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Introduction

�

V

e.g. “new inflation” potential

0

flat

Inflation is a key ingredient to solve the problems in the standard 
cosmology. To obtain a successful inflation, we need a scalar field 
which has a very flat potential.

In supersymmetric models of particle physics, there are 
many flat directions. In the following, we consider a flat 
direction in the framework of supersymmetry.
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inflationary era
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Flat direction 

�

V

0

quantum noise

A.Linde (1982)
A.Vilenkin, L.H.Ford (1982)
A.A.Starobinsky (1982)

��2� =
H2

4�2
N, (m̃ = 0)

��2� =
3H4

8�2m̃2
, (m̃ � H)

A flat direction has a very flat potential.

During inflation, quantum noise drives the flat direction to dilute. 
The variance of the flat direction is given by the following formulae:

�

N = HtHere,
m̃ : effective mass

lifted by non-renormalizable interactions 
or supersymmetry-breaking effects
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Stochastic approach (single field)
M.Sasaki, Y.Nambu, K.Nakao (1987)
Starobinsky (1984)

�(x) = �(x) + �UV(x)

Definition of IR modes 

Equations of motion for IR modes (Langevin eqs.)

⇥̇(x) = �(x) + s(�)(x),

�̇(x) = �3H�(x)� V �(⇥) + s(�)(x).

, �̇(x) = �(x) + �UV(x)

(IR mode for conjugate momentum 
is defined in the same way)

s(�)(x) = ⇥aH2

�
d3k

(2⇤)3
�(k � ⇥aH)

�
ak⌅k(t) + a†

�k⌅⇥k(t)
�

eik·x

 where the noise term is given by

⇥s(�)(x)s(�)(x�)⇤ =
�

H

2⇤

�2

H�(t � t�)j0(⇥aH|x� x�|)

variance of the noise term:

�(x) �
�

d3k

(2⇤)3
⇥(�aH � k)

�
ak⌅k(t) + a†

�k⌅⇥k(t)
�

eik·x

when the effective 
mass is exactly zero!!

¥

�k(t) =
�

�

4k3
Hei(��

2 + �
4 )

�
k

aH

�3/2

H(1)
�

�
k

aH

�
,

�2 =
9
4
� m̃2

H2
m̃2 =

�
�2V

��2

�
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Effective mass effects in noise terms

Recently, Enqvist et al (2012) have analyzed the flat direction using 
stochastic approach. In the their works, the effective mass effects are 
not included in the noise terms. In this study, we improve this point. 

S(�)(r, t; dt) �
� t+dt

t
dt1

� t+dt

t
dt2 �vac| s(�)(x1, t1)s(�)(x2, t2) |vac�

=
�

H

2�

�2

Hdt j0(�aHr)
�

2
�3|H(1)

� (�)|2 �
�

1 (� = real),
e��µ (� = iµ),

S(�)(r, t; dt)

�
� t+dt

t
dt1

� t+dt

t
dt2 �vac| s(�)(x1, t1)s(�)(x2, t2) |vac�

=
�

H2

2�

�2

Hdt j0(�aHr)
�

2
�3

����

�
3
2
� �

�
H(1)

� (�) + �H(1)
��1(�)

����
2

�
�

1 (� = real),
e��µ (� = iµ),

The noise correlation functions integrated for a small intervals is given by:

�2 =
9
4
� m̃2

H2
the effective mass is embedded in
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The zero-point fluctuation in the noise terms

�zero
k (t) =

1�
2�k(t)a(t)

e�i
R t dt�

�
k2/a2+m̃2

S̄(�)zero(r, N ; dN) � dN

(2�)2
j0(�aHr)�3

H

m̃
,

S̄(�)zero(r, N ; dN) � dN

(2�)2
j0(�aHr)�3

m̃

H

�
1 +

9
4m̃2/H2

�

S̄(�)zero(r, N ; dN) =
dN

(2�)2
j0(�aHr)�2,

S̄(�)zero(r, N ; dN) =
dN

(2�)2
j0(�aHr)�2

�
1 + �2

�
.

m̃� H

m̃ = 0

Mode function of the zero-point fluctuation is given by

a(t)

�k(t) =
�

k2/a2 + m̃2

:scale factor

Inserting this mode function into the formulae for the noise 
correlation functions, we identify the zero-point contribution as:

for 

for 

� m̃

Should we remove the zero-point fluctuation from the noise terms ???
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The model

V =
1
2
�2

e

�
�2 + h2

�
ē2 +

1
8
g2
2h4 +

1
8
g2
1

�
h4 + 4ē4 � 4h2ē2

�
+

�6

M2
P

�̄(N + dN) = �̄(N) + �̄(N)dN + S̄(�),

�̄(N + dN) = �̄(N)� 3�̄(N)dN �
�

�2
eĒ(N)2�̄(N) + 6

H2

M2
P

�̄(N)5
�

dN + S̄(��),

Ē(N + dN) = Ē(N) + �̄e(N)dN + S̄(e),

�̄e(N + dN) = �̄e(N)� 3�̄e(N)dN

�
��

�2
e�̄(N)2 +

�
�2

e � g2
1

�
h̄(N)2

�
Ē(N) + 2g2

1Ē(N)3
�
dN + S̄(�e),

h̄(N + dN) = h̄(N) + �̄h(N)dN + S̄(h),

�̄h(N + dN) = �̄h(N)� 3�̄h(N)dN

�
��

�2
e � g2

1

�
Ē(N)2h̄(N) +

1
2

�
g2
1 + g2

2

�
h̄(N)3

�
dN + S̄(�h).

According to Enqvist et al (2012), we consider the following potential.

Then, the discretized coupled Langevin eq. to be solved numerically is:
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Hubble induced mass

Planck-suppressed interaction

inflaton field

�

I V � |⇥|2

M2
P

�I = 3H2
I |⇥|2.

�I : inflaton energy density
MP : reduced Planck mass
HI : Hubble parameter during inflation

E.D.Stewart (1995)
M.Dine, L.Randall, S.D.Thomas (1995)

It has been pointed out that a scalar field in 
Inflationary era generically obtain an 
effective mass of the order of Hubble scale 
in the framework of (local) supersymmetry.

Such a effect lift flat directions drastically.
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Preserving flat direction during inflation

MK.Gaillard, H.Murayama, KA.Olive (1995)

E.D.Stewart (1995)

To avoid the Hubble-induced tree-level 
effective mass, we can assume the following:

D-term inflation scenario

a Heisenberg symmetryor

Even if we assume the above, a radiative correction is exist. 

MK.Gaillard, H.Murayama, KA.Olive (1995)
Garbrecht (2007)

|m̃2
�,rad.| � 10�2�2

eH
2

If the tree-level effective mass is highly suppressed, this 
radiative correction dominates the potential until the 
non-renormalizable interactions become important. 
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(the time evolution of noise terms )
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The flat direction eventually behaves as an exactly flat direction.

�e = g1 = g2 = 1

� = 10�2

�e = 0, g1 = g2 = 1

�e = g1 = g2 = 1

The flat direction reaches an exactly flat direction in 
the tree-level argument.

using the noise for m̃ = 0
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(the time evolution of noise terms )
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(comparison)
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The flat direction saturates at last in the tree-level argument.

using the noise for m̃ = 0
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Summary

We have analyzed the time evolution of a flat direction 
coupled to non-flat directions by using stochastic formalism. 
We include the Effective mass effects in the noise terms. 

Since non-flat directions have large effective masses and 
small noise terms, non-flat directions have only tiny effects 
on the growth of the flat direction’s variance.

The flat direction reaches an exactly flat direction in 
the tree-level argument.

[without zero-point fluctuation in the noise term]

The flat direction saturates at last in the tree-level argument.
[with zero-point fluctuation in the noise term]

However, little is known how to treat the zero-point fluctuation in the noise terms.
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