8}$ $\sqrt{BR}(B_d \rightarrow \mu\mu) < 6.0(7.6) \times 10^{-8} 90(95) \%$ C.L.

√BR (B_s→μμ) <5.1x10⁻⁸ 95%C.L.

@3.7fb⁻¹ **CDF public note 9892**

0.95

@6.1fb⁻¹ PLB693,539 (2010)

 $B_s \rightarrow \mu\mu$: prospects

mSUGRA, D. Toback, arXiv:0911.0880v1 (2009)

$B_{c} \rightarrow \phi \phi$: gluonic penguin

CDFnote 10064

15

□ Dominated by $b \rightarrow sss$ (same as $B \rightarrow \phi K^{(*)}$) BR is sensitive to NP due to the loop diagram □ Previous result: (1.4^{+0.6}_{-0.5}±0.6) x10⁻⁵ by 8 signal@180pb⁻¹

 $BR(B_s^0 \rightarrow \phi \phi) = [2.40 \pm 0.21(stat) \pm 0.27(syst) \pm 0.82(BR))$ $\cdot 10^{-5}$

Significant improvement from previous results

B_s→ $\phi\phi$: polarization

Sign of NP? or within SM framework? Information from penguin dominated $B_s \rightarrow VV$ is quite interesting

http://www.slac.stanford.edu/xorg/hfag /rare/index.html

B_s $\rightarrow \phi \phi$: polarization fit

- \square 3 angular distributions (cos θ_1 , cos θ_2 , ϕ)
- Unbinned maximum likelihood fit
 - Time-integrated, B_s flavor untagged, no CPV assumption

3 transversity amplitudes and 1 phase difference

- $|A_0|^2 = 0.348 \pm 0.041 (\text{stat}) \pm 0.021 (\text{syst}),$
- $|A_{\parallel}|^2 = 0.287 \pm 0.043 (\text{stat}) \pm 0.011 (\text{syst}),$
- $|A_{\perp}|^2 = 0.365 \pm 0.044 (\text{stat}) \pm 0.027 (\text{syst}),$

 $\cos \delta_{\parallel} = -0.91^{+0.15}_{-0.13} (\text{stat}) \pm 0.09 (\text{syst}).$

First polarization measurement of the decay! 3/10/2011 基研研究会素粒子物理学の進展2011 @京都大学

This first measurement in the B_s sector seems to strengthen the puzzle!

3/10/2011 基研研究会 素粒子物理学の進展2011 @京都大学

18

CKM/CPV

B_s measurement

 $\Box B_{s} \rightarrow J/\psi K_{s}/K^{*0}$ $\Box B_{s} \rightarrow J/\psi f_{0}$

□γ measurement

□D→hh CPV

3/10/2011 基研研究会 素粒子物理学の進展2011 @京都大学

19

CP violation in $B_s \rightarrow J/\psi \phi$

Interference of neutral B (d,s) decays with and without mixing: \rightarrow CPV

$B_s \rightarrow J/\psi \phi$ signal

J/Y

□ The golden channel to measure B_s
□ dominated by b→ccs tree ~ theoretically clean

□ B→VV decay: three partial waves □ L=0.2 (CP even) □ L=1 (CP odd) Need angular analysis

21

The fitted fraction of KK S-wave contamination in the signals is <6.7% at the 95% CL

B_s new results

23

CDF note 10206 (5.2fb⁻¹) DØ note 6098 (6.1fb⁻¹) Significant improvements from last publication S-wave consideration, PID, multi variate analysis…

Dimuon charge asym.

Both experiments see SM consistency at $~1\sigma$

Search for CPV in B mixing from same sign semileptonic B decays:

 $\mathbf{N}_{\mathbf{b}}^{--} = \begin{cases} \mathbf{b} \rightarrow \mu^{-} \mathbf{X} \\ \mathbf{b} \rightarrow \mathbf{b} \rightarrow \mu^{-} \mathbf{X} \end{cases}$

 $K^{*0} \rightarrow K^+ \pi^-$

24

 $\varphi(1020) \rightarrow K^+K^-$

Major issues:

- 1. Asymmetric backgrounds from kaon faking muon
- 2. Asymmetric μ^+ and μ^- acceptance/efficiecny

D0 can swap polarity!

Fake muon backgrounds

□ σ(K⁺N)<σ(K⁻N) □ More K⁺ make fake μ

Kaon's properties are investigated by:

$$K^{*0} \to K^{+}\pi^{-}$$

$$\varphi(1020) \to K^{+}K^{-}$$

Compute asymmetry from observed +/- yields

y

μμ charge asymmetry result DO 6.1fb⁻¹ analysis yields:

26

 $A_{sl}^{b} = (-0.957 \pm 0.251 \,(\text{stat}) \pm 0.146 \,(\text{syst}))\%$

using prediction of a^dsl and a^ssl from A. Lenz, U. Nierste, hep-ph/0612167

Differs from SM by $~3.2 \sigma$

CDF 1.6fb⁻¹ CDF update is ongoing A_{SL}=0.0080±0.0090(stat)±0.0068(syst) 3/10/2011 基研研究会 素粒子物理学の進展2011 @京都大学

$B_s \rightarrow J/\psi f_0(980)$

□ S-wave contribution to $B_s \rightarrow J/\psi \phi$ (→K⁺K⁻)

- Sin2B_s measurement w/o angular analysis
- □ Reconstruct with $f_0 \rightarrow \pi^+\pi^-$
- LHCb and Belle also claim the observation

$$N_{signal} = 571 \pm 37(stat) \pm 25(syst)$$

 $N_{signal} = 169^{+31}_{-21} (arXiv:1102.0206)$
 $N_{signal} = 63^{+16}_{-10} (arXiv:1102.2759)$

Dipion mass

28

 $R_{f0/\phi} = [BR(B_{s} \rightarrow J/\psi f_{0}(980))BR(f_{0}(980) \rightarrow \pi^{+}\pi)]/ [BR(B_{s} \rightarrow J/\psi \phi)BR(\phi \rightarrow K^{+}K^{-})] = 0.290 \pm 0.020(\text{stat}) \pm 0.017(\text{sys}) \text{ Most precise}$

2010 constraint

3/10/2011 基研研究会 素粒子物理学の進展2011 @京都大学

29

0.6

 $\overline{\rho}$

0.5

-0.1.1

0.1

0.2

0.3

■ CKM angle γ could be extracted by exploiting the interference between b \rightarrow cus (B⁺ \rightarrow D⁰K) and b \rightarrow ucs (B⁺ \rightarrow D⁰K), while D's decay into the same final state

y by ADS

30

□ ADS (Atwood-Dunietz-Soni) method □ Uses B[±]→DK[±] decays with D⁰→K⁺π⁻ (doubly-cabibbo suppressed)

No flavor tag, no time dependence

ADS comparison

DCDF results are in agreement with B-factories

3/10/2011 基研研究会 素粒子物理学の進展2011 @京都大学

32

Charm is a unique window toward NP: only one probe to measure CPV in up-quarks

CPV in $D^0 \rightarrow \pi^+\pi^-$

$$A_{CP}(D^0 \to \pi^+ \pi^-) = \frac{\Gamma(D^0 \to \pi^+ \pi^-) - \Gamma(\overline{D}^0 \to \pi^+ \pi^-)}{\Gamma(D^0 \to \pi^+ \pi^-) + \Gamma(\overline{D}^0 \to \pi^+ \pi^-)}$$

Tagging the D⁰ with D*:
$$\begin{cases} D^{*+} \rightarrow D^0 \pi_s^+ \\ D^{*-} \rightarrow \overline{D}^0 \pi_s^- \end{cases}$$

□ CP symmetric initial state ($p\bar{p}$) ensures charge symmetric production □ We have world's largest charm sample: □~215,000 D*+→D⁰ (→ π + π ⁻) π +@5.94fb⁻¹

3/10/2011 基研研究会素粒子物理学の進展2011 @京都大学

36

$D^\star o D^0 \pi_s o [\pi \ \pi] \ \pi_s$

$D^{\star} ightarrow D^{0} \pi_{s} ightarrow [K\pi] \pi_{s}$

 $D^0 o [K\pi]$

$$D^{\star} \rightarrow D^{0}\pi_{s} \rightarrow [\pi \pi]\pi_{s}$$

$$D^{\star} \rightarrow D^{0}\pi_{s} \rightarrow [K\pi]\pi_{s}$$

$$D^{\star} \rightarrow D^{0}\pi_{s} \rightarrow [K\pi]\pi_{s}$$

$$\int 0^{0} \rightarrow [K\pi]$$

$$D^{0} \rightarrow [K\pi]$$

$$A^{raw}_{CP}(K\pi) = A_{CP}(K\pi) + \delta(\pi_{s}) + \delta(K\pi)$$

$$A^{raw}_{CP}(K\pi) = A_{CP}(K\pi) + \delta(K\pi)$$

$$A^{raw}_{CP}(K\pi) = A_{CP}(K\pi) + \delta(K\pi)$$

-0.5

-1

0.5

0

 $a_{CP}^{dir}(D^0 \rightarrow K^+K^-)$ [%]

3/10/2011 基研研究会 素粒子物理学の進展2011 @京都大学

0.5

0

 $a_{cn}^{ind}(D^0 \rightarrow K^+K^-)$ [%]

-0.5

-1

Spectroscopy

Charm Baryons

Bottom Baryons

DY(4140)

3/10/2011 基研研究会素粒子物理学の進展2011 @京都大学

40

Charm Baryons: $\Sigma_{c}^{0(++)}$ and Λ_{c}^{*}

 $\Sigma_{c}(2455)^{0}$

 $Mass(\Lambda_{c}^{+} \pi^{+})-Mass(\Lambda_{c}^{+})$ [MeV/c²

200

180

60

140

140

160

CDF Run II preliminary, L = 5.2 fb

180 $Mass(\Lambda_c^+ \pi)$ - $Mass(\Lambda_c^+)$ [MeV/c²]

3/10/2011 基研研究会 素粒子物理学の進展2011 @京都大学

 $200 \Lambda_c(2625)$

Charm Baryons: Mass Spectrum

42

Bottom Baryons: $\Sigma_b^{(*)}$ = 2006: Evidence for new bottom baryons (1.1fb⁻¹) = $\Sigma_b^{(*)\pm} \rightarrow \Lambda_b^0 \pi^{\pm}; \Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-; \Lambda_c^+ \rightarrow pK^-\pi^+$ = Confirm the discovery and measure their resonance properties with 6.0fb⁻¹ of data

Test various non-perturbative QCD (HQET, potential models····)

Y(4140): Recap 2009: Evidence of J/ψφ structure at 4140MeV in exclusive B⁺→ J/ψφK⁺

8 2

45

Y(4140): Update Up to 6.0fb⁻¹ with same requirements

Y(4140): And more! Suggestive evidence of a second peak

$$M = 4274^{+8.4}_{-6.7} \pm 1.9 MeV$$

$$\Gamma = 32.3^{+21.9}_{-15.3} \pm 7.6 MeV$$

 3.1σ significance

47

□B_s→µµ

 $B \rightarrow K^* \mu \mu A_{FB}$

No! There are many analyses in pipeline

 $B \rightarrow hh$

□Β,→φφ $\square B_s \rightarrow D_s D_s$ $\square Y$ polarization

Please look forward winter/spring conferences!

D ...

Interesting

results...

51

Tevatron heavy flavor program has reached maturity

- Tevatron is scheduled to shutdown at the end of FY2011 (Sept. 30)
- Various important and interesting results are produced and coming in a few months
- We can still play a game with LHCb and B-factories, especially by well understood detector and symmetric pp production

and the second sec

backup

3/10/2011 基研研究会 素粒子物理学の進展2011 @京都大学

53

B triggers

Sillicon Vertex Trigger: SVT

- Online selection of displaced tracks
- UNIQUE at hadron colliders

Secondary Vertex

Impact Parameter (~100µm)

3/10/2011 基研研究会素粒子物理学の進展2011 @京都大学

Particle Identification

Separate kaons from pions dE/dx gives 1.5σ separation for p>2 GeV TOF gives better separation at low p Used for:

Kaon/pion separation Electron tagging

TOF

Flight : Tevatron store 860

0.5

-0.5

-12/23/200

 $1(GeV/c^2)$

 \mathfrak{Z}_{2}

CP violation in $B_s \rightarrow J/\psi \phi$

Analogously to the neutral B⁰ system, CP violation in B_s system occurs through interference of decays with and without mixing:

B_s flavor tagging

Same side

□ Need to know B_s flavor since $B_s \rightarrow J/\psi \phi$ decays into CP eigenstate

- Tag same side (εD²~3.2%) or opposite side (εD²~1.2%) events based on jet/track charge
- Test the performance with B_s-B_s oscillation (5.2fb⁻¹):
 - Mixing amplitude A~1 indicates accurate flavor tagging

Consistent with past publications 3/10/2011 基研研究会素粒子物理学の進展2011 @京都大学

$${\cal A} = 0.94 \pm 0.15$$
 (stat.) ± 0.13 (syst.) $\Delta m_s = 17.79 \pm 0.07 ~ ps^{-1}$

 $egin{array}{rcl} |A_{\parallel}(0)|^2 &=& 0.231 \pm 0.014 \ ({
m stat}) \pm 0.015 \ ({
m syst.}) \ |A_0(0)|^2 &=& 0.524 \pm 0.013 \ ({
m stat}) \pm 0.015 \ ({
m syst.}) \ \phi_{\perp} &=& 2.95 \pm 0.64 \ ({
m stat}) \pm 0.07 \ ({
m syst.}) \end{array}$

CDF note 9458 (2.8fb⁻¹)

DØ note 5928, CDF note 9787

ADS parameters

Observables

$$R_{ADS}(K) = \frac{N(B^- \to D^0_{DCS}K^-) + N(B^+ \to D^0_{DCS}K^+)}{N(B^- \to D^0_{CF}K^-) + N(B^+ \to D^0_{CF}K^+)}$$
$$\mathcal{A}_{ADS}(K) = \frac{N(B^- \to D^0_{DCS}K^-) - N(B^+ \to D^0_{DCS}K^+)}{N(B^- \to D^0_{DCS}K^-) + N(B^+ \to D^0_{DCS}K^+)}$$

 $D^{0}_{CF} \rightarrow K^{-}\pi^{+}, D^{0}_{DCS} \rightarrow K^{+}\pi^{-}$

From theory: $R_{ADS}(K) = r_D^2 + r_B^2 + 2r_Br_D \cos(\delta_B + \delta_D) \cos\gamma$ $A_{ADS}(K) = 2r_Br_D \sin(\delta_B + \delta_D) \sin\gamma/R_{ADS}(K)$

B→Dh: CF

 $B^{+} \rightarrow \overline{D}^{0}_{CF} \pi^{+} \rightarrow [K^{-} \pi^{+}] \pi^{+}$

 $B^{-} \rightarrow D^{0}_{CF} \pi^{-} \rightarrow [K^{+} \pi^{-}] \pi^{-}$

Yield (B → $D_{CF}K$) = 1513 ± 68 (5 fb⁻¹) Yield (B → $D_{CF}\pi$) = 17677 ± 146 (5 fb⁻¹)

 $A_{CP}^{raw}(\pi\pi^*) = (-1.86 \pm 0.23)\%$

 $A_{CP}^{raw}(K\pi^*) = (-2.91 \pm 0.05)\%$

 $A_{CP}^{raw}(K\pi) = (-0.83 \pm 0.03)\%$

$$A_{CP}(D^0 \to \pi^+\pi^-) = (+0.22 \pm 0.24 \pm 0.11)\%$$

- BaBar on 386 fb⁻¹ $[-0.24 \pm 0.52 \pm 0.22]$ %
- Belle on 540 fb⁻¹

- CDF on 120 pb⁻¹

 $[-0.43 \pm 0.52 \pm 0.12]\%$ $[+1.0 \pm 1.3 \pm 0.6]\%$ PRL 100, 061803 (2008) PLB 670, 190 (2008) PRL 94, 122001 (2005)

At CDF : $\langle t \rangle \approx [2.40 \pm 0.03] \tau$ While at B-factories $\langle t \rangle = \tau$

3/10/2011 基研研究会 素粒子物理学の進展2011 @京都大学

2.65 (KK)

