Search for the Top Partner at the LHC using Multi-b-jet channel

<u>Keisuke Harigaya (</u>Kavli IPMU) Shigeki Matsumoto (Kavli IPMU) Mihoko. M. Nojiri (KEK, Kavli IPMU) Kohsaku Tobioka (Kavli IPMU) 20 July 2012, PPP2012

arXiv: 1204.2317 Accepted by PRD

Abstract

Consider the vector-like quark $\ T$ which mixes with top quark

(Top partner)

Using multi-b channel, how is the LHC's sensitivity

1. Models including top partner

- 2. Current status of the top partner search
- 3. LHC prospect with multi-b-jet channel

1. Models including top partener

Little Higgs model

MSSM+extra matter Endo-san Arkani-Hamed, Cohen, Georgi (2001)

Okada, Moroi (1992) Kurosawa, Maru, Yanagida (2001)

Little Higgs model

Arkani-Hamed, Cohen, Georgi (2001)

Why the EWSB scale << Mpl ?

How about introducing a dynamical SSB mechanism? Higgs is pNGB!

Effective theory with cut-off at scale Λ

Generally, any operators should be generated

Note : operators like
$$\frac{1}{\Lambda^2} |H^{\dagger}D_{\mu}H|^2 = \frac{1}{\Lambda^2} (H^{\dagger}\sigma^i H) W^i_{\mu\nu} B^{\mu\nu}$$

conflict with the electroweak precise measurement

$$\rightarrow$$
 $\Lambda > 9 \ TeV$

Han, Skiba (2007)

Little hierarchy

To avoid fine-tuning, $\Lambda \sim 4\pi m_Z \sim {
m TeV}$

But $\Lambda > 9 \; TeV$ Little Hierarchy problem

Solution: symmetry

Due to some symmetry, (depends on model)

 $= 0 \times \Lambda^2 + c_1 \times m_T^2 ln(\frac{\Lambda^2}{m_T^2})$

(So do gauge sector)

MSSM+extra matter

Endo-san

Okada, Moroi (1992) Kurosawa, Maru, Yanagida (2001)

MSSM

Super symmetric extension of 2HD Standard model

(later discovered) problem : Higgs is heavier than we thought! $m_{h^0} > 114.4~{\rm GeV} > m_Z~~{\rm (LEP)}$

Quantum correction can raise higgs mass.

Raise SUSY breaking scale?

cf. $m_h = 125 \,\,\mathrm{GeV}$

Possible solution: extra matter

Some models contains extra vector-like matter at low energy

$$U(3, 2, \frac{1}{6}), Q(\bar{3}, 1, -\frac{2}{3}), \cdots$$

$$W \supset yUQH_u$$

Enhance Higgs mass!

Big bonus : possible solution to muon g - 2 even for $m_{h^0} = 125$ GeV Endo, Hamaguchi, Iwamoto, Yokozaki (2011)

2. Current status of the top partner search

Constraints from CDF result

Assuming pair creation and

 $T \rightarrow bW$

1-lepton, b-jet search

Picture: KH, Matsumoto, Nojiri, Tobioka(2012)

Constraints from CMS result

Constraints from CMS result

Assuming pair creation and

 $T \rightarrow tZ$

$$Z \to l^+ l^-,$$

1 isolated lepton

Picture: KH, Matsumoto, Nojiri, Tobioka(2012)

3. LHC prospect with multi-b-jet channel

Concentrate on bW, th

Tools and assumptions

- Madgraph5
- Pythia
- Delphes

For b-tagging, SVO50 method b-tag efficiency ~ 0.6 mis-tag rate ~ 0.01 at high-pt

ATLAS's object reconstruction method

•
$$m_h = 120$$
 GeV, $\sqrt{s} = 8$ TeV

Imitating and modifying CMS's search

- Aim at $T\overline{T} \rightarrow bW^+\overline{b}W^-$
- Expect very hard b-jet
- W decay -> lepton, missing, jets
- Try to reconstruct the mass

$$M_{bl\nu}$$

Event selection

- Exactly 1 isolated lepton with pt > 30 GeV
- $E_T > 20 \text{ GeV}$
- \geq 4 isolated jets and 1 or 2 of them are b-jets
- The jets have pt > 80, 50, 30 GeV
- The leading b-jet has pt > 260 GeV
- $M_{blv} > 400 \,\,{\rm GeV}$
- $\bullet M_{eff} > 1000 \, \mathrm{GeV}$

Cut flow

15 fb⁻¹ data, $m_{tp} = 500$ GeV, pt-jet > 70, 40 GeV, leptonic decay

	$t\bar{t}$ +jets	W + jets	$t_p \bar{t}_p \rightarrow bWbW$	$t_p \bar{t}_p \rightarrow bWth$	$t_p \bar{t}_p \rightarrow thth$
generated	6163292	809561	60000	60000	60000
normalized	3060000	4800000	7650	7650	7650
lepton, missing, 4jets, b-jets	282861	16756	1336	1652	1693
jet pt	133099	6392	1160	1555	1654
b-jet pt	1872	415	405	374	215
invariant mass	1025	320	351	287	125
effective mass	387	160	237	164	75
acceptance	0.00013	0.000033	0.031	0.021	0.0099

KH, Matsumoto, Nojiri, Tobioka(2012)

LHC's sensitivity

Expected 95 % CL excluded region if no excess

(cross section) × (acceptance)

> 4.4 fb

Assuming 20 % uncertainty in The background estimation

1-lepton + \geq 3 b-jet

- Aim at $T\overline{T} \rightarrow bWth$ or thth
- Expect many hard b-jet
- W decay -> lepton, missing, jets

Event selection

- Exactly 1 isolated lepton with pt > 30 GeV
- $E_T > 20 \text{ GeV}$
- ≥5 isolated jets and more than 2 of them are b-jets
- The b-jets have pt > 140, 80, 80 GeV
- $M_{blv} > 250 \, {\rm GeV}$
- $\bullet M_{eff} > 1200 \, \mathrm{GeV}$

Cut flow

15 fb⁻¹ data, $m_{tp} = 500$ GeV,

ptb-jet > 20GeV

	$t\bar{t}$ +jets	tībb	$t_p \bar{t}_p \rightarrow bWbW$	$t_p \bar{t}_p \rightarrow bWth$	$t_p \bar{t}_p \rightarrow thth$
generated	6163292	90000	60000	60000	60000
normalized	3060000	24000	7650	7650	7650
lepton, missing, 5jets, b-jets	5328	558	63	380	686
b-jets pt	123	26	19	99	170
invariant mass	78	18	17	86	135
effective mass	15	4	11	40	45
acceptance	0.000050	0.00016	0.0014	0.0052	0.0059

W +jets, Wbb +jets : negligible

KH, Matsumoto, Nojiri, Tobioka(2012)

LHC's sensitivity

Expected 95 % CL excluded region if no excess

(cross section) × (acceptance)

>0.92 fb

Assuming 20 % uncertainty in The background estimation

LHC's discovery potential

Expected 5 σ discovered region

(cross section) × (acceptance)

> 2.3 fb

Assuming 20 % uncertainty in The background estimation

Summary

- Some models contain vector-like quark which mixes with top quark (top partner)
- Multi b- jet channel have grate sensitivity to the top partner, especially for decay into top and higgs

Electro weak observables

parameter	value		
α^{-1}	137.035999679(94)		
$G_F~({ m GeV}^{-2})$	$1.16637(1) \times 10^{-5}$		
m_Z (GeV)	91.1876(21)		
$\Delta \alpha_{lep}(m_Z^2)$	0.03150		
$\Delta \alpha_h(m_Z^2)$	0.027626(138)		
$\Delta \alpha_{top}(m_Z^2)$	-0.00007		
m_W (GeV)	80.399(23)		
m_t (GeV)	173.2(9)		
\bar{s}_l^2	0.23153(16)		
$\Gamma_{Z \rightarrow l^+ l^-}$ (MeV)	83.984(86)		
$\alpha_s(m_Z^2)$	0.1184(7)		

Little Higgs model

Suppose EWSB is generated by some mechanism

Cutoff $\Lambda > 10~{
m TeV}$

Han, Skiba (2007)

 $\frac{1}{\Lambda^2}(H^\dagger\sigma^i H) W^i_{\mu\nu} B^{\mu\nu}$

Even if Higgs were pNGB, to avoid little hierarchy,

due to some symmetry. (depends on model)

Top see saw

Chivukula, Dobrescu, Georgi, Hill (1999)

Top quark condensate

$$H \Leftrightarrow t_L^{\dagger} t_R^{\dagger}$$
 : same quantum number

How about top quark condensation like BCS theory?

Intrinsic energy scale provide dynamical scale top quark Yukawa coupling is naturally large

Problem: top quark should be heavier

$$m_t \approx \frac{4\pi v}{\sqrt{N_c \ln \frac{\Lambda}{v}}}$$

- Λ : cut off (=intrinsic energy scale)
- N_c : Number of color

Solution: seesaw mechanism

Introduce vector-like quark T

Suppressed by mixing angle

MSSM+extra matter

$$m_{h^0} > 114.4 \text{ GeV} > m_Z$$
 (LEP)

Raise stop mass and allow little hierarchy?

Possible solution : utilize vector-like extra matter

$$U(3, 2, \frac{1}{6}), Q(\bar{3}, 1, -\frac{2}{3}), \cdots$$

 $W \supset yUQH_u$

Enhance Higgs mass!

cf. $m_h = 124 - 126 \text{GeV}$?

Coupling with 1st, 2nd generations

ex.) $K ar{K}$

 $\theta_{L1,2} \le 10^{-3}$

Systematic errors

• $t\bar{t}$ cross section: $166 \pm 11 \,\text{pb}$ (CMS,2011)

• Integrated luminosity: 3.7% (ATLAS, 2011)

b-tag efficiency and mis-tag rate : not accurately included

(results with taking into the effect with rough estimate are also shown)

Uncertainties in b-tagging

With 35 pb⁻¹ data, for SVO50 method,

(ATLAS-CONF-2011-089)

- b- tagging efficiency : ~ 5% (sys) 10% (stat)
- mis-tag rate for light jets : ~10% (stat)
- mis-tag rate for c-jets : not calibrated. ~0.14 (ATLAS TDR)

Jet Axis

Parameter

After hard b-jet cut,

 $m_{tp} = 500 \text{ GeV}, \ \sin\theta_L = 0.1, \ \sin\theta_R = 0.03$

1 lepton + \geq 3b-jets

1 lepton + \geq 3b-jets

Possible terms

	SU(3) _c	SU(2) _L	U(1) _Y
Q ³	3	2	1/6
u ³ _R	3	1	2/3
UL	3	1	2/3
U _R	3	1	2/3
Н	1	2	1/2

 $-m_U U_L^{\dagger} U_R + h.c.$

4/20

 $-y_{3}Q^{3\dagger}H^{c}u_{R}^{3} - y_{U}Q^{3\dagger}H^{c}U_{R} + h.c.$ $-\frac{\lambda}{m_{U}}U_{L}^{\dagger}u_{3R}|H|^{2} + h.c.$

Parameterization

To diagonalize mass,

 $\begin{pmatrix} t_L \\ T_L \end{pmatrix} = \begin{pmatrix} \cos\theta_L & -\sin\theta_L \\ \sin\theta_L & \cos\theta_L \end{pmatrix} \begin{pmatrix} u_L^3 \\ U_L \end{pmatrix}$ $\left(\begin{array}{c}t_R\\T_R\end{array}\right) = \left(\begin{array}{cc}\cos\theta_R & -\sin\theta_R\\\sin\theta_R & \cos\theta_R\end{array}\right) \left(\begin{array}{c}u_R^3\\U_R\end{array}\right)$

5/20

 $m_{tp}, \theta_L, \theta_R$

Branching ratio

6/20

Constraint from EWPM

7/20

Constraints from CMS result

