Higgs Mass and Muon g-2 in SUSY Models

Motoi Endo (Tokyo)

ME, Hamaguchi, Iwamoto, Yokozaki, arXiv: 1112.5653,1108.3071,1202.2751

PPP 2012, YITP, 2012.7.20

Latest News: H_{SM}→WW

signal strength = 1.4 ± 0.5 at $m_h = 125$ GeV

XENATES NEWSPHARE XENALS

Figure from slide by Aprile at DarkAttack, Ascona, July 18, 2012

Higgs Discovery

2012.7.4@CERN

Higgs Searches at LHC

- $\sim 5\sigma$ signal of Higgs at mass $\sim 125-126$ GeV
- Is there physics beyond SM in TeV? Why do we believe?

Contents

- Higgs result: Higgs mass ~ 125GeV
- Hints of physics beyond SM
 - some details on muon g-2
- SUSY models: Higgs mass and muon g-2
 - GMSB extensions w/. vector-like matter
- Summary

Hints of New Physics

	Signal	Energy Scale
	neutrino oscillation	RH neutrino
	– early universe –	
nnoof	inflation	very high
proor	baryogenesis	models
	dark matter	thermal history
	dark energy	10- ³ eV
	GUT	10 ⁽¹³⁻¹⁶⁾ GeV
	– fine-tuning problems –	
implication	strong CP problem	PQ
	hierarchy problem	TeV
	experimental anomalies	TeV
	cosmology (e.g. dark rad., cosmic ray)	

Anomalies from Experiments

mode	significance
muon anomalous magnetic moment (muon g-2)	> 3σ
$Br(B \rightarrow D^*\tau \nu)/Br(B \rightarrow D^* l\nu) \ [cf. \leq 2\sigma \ for \ Br(B \rightarrow D\tau \nu)]$	2.8σ
inclusive and exclusive $\sin(2\phi_1)$ and $Br(B \rightarrow \tau v)$ ICHEP201	>20
Direct CP violation of $B \rightarrow K^+\pi^-$ and $B^+ \rightarrow K^+\pi^0$	[5σ from 0]
inclusive and exclusive determinations of V _{ub}	2-3σ
Direct CP violation of $D \rightarrow K^+K^-$ and $D \rightarrow \pi^+\pi^-$	$[4\sigma \text{ from } 0]$
like-sign dimuon charge asymmetry [D0] tight bound on	B _s 3.9σ
top forward-backward asymmetry [CDF, D0]	> 3σ
electroweak precision [bottom FB asymmetry, NuTeV, SLD]	> 2σ
proton charge radius	> 5σ
neutrino anomalies [LSND, MiniBooNe, reactor, Gallium]	> 2σ
$Br(W \rightarrow \tau \nu)/Br(W \rightarrow l\nu)$ [LEP]	2.8σ

Magnetic Moment of Muon

Calorimeter

Wave For

Digitizer

30 40 50 60 70 80 Time (ns)

PMT

• spin - magnetic field interaction: $g_{-\mu}factor_{\nu_e + \bar{\nu}_{\mu}}$ Larmor Precession

- tree level: g = 2
- radiative correction: $a_{\mu} = (g-2)/2^{2}$
- Experiment: Brookhaven E821

$$a_{\mu} = 116\,592\,089(63) \times 10^{-1}$$

Standard Model Prediction

Exp (E821)		116 592 089	(63)	[10-11]	
QED (α^5)		116 584 718.962	(0.08)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EW (W/Z/H _{SM} , NLO)		153.2	(1.8)		
Hadronic	[HLMNT]	6 949.1	(43)*		had
(leading)	[DHMZ]	6 923	(42)		
Hadronic	(a higher)	-98.4	(0.7)		
Hadronic	[RdRV]	105	(26)*		had
(LbL)	[NJN]	116	(39)		515 3

 $a_{\mu}^{\exp} - a_{\mu}^{SM} = (26.1 \pm 8.0) \cdot 10^{-10} > 3\sigma$ deviation

Hadronic Vacuum Polarization

• experimental data with dispersion relation and optical theorem

$$\boldsymbol{a_{\mu}^{\text{had},\text{LO}}} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\text{th}}}^{\infty} ds \ \frac{1}{s} \hat{K}(s) \sigma_{\text{had}}(s)$$

$$\sigma_{had}(s): e^+e^- \rightarrow \gamma \rightarrow hadrons$$

- K(s)/s is larger in lower energy
- inconsistency with τ decay data can be resolved by Q-γ mixing [Jegerlehner,Szafron]

[Hagiwara, Liao, Martin, Nomura, Teubner] ;Davier,Hoecker,Malaescu,Zhang]

ψ(2S)

1500

1250

1000

250

 $(2 \alpha^2/3)$

Hadronic Light-by-Light

- hadronic models/lattice required (\rightarrow Yamada-san)
- common features of models:
 - pseudo-scalar meson exchange dominates
 [π⁰ gives largest contribution]
 - axial vector, scalar; π^{\pm}/K^{\pm} loop are small
 - quark loop is small (except for Dyson-Schwinger approach)

L-by-L

μ

had.

π⁰ exchange

• on-/off-shell $\pi\gamma\gamma$ form factor is crucial

- modeled with parameters in effective field approaches
- matched to satisfy limit behaviors
- less constrained parameters give
 leading uncertainty [see e.g., Nyffeler]
- lattice calculations expected [c.f. Rakow]

c.f. part of 'disconnected' contributions may be included in η ' exchange, which is estimated to be sub-leading

Hadronic light-by-light scattering in the muon g - 2: Summary

Contribution	BPP	HKS, HK	KN	MV	BP, MdRR	PdRV	N, JN	FGW
π^0,η,η^\prime	85 ± 13	82.7 ± 6.4	83±12	114 ± 10	—	114 ± 13	99 ± 16	$84{\pm}13$
axial vectors	$2.5{\pm}1.0$	1.7 ± 1.7	_	22 ± 5	—	15 ± 10	22 ± 5	-
scalars	$-6.8{\pm}2.0$	_	_	_	—	-7 ± 7	-7 ± 2	-
$oldsymbol{\pi},oldsymbol{K}$ loops	$-19{\pm}13$	$-4.5{\pm}8.1$	_	_	—	-19 ± 19	$-19{\pm}13$	-
π,K loops $+$ subl. N_C	-	_	_	0±10	-	_	_	-
other	—	—	—	—	—	—	—	0 ± 20
quark loops	21±3	$9.7{\pm}11.1$	—	—	—	2.3	21 ± 3	107 ± 48
Total	83±32	$89.6 {\pm} 15.4$	80 ± 40	136 ± 25	110 ± 40	105 ± 26	116 ± 39	$191{\pm}81$

Some results for the various contributions to $a_{\mu}^{\rm LbyL;had} imes 10^{11}$:

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht, Nyffeler '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael, Vainshtein '09; N = Nyffeler '09, JN = Jegerlehner, Nyffeler '09; FGW = Fischer, Goecke, Williams '10, '11 (used values from arXiv:1009.5297v2 [hep-ph], 4 Feb 2011)

- Pseudoscalar-exchange contribution dominates numerically (except in FGW). But other contributions are not negligible. Note cancellation between π , *K*-loops and quark loops !
- PdRV: Do not consider dressed light quark loops as separate contribution ! Assume it is already taken into account by using short-distance constraint of MV '04 on pseudoscalar-pole contribution. Added all errors in quadrature ! Like HK(S). Too optimistic ?
- N, JN: New evaluation of pseudoscalars. Took over most values from BPP, except axial vectors from MV. Added all errors linearly. Like BPP, MV, BP, MdRR. Too pessimistic ?
- FGW: new approach with Dyson-Schwinger equations. Is there some double-counting? Between their dressed quark loop (largely enhanced !) and the pseudoscalar exchanges.

[Goecke,Fischer,Williams]

- estimation by DS and BS equations
- classified by "topology" (not by scale)

[Goecke,Fischer,Williams]

- estimation by DS and BS equations
- classified by "topology" (not by scale)
- pseudo-scalar exchange result is consistent

 $a_{\mu}(\pi,\eta,\eta') = 81(12)$ [10⁻¹¹]

99(16) [Jegerlehner,Nyffeler]

[Goecke,Fischer,Williams]

- estimation by DS and BS equations
- classified by "topology" (not by scale)
- pseudo-scalar exchange result is consistent
- difference stems from quark-loop contribution

 $a_{\mu}(\text{quark-loop}) = 136(59) [10^{-11}] \iff 21(3) [p > \Lambda = 1-2 \text{GeV}]$ [Bijnens,Pallante,Prades]

[Goecke,Fischer,Williams]

[Boughezal,Melnikov]

- estimation by DS and BS equations
- classified by "topology" (not by scale)
- pseudo-scalar exchange result is consistent
- difference stems from quark-loop contribution
- still under debate (\rightarrow lattice):

✓ consistency check with vacuum polarization contribution

- dominated by vector-meson exchange (consistent w/ eff.)
- \checkmark inconsistencies with other constituent quark loop evals.
 - quark loop at perturbative level
 - constituent chiral quark model [Greynat,Rafael]
 - Crystal Ball experiment of $\gamma\gamma \rightarrow$ pseudo-scalar $\rightarrow \gamma\gamma$

Crystal Ball 1988

Data show almost background free spikes of the PS mesons! Substantial background form quark loop is absent (seems to contradict large quark-loop contribution as obtained in SDA). Clear message from data: fully non-perturbative, evidence for PS dominance. However, no information about axial mesons (Landau-Yang theorem). Illustrates how data can tell us where we are.

Low energy expansion in terms of hadronic components: theoretical models vs experimental data

KLOE, KEDR, BES, BaBar, Belle, ?

F. Jegerlehner

Hadronic light-by-light scattering in the muon g - 2: Summary

Contribution	BPP	HKS, HK	KN	MV	BP, MdRR	PdRV	N, JN	FGW
π^0,η,η^\prime	85 ± 13	82.7 ± 6.4	83±12	114 ± 10	_	114 ± 13	99 ± 16	84 ± 13
axial vectors	$2.5{\pm}1.0$	1.7 ± 1.7	—	22 ± 5	_	15 ± 10	22 ± 5	_
scalars	$-6.8{\pm}2.0$	_	_		_	-7 ± 7	-7 ± 2	_
$oldsymbol{\pi},oldsymbol{K}$ loops	-19 ± 13	$-4.5{\pm}8.1$			_	-19 ± 19	$-19{\pm}13$	_
π,K loops + subl. $N_{m{C}}$	—	—			-	_	—	-
other	—	—	—	—	—	—	—	0 ± 20
quark loops	21±3	$9.7{\pm}11.1$	_	—	—	2.3	21 ± 3	107 ± 48
Total	83±32	89.6 ± 15.4	$80{\pm}40$	136 ± 25	110 ± 40	105 ± 26	116 ± 39	191 ± 81

Some results for the various contributions to $a_{\mu}^{\rm LbyL;had} \times 10^{11}$:

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht, Nyffeler '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael, Vainshtein '09; N = Nyffeler '09, JN = Jegerlehner, Nyffeler '09; FGW = Fischer, Goecke, Williams '10, '11 (used values from arXiv:1009.5297v2 [hep-ph], 4 Feb 2011)

- Pseudoscalar-exchange contribution dominates numerically (except in FGW). But other contributions are not negligible. Note cancellation between π , *K*-loops and quark loops !
- PdRV: Do not consider dressed light quark loops as separate contribution ! Assume it is already taken into account by using short-distance constraint of MV '04 on pseudoscalar-pole contribution. Added all errors in quadrature ! Like HK(S). Too optimistic ?
- N, JN: New evaluation of pseudoscalars. Took over most values from BPP, except axial vectors from MV. Added all errors linearly. Like BPP, MV, BP, MdRR. Too pessimistic ?
- FGW: new approach with Dyson-Schwinger equations. Is there some double-counting? Between their dressed quark loop (largely enhanced !) and the pseudoscalar exchanges.

Standard Model Prediction

Exp (E821)		116 592 089	(63)	[10-11]	
QED (α^5)		116 584 718.962	(0.08)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EW (W/Z/H _{SM} , NLO)		153.2	(1.8)		
Hadronic	[HLMNT]	6 949.1	(43)*		had
(leading)	[DHMZ]	6 923	(42)		
Hadronic	(a higher)	-98.4	(0.7)		
Hadronic	[RdRV]	105	(26)*		had
(LbL)	[NJN]	116	(39)		515 3

 $a_{\mu}^{\exp} - a_{\mu}^{SM} = (26.1 \pm 8.0) \cdot 10^{-10} > 3\sigma$ deviation

New Physics

- challenging to explain the deviation
 - it is as large as EW contribution of SM prediction
- light new particle or large coupling
 - large coupling required for physics beyond SM in TeV scale

$$a_{\mu}(\mathrm{NP}) \sim \frac{\alpha_{\mathrm{NP}}}{4\pi} \frac{m_{\mu}^2}{m_{\mathrm{NP}}^2} \iff a_{\mu}(\mathrm{EW}) \sim \frac{\alpha_2}{4\pi} \frac{m_{\mu}^2}{m_W^2}$$

note: muon mass dependence due to chirality flip

Large coupling: SUSY

- muon g-2 is enhanced
 - small soft mass
 - large $tan\beta$

$$\Delta a_{\mu} \sim \frac{\alpha_2}{4\pi} \frac{m_{\mu}^2}{m_{\rm soft}^2} \tan\beta$$

 $\tan\beta = v_u/v_d = O(1-10)$

• tension against Higgs mass

Contents

- Higgs result: Higgs mass ~ 125GeV
- Hints of physics beyond SM

▶ muon g-2 has $\geq 3\sigma$ deviation

- SUSY models: Higgs mass and muon g-2
 GMSB extensions w/. vector-like matter
- Summary

SUSY is natural

$$\Delta a_{\mu}(\chi^{\pm}) \simeq \frac{\alpha_2 m_{\mu}^2}{8\pi m_{\rm soft}^2} \operatorname{sgn}(M_2\mu) \tan\beta$$

SUSY is natural

$$\Delta a_{\mu}(\chi^{\pm}) \simeq \frac{\alpha_2 m_{\mu}^2}{8\pi m_{\text{soft}}^2} \operatorname{sgn}(M_2\mu) \tan\beta$$

SUSY is natural

What is unnatural?

- Flavor/CP violations
 - scalar fermion mass, scalar trilinear coupling, μ
 - constraints: K, B, D, μ LFV, τ LFV, EDM's,...
- Cosmological gravitino problems
 - gravitino production depends on T_R and E_{inf}
 - constraints: BBN, DM abundance
- Tension between Higgs mass ~125GeV & muon g-2

- enhance muon g-2:
 - small soft mass
 - large $tan\beta$
- enhance Higgs mass:
 - large soft mass
 - large A_t term

- enhance muon g-2:
 - small soft mass
 - large $tan\beta$
- enhance Higgs mass:
 - large soft mass
 - large A_t term

where $\mathcal{L} = -Y_t A_t H_u^0 \tilde{t}_L^* \tilde{t}_R$

• enhance muon g-2:
- small soft mass
- large tan
$$\beta$$

• enhance Higgs mass:
- large soft mass
- large A_t term

$$\Delta m_h \sim \frac{3m_t^4}{2\pi^2 v^2} \left[\ln \frac{m_t^2}{m_t^2} + \left(\frac{A_t^2}{m_t^2} - \frac{1}{12} \frac{A_t^4}{m_t^2} \right) \right]$$
[tree level]
 $m_h^{(\text{tree})} \leq M_Z \quad (\Leftrightarrow 125 \text{GeV})$
 $H_u \quad H_u \sim H_{SM}$
 $M_h \sim M_{SM}$ gauges
 $H_u \quad H_u \sim H_{SM}$
[radiative corrections]
 $H_u \quad t, \tilde{t} \quad H_u \quad H_u \quad H_u$
 $M_h \sim M_h^{(1)} = \frac{M_h^2}{2\pi^2 v^2} \left[\ln \frac{m_t^2}{m_t^2} + \left(\frac{A_t^2}{m_t^2} - \frac{1}{12} \frac{A_t^4}{m_t^4} \right) \right]$

- enhance muon g-2:
 - small soft mass
 - large $tan\beta$
- enhance Higgs mass:
 - large soft mass
 - large A_t term

- enhance muon g-2:
 - small soft mass
 - large $tan\beta$
- enhance Higgs mass:
 - large soft mass
 - large A_t term

focus on soft mass scale → tension!!

Tension

m_h~125GeV is too large for muon g-2 in mSUGRA

What is unnatural?

- Flavor/CP violations
 - scalar fermion mass, scalar trilinear coupling, μ
 - constraints: K, B, D, μ LFV, τ LFV, EDM's,...
- Cosmological gravitino problems
 - gravitino production depends on T_R and E_{inf}
 - constraints: BBN, DM abundance
- Tension between Higgs mass ~125GeV & muon g-2

Simple Approaches

Model	Flavor/CP	gravitino problems	Higgs mass	muon g-2	dark matter
mSUGRA	fine-tuning	severe limit	tension		neutralino
large soft masses	suppressed	OK	OK	hopeless	neutralino
GMSB	suppressed	OK	too small	OK	gravitino

Simple Approaches

Model	Flavor/CP	gravitino problems	Higgs mass	muon g-2	dark matter
mSUGRA	fine-tuning	severe limit	tension		neutralino
large soft masses	suppressed	OK	OK	hopeless	neutralino
GMSB	suppressed	OK	too small	OK	gravitino
extended GMSB			" OK"	OK	

Extended GMSB

- large A_t term
 - messenger-top coupling
- extra vector-like matter
 - t' coupling with Higgs
- extra gauge symmetry

[Evans,Ibe,Yanagida;Evans,Ibe,Shirai,Yanagida ;ME,Hamaguchi,Iwamoto,Yokozaki]

> [ME,Hamaguchi,Iwamoto,Yokozaki ;Evans,Ibe,Yangida;Martin,Wells]

[Asano,Moroi,Sato,Yanagida;Moroi, Sato,Yanagida;Nakayama,Yokozaki]

[ME,Hamaguchi,Iwamoto,Nakayama,Yokozaki]

- Z' and a charge for Higgs
- singlet Higgs: Higgs mass enhanced when $tan\beta$ is small
- triplet Higgs: may spoil perturbative GUT

- ...

[Moroi,Okada]

- introduce $10 + \overline{10}$ [10:(Q',U',E')]
- extra 'top' couples to Higgs

 $W = Y'H_uQ'U' + M'(Q'\bar{Q}' + U'\bar{U}')$

• Higgs mass raised by U', Q' loop

$$\Delta m_h \simeq \frac{3v^2}{4\pi^2} Y'^4 \ln \frac{m_S^2}{m_F^2} + \dots$$

m_{S(F)}: vector scalar(fermion) mass

cf. A' suppressed by RG running and irrelevant for Higgs mass. "mh-max" scenario is not realized

 $124 \,\mathrm{GeV} < m_h < 126 \,\mathrm{GeV}$

- muon g-2 is accommodated to Higgs mass ~125GeV
- upper bound on gluino mass from muon g-2 and stability

 $m_{\tilde{g}} \lesssim 1.7 \,\mathrm{TeV} \, (2\sigma; \tilde{\chi}^0)$

• upper bound on vector mass from Higgs mass

 $M_{U',Q'} \lesssim 1.5 \,\mathrm{TeV}$

 \longrightarrow LHC search!

- current LHC bounds
 - blue: low background, easy to detect
 - red: usual SUSY signals

NLSP	prompt decay (low messenger scale)	long-lived (higher messenger scale)
neutralino	2γ + E_{Tmiss} $m_{\tilde{g}} \gtrsim 1.2 \text{TeV}$	$jets + E_{Tmiss}$ $m_{\tilde{g}} \gtrsim 0.9 \mathrm{TeV}$
stau	$jets + leptons + E_{Tmiss}$ $m_{\tilde{g}} \gtrsim 1.0 \text{ TeV}$	heavy charge track $m_{\tilde{\tau}} \gtrsim 297 \mathrm{GeV}$

* recent multi-lepton

t' mixing with SM matters

- stable extra matters spoil cosmology ("matter" parity can be assigned)
- weak mixing with SM matters
 - extra matter searches
 - LHC, Tevatron
 - Flavor and CP violations
 - similar to 4th generations
 - interesting to see EDM, B decays, ...

 $\begin{cases} \underline{\text{current bounds [LHC,TVT]}}\\ t' \to bW: m_{t'} > 557 \text{ GeV}\\ t' \to d_iW: m_{t'} > 340 \text{ GeV}\\ t' \to tZ: m_{t'} > 475 \text{ GeV}\\ t' \to u_iZ: \text{ No bound}\\ t' \to th: \text{ No bound}\\ t' \to u_ih: \text{ No bound} \end{cases}$

* no (detailed) studies on future sensitivity

Comparison of Models

Model	Flavor/CP	gravitino problems	Higgs mass muon g-2	dark matter	GUT (perturbative)
mSUGRA	fine-tuning	severe limit	tension	neutralino	OK
large soft masses	suppressed	OK	too small muon g-2	neutralino	OK
GMSB	suppressed	OK	too small Higgs mass	gravitino	OK
GMSB +vector-like matter	weakly violated	OK	OK	gravitino	OK

LHC searches for SUSY, extra matters

Summary

- Extended GMSB is implied by
 - low energy phenomena and cosmology
 - Higgs mass of ~125GeV & muon g-2
- GMSB + vector-like matters
- SUSY particle masses are in reach of LHC
- relatively light extra matters are expected
- LHC search is interesting!!