LHC実験における ヒッグス粒子の質量再構成法

川端 さやか (東北大)

清水康弘、隅野行成(東北大) 横谷洋(National Taiwan Univ.)

Phys. Lett. B710, 658 (2012)

- 1. 導入
- 2. 特殊な重み関数
- 3. 重み関数を用いた ヒッグス質量再構成のシミュレーション解析
- 4. 結論と今後の展望

導入

素粒子標準模型における
 対称性の自発的破れのメカニズム

ヒッグス粒子の質量は新しい物理への 制限やヒントを与える

• 標準模型を超える新しい物理

LHC実験における<u>精密測定</u>の難しさ

iet

- missing momentum の存在
- ジェットの運動量は高精度測定が難しい
- → 終状態から新粒子の性質を再構成する難しさ
 - 衝突するパートンの重心系が分からない
 - パートン分布関数(PDF)の不定性
- → 始状態から新粒子の運動量を予言する難しさ

これらの困難を回避する新しい質量再構成法を提案する

次の性質をもつ重み関数 $W(E_l,m)$ が存在することが示せる。 $\overline{W}(m) \equiv \int dE_l D(E_l) W(E_l,m)$ $D(E_l): 実験室系でのレプトンエネルギー分布$

性質1:mが正しいヒッグス粒子の質量のときには $\overline{W}(m) = 0$ 性質2:ヒッグス粒子の速度分布に依存して $D(E_l)$ の形が 変わっても、性質1は保たれる。

D 0.10

 E_{I}

$$W(E_l\,,m)\,=\,\int dE\, {\cal D}_0(E\,;m) \, {1\over EE_l} \!\! imes (\,\,
ho\,$$
の奇関数 $\,)|_{e^
ho=E_l/E}$
 ${\cal D}_0(E\,;m):\,$ ヒッグス(質量 $\,m$)の静止系での
レプトンエネルギー分布

重み関数を用いた ヒッグス粒子の質量再構成法

$$\overline{W}(m) \ \equiv \ \int dE_l \, D(E_l) \, W(E_l,m) \ \overline{W}(\,m=m_H^{true}\,) \ = \ 0$$

 D(E_l)に実験で測定される レプトンのエネルギー分布 を用いる。

 $\overline{W}(m)$ のゼロ点を求める。

重み関数を用いた ヒッグス粒子の質量再構成法

$$\overline{W}(m) \ \equiv \ \int dE_l \, D(E_l) \, W(E_l,m) \ \overline{W}(\,m=m_H^{true}\,) \ = \ 0$$

 D(E_l)に実験で測定される レプトンのエネルギー分布 を用いる。
 W(m)のドロトナナウス

 $\overline{W}(m)$ のゼロ点を求める。

現実にはカットやバックグラウンドの影響でD(E_l)は変形を受ける。

MCシミュレーションで これらの影響を見積もる。

シグナル 及び バックグラウンドイベント

- シグナル
 - Vector Boson Fusion モードと $H \rightarrow WW^* \rightarrow l\nu l\nu (l = e, \mu)$ 崩壊モードを用いる。
- 主なバックグラウンド: $t\bar{t} + Wt$, WW + jets

- カットの影響やバックグラウンドを含めない場合には
 ヒッグス粒子の質量が精度よく再構成できている。
- カットの影響でゼロ点はずれる。
 バックグラウンドの影響は小さい。

系統的な不定性の見積もり

 パートン分布関数やジェットエネルギースケールの不 定性に対して W(m)は非常に安定している。
 (再構成質量の変化はそれぞれ、約 1.4 GeV、0.6 GeV)

• 統計誤差: 100 fb⁻¹ (300 fb⁻¹)

系統誤差に比べて		Combined	ee	еμ	μμ
統計調差が支配的		+8.9 (+5.2)	+19	+14	+13
別可読在が又能的	単位 : GeV	- 8.7 (- 5.0)	- 22	- 9.0	- 21

質量決定精度は 6~7%(積分ルミノシティ100fb⁻¹)

gluon fusionモードの解析

- バックグラウンドが多い

▶ 系統誤差は大きくなる?

 $m_{H} = 125 \text{ GeV}, \sqrt{s} = 8 \text{ TeV}, 0 \text{-jet mode}$

4. 結論と今後の展望

- 重み関数Wを用いたヒッグス粒子の質量再構成法を 提案した。
- シミュレーション解析により、この方法では系統誤差 が小さく抑えられることを確かめた。
- m_H=130GeVでは統計誤差が支配的であり、100fb⁻¹での精度は6~7%である。
- 今後の課題

 - ✓ ての湯川結合、トップの質量などの測定への応用

Backup

LHCにおける粒子の探索・測定

- ヒッグス粒子や新粒子はすぐに崩壊する場合が多い
- → 終状態 ジェット、荷電レプトン、ニュートリノなど

 ・ シグナルイベント << バックグラウンドイベント

- イベントの終状態から粒子の性質を再構成する
- 理論的予言とイベントの特徴との整合性をチェックする

これまでに考案されてきた質量再構成法

- MT2 Barr et al., J. Phys. G29, 2343 ('03)
- MAOS運動量を用いる方法 Choi et al., PRD80, 073010 ('09)

missing momentumを用いる ジェットの関係する系統誤差は見積もりが難しい

レプトンの p_T 分布を用いる方法 Davatz et al., PRD76, 032001 ('07)

➡ 始状態のPDFの不定性

これらの困難を回避する新しい質量再構成法を提案する

2体崩壊の場合: $X \rightarrow l + Y$ (Xはスカラーもしくはunpolarized)

2体崩壊の場合: $X \rightarrow l + Y$ (Xはスカラーもしくはunpolarized)

$$\int dE_l D(E_l) W(E_l, m_X^{true}) = 0$$
 (一) $\int d
ho (
ho \mathcal{O}$ 偶関数) × ($ho \mathcal{O}$ 奇関数) = 0 $d
ho \propto e^{-
ho} dE_l$

多体崩壊の場合: $X \rightarrow l$ + anything (Xはスカラーもしくはunpolarized) 親粒子の静止系でのレプトン分布 $\mathcal{D}_0(E_l)$

重み関数も2体崩壊の場合の重み関数の重ね合わせとなる

$$W(E_l\,,m)\,=\,\int dE\, {\cal D}_0(E\,;m)\,rac{1}{EE_l}\! imes(\left.
ho$$
の奇関数 $\left.
ight)ert_{e^
ho=E_l/E}$

$$H \to WW^* \to l \nu l \nu W \qquad W(E_l, m) = \int dE \mathcal{D}_0(E; m) \frac{1}{EE_l} \times (\rho \mathfrak{O} 奇関数)|_{e^{\rho} = E_l/E}$$

 $(\rho \sigma 奇関数) = n \tanh(n\rho) / \cosh(n\rho) \sigma 場合$

$$(\rho \, \sigma \bar{\sigma} \bar{g} \bar{g} \bar{g}) = \tanh(n\rho) \, \sigma \bar{g} \bar{g}$$

m = 130 GeV での重み関数

LHCにおけるヒッグス粒子の生成・崩壊

シグナル 及び バックグラウンドイベント

• シグナル: $qqH \rightarrow qqW^+W^- \rightarrow qql^+\nu l^-\overline{\nu}$ (m_H = 130 GeV)

➡ バックグラウンドを大幅に減らせる

• 主なバックグラウンド: $t\bar{t} + Wt$, WW + jets

レプトンエネルギー分布と重み関数

- ・ジェットのカットに対して W(m)は非常に安定。
- レプトンカットに対しては有意に影響を受ける。
 レプトンカットの影響はシミュレーション による精度の良い予言が可能。

gluon fusionの解析

• gluon fusion の cross-section ~ VBFの cross-section の 10 倍

統計誤差が小さくなる?

• バックグラウンドが多い

→ 系統誤差は大きくなる?

特に $H \rightarrow WW^* \rightarrow l\nu l\nu (l = e, \mu)$ の崩壊モードを用いる場合

- gluon fusionでのWW崩壊モードを用いた
 ヒッグス質量再構成
- π モードを用いたヒッグス質量再構成
- ての湯川結合
- トップクォークの質量
- polarized particleへの応用
- レプトンの代わりに重い粒子を用いた場合

X の運動方向に対する rapidity y

$$e^{2y} \equiv rac{1+eta}{1-eta}$$

0.5 Branching Ratio 0.1 0.05 hł ww 0.01 ττ ZZ 0.005 120 125 135 110 115 130 140 m_H (GeV)

図 3.2: $\sqrt{s} = 14$ TeV での LHC におけるヒッグス粒子の生成断面積。 5 つの主な生成過程 gluon fusion $gg \rightarrow H$ 、Vector Boson Fusion qqH、W との随伴生成 WH、Z との随伴生成 ZH、tt との随伴生成 ttH について、ヒッグス粒子の質量の関数として示してある。[3]

図 3.3: ヒッグス粒子の主な崩壊モードについての branching ratio [3]

	m_H	= 130	GeV	$m_H = 150 \text{ GeV}$		$m_H = 180 \text{ GeV}$			$m_H = 200 \text{ GeV}$			
	$\mu\mu$	eμ	ee	$\mu\mu$	$e\mu$	ee	$\mu\mu$	$e\mu$	ee	$\mu\mu$	eμ	ee
signal (fb)	0.46	0.91	0.24	1.27	2.25	0.74	1.46	2.35	0.89	0.68	1.19	0.42
background (fb)												
$t\overline{t} + Wt$	0.16	0.39	0.13	0.22	0.52	0.18	0.31	0.68	0.23	0.31	0.69	0.23
WW + jets	0.04	0.08	0.02	0.06	0.11	0.04	0.08	0.16	0.05	0.09	0.16	0.05

表 3.1: (A) Di-lepton trigger の場合に全てのカットをかけた後の断面積 (fb)。バックグラウンド 断面積の m_H 依存性は M_T カットのみから生じる。

	$m_H = 130 \text{ GeV}$		$m_H = 150 \text{ GeV}$		$m_H = 180 \text{ GeV}$			$m_H = 200 \text{ GeV}$				
	$\mu\mu$	eμ	ee	$\mu\mu$	$e\mu$	ee	$\mu\mu$	$e\mu$	ee	$\mu\mu$	$e\mu$	ee
signal (fb)	0.39	0.72	0.28	1.12	1.88	0.78	1.34	2.10	0.92	0.63	1.06	0.45
background (fb)												
$t\overline{t} + Wt$	0.13	0.32	0.28	0.18	0.43	0.36	0.26	0.59	0.49	0.27	0.59	0.49
WW + jets	0.03	0.06	0.03	0.05	0.09	0.04	0.07	0.14	0.06	0.07	0.14	0.06

表 3.2: (B) Single-lepton trigger の場合に全てのカットをかけた後の断面積 (fb)。同上。

図 3.4: ヒッグス粒子静止系におけるレプトンエネルギー分布 $\mathcal{D}_0(E)$ 。ただしレプトン対の不変質 量 M_{ll} に $M_{ll} < 45$ GeV の制限が付いている。 $\int dE \mathcal{D}_0(E) = 1$ に規格化。

$$W(E_l) = \int dE \mathcal{D}_0(E) \; \frac{2n \, E_l^{n-1} E^{n-1} (E_l^{2n} - E^{2n})}{(E_l^{2n} + E^{2n})^2} \qquad \qquad W(E_l) = \int dE \mathcal{D}_0(E) \; \frac{E_l^{2n} - E^{2n}}{E_l E (E_l^{2n} + E^{2n})}$$

図 3.6: パートンレベルのレプトン分布を用いた $\overline{W}(m)_{\circ}$ シミュレーションの m_H は 130 GeV。

図 3.7: $m_H = 130$ GeV、 $e\mu$ モードに対する全カット後のイベントのレプトンエネルギー分布。 レプトン・アクセプタンスで di-lepton trigger を要請した場合。奥から順にシグナルイベント、 $t\bar{t} + Wt$ バックグラウンド、WW + jetsバックグラウンドをそれぞれ別に示してある。

図 3.8: 全カット後のイベントを用いた $\overline{W}(m)$ 。 $m_H = 130$ GeV で生成されたイベントに対し、 di-lepton trigger、 $e\mu$ モードを要請した場合。

$m_H \; ({\rm GeV})$	130	150	180	200
i) $4 \tanh(4\rho) / \cosh(4\rho)$				
signal	+6	-2	+7	+10
background : $t\bar{t} + Wt$	-1	-3	+14	+16
background : WW+jets	0	-1	+4	+6
ii) $\tanh(\rho/2)$				
signal	+14	+5	-1	0
background : $t\bar{t} + Wt$	0	-1	+15	+15
background : WW+jets	0	0	+5	+5

表 3.3: (A) di-lepton trigger、 $e\mu$ モードの場合に対する再構成質量の系統的なずれ δm_H (GeV)。 ただし δm_H は (2.33) で定義する。

$m_H \; ({\rm GeV})$	130	150	180	200
i) $4 \tanh(4\rho)/\cosh(4\rho)$				
signal	+23	+12	-19	-19
background : $t\bar{t} + Wt$	-4	-4	+14	+20
background : WW+jets	-1	-1	+4	+6
ii) $\tanh(\rho/2)$				
signal	+22	+12	-28	-27
background : $t\bar{t} + Wt$	-1	-1	+14	+14
background : WW+jets	0	0	+4	+5

表 3.4: (B) single-lepton trigger、 $e\mu$ モードの場合の再構成質量の系統的なずれ δm_H (GeV)。た だし δm_H は (2.33) で定義する。

図 3.9: PDF や PYTHIA の factorization scale μ_{fac} を変えて生成したシグナルイベントに対する $\overline{W}(m)_{\circ}$ 。 μ_{fac} をデフォルトから 1/2 倍、1 倍、2 倍して評価した $\overline{W}(m)$ をそれぞれ示してある。シ ミュレーションのインプット質量は $m_H = 130$ GeV であり、di-lepton trigger、 $e\mu$ モードである。

図 3.10: ジェットのエネルギースケールを変えたシグナルイベントに対する $\overline{W}(m)$ 。ジェットのエネルギーを 0.9 倍、1 倍、1.1 倍して評価した $\overline{W}(m)$ をそれぞれ示してある。Missing transverse momentum についても、2つのレプトンの p_T を差し引いた $p_T^{miss} - p_T^{ll}$ を各スケール倍している。

図 3.11: Tagged jet の p_T カット値を変えたシグナルイベントに対する $\overline{W}(m)$ 。デフォルトのカット値は $p_{T,tag}^{max} > 40$ GeV、 $p_{T,tag}^{min} > 20$ GeV である。これを $p_{T,tag}^{max}$ 、 $p_{T,tag}^{min}$ の下限ともにデフォルト+20 GeV まで 5 GeV 刻みで変えて評価している。

図 3.12: $m_T(ll\nu)$ カットの値を変えたシグナルイベントに対する $\overline{W}(m)_{\circ}$ $m_T(ll\nu)$ カットをデフォ ルト +20 GeV まで 5 GeV 刻みで変えて評価している。

図 3.13: レプトンカットの値を変えたシグナルイベントに対する $\overline{W}(m)_{\circ}$ Leading lepton の p_T 下限を 10 GeV から 25 GeV まで 5 GeV 刻みで変えて評価している。

図 3.14: バックグラウンドを含めたイベントについて、レプトンカットの値を変えた $\overline{W}(m)$ 。Leading lepton の p_T 下限を 10 GeV から 25 GeV まで 5 GeV 刻みで変えて評価している。

	$\mu\mu$	$e\mu$	ee	Combined
i) $4 \tanh(4\rho) / \cosh(4\rho)$	+12	+13	+25	+9.0 (+5.2)
	-22	-8.7	-58	-12 (-6.8)
ii) $\tanh(\rho/2)$	+12	+14	+32	+9.7(+5.6)
	-18	-8.1	-41	-9.3(-5.4)

表 3.5: (A) di-lepton trigger の場合に積分ルミノシティ100 fb⁻¹ で見積もられる統計誤差 (GeV)。 Poisson 統計を用いて計算。括弧内に 300 fb⁻¹ の数値も示した。

	$\mu\mu$	$e\mu$	ee	Combined
i) $4 \tanh(4\rho) / \cosh(4\rho)$	+13	+14	+19	+8.9(+5.2)
	-21	-9.0	-22	-8.7 (-5.0)
ii) $\tanh(\rho/2)$	+12	+17	+27	+11(+6.4)
	-18	-8.6	-19	-7.7(-4.5)

表 3.6: (B) single-lepton trigger の場合に積分ルミノシティ100 fb⁻¹ で見積もられる統計誤差 (GeV)。Poisson 統計を用いて計算。括弧内に 300 fb⁻¹ の数値も示した。

いいとこどりでcombineすると、100 fb-1 (300 fb-1)で +8.6 GeV (+5.0 GeV) -7.3 GeV (-4.2 GeV)