

「XMASS実験の現状と展望」

東京大学宇宙線研究所 小林兼好 2012年7月19日 PPP2012,京都大学基礎物理学研究所

XMASS experiment

•What is XMASS?

Multi purpose low-background and low-energy threshold experiment with liquid Xenon

• Xenon detector for Weakly Interacting MASSive Particles (DM search)

• Xenon MASSive detector for solar neutrino (pp/⁷Be)

• Xenon neutrino MASS detector ($\beta\beta$ decay)

Current status of WIMP dark matter search

goal of XMASS-I

XMASS collaboration

ICRR, University of Tokyo	K. Abe, K. Hieda, K. Hiraide, Y. Kishimoto, K. Kobayashi, Y. Koshio, S. Moriyama, M. Nakahata, H. Ogawa, H. Sekiya, A. Shinozaki, Y. Suzuki, O. Takachio, A. Takeda, D. Umemoto, M. Yamashita, B. Yang		
IPMU, University of Tokyo	J. Liu, K. Martens		
Kobe University	K. Hosokawa, K. Miuchi, A. Murata, Y. Ohnishi, Y. Takeuchi		
Tokai University	F. Kusaba, K. Nishijima		
Gifu University	S. Tasaka		
Yokohama National University	K. Fujii, I. Murayama, S. Nakamura		
Miyagi University of Education	Y. Fukuda		
STEL, Nagoya University	Y. Itow, K. Masuda, H. Takiya, H. Uchida		
Kobe University	K. Ohtsuka, Y. Takeuchi		
Seoul National University	S. B. Kim		
Sejong University	N.Y. Kim, Y. D. Kim		
KRISS	Y. H. Kim, M. K. Lee, K. B. Lee, J. S. Lee		

Direct Detection Principle

Dark Matter

Event Rate [event/kg/day/keV]

10⁻³⊦

10⁻⁴

10^{-5 l}

20

10

30 40

50

(WIMP)

WIMPs elastically scatter off nuclei in targets, producing nuclear recoils.

- Every liter of space: 10-100 WIMPs,
- moving at 1/1000 the speed of light
- Less than 1 WIMP/week will collide with an atom in 1kg material

 $rac{dR}{dE_R} = rac{R_0 F^2(E_R)}{E_0 r} rac{k_0}{k} rac{1}{2\pi v_0} \int_{v_{min}}^{v_{max}} rac{1}{v} f(\mathbf{v},\mathbf{v_E}) d^3 \mathbf{v}$

R₀: Event rate F: Form Factor should be calculated in each nuclei

Maxwellian distribution for DM velocity is assumed. v₀:dispersion V :velocity onto target, VE: Earth's motion around the Sun

$$R_0 = \frac{377}{M_{\chi}M_{\rm N}} \left(\frac{\sigma_0}{1\rm{pb}}\right) \left(\frac{\rho_D}{0.3\rm{GeVc}^{-2}\rm{cm}^{-3}}\right) \left(\frac{\nu_0}{230\rm{km~s}^{-1}}\right) \rm{kg~d}^{-1}$$

Spin independent case:

K.Kobayashi, XMASS, ppp2012, Kyoto

90 100

Deposit Energy

 $M_{WIMP} = 100 \text{ GeV}, \sigma_{W-N} = 1.0 \times 10^{-43} \text{ cm}^2$

Xe (A=131)

Ge (A=73)

- Ar (A=40)

60 70 80

Recoil Energy [keV]

Why Liquid Xenon ?

- High Atomic mass Xe (A~131)
 - good for SI case (cross section $\propto A^2$)
- Odd Isotope (Nat. abun: 48%, 129,131) with large SD enhancement factors
- High atomic number (Z=54) and density (ρ=3g/cm³)
 - compact, flexible and large mass detector.
- High photon yield (~ 42 UV photons/keV at zero field)
- No long life radioactive isotope
- Easy to purify for both electro-negative and radioactive purity
 - by circulating Xe with getter for electro-negative
 - Distillation for Kr removal

External gamma-ray MC

Lab-C

Hall-C facility was completed in Mar. 2009.urethane resin for radon shield on the wall and floor.

- •air from the outside the mine (8m³/min, ~20Bq/m³)
- •Water tank construction is completed in Mar. 2009.

In Mar. 2008, excavation is finished.

detector

•72 20-inch PMTs will be installed to veto cosmic-ray muon (<10⁻⁶ for thr-mu, 10⁻⁴ for stop-mu).

Water is active shield for muon induced neutron and also passive shield for gamma-ray and neutron from rock/wall.
IVC and OVC are made of OFHC (Oxygenfree high thermal conductivity) copper

OVC

IVC

Water shield for gamma-ray background

Water Shield for fast neutron background

 Fast n flux @Kamioka mine: (1.15+0.12) x10⁻⁵ /cm²/sec

Detector design detail

310.3mm

pentakisdodecahedron

Hexagonal PMT Hamamatsu R10789

- 60 triangles
- Total: 642PMTs
- Photo coverage: 62%
- Diameter: ~800mm

PMT history

YEAR	2000	2002	2009	
Model	Prototype	R8778	R10789	
Material:Body	glass	Kovar	Kovar	
QE	25%	25%	27-39%	
RI:				
U [mBq/PMT]	50	18 <i>±</i> 2	0.7 ± 0.28	
Th [mBq/PMT]	13	6.9±1.3	1.5 ± 0.31	
⁴⁰ K [mBq/PMT]	610	140 <i>±</i> 20	<5.1	
⁶⁰ Co [mBq/PMT]	<1.8	5.5±0.9	2.9 ± 0.16	

Developed with Hamamatsu Photonics K.K.Mass production of the PMTs was completed in Oct. 2009.

With base

PMT, holder, and filler installation

Clean booth in the water tank

Base with clean booth For the detector assembly

PMT/holder installation

PMT installation was done from Dec. 2009 to Feb. 2010.

PMT holder

OFHC Filler to reduce the amount of liquid xenon

chamber, OD installation and water filing

IVC/OVC installation

OD PMT installation

water filling

fall, 2010

Xe filling

- Evacuation and Baking
- 2010.10.16 Test filing •
- 2010.10.16 •
- 2010.10.24 •
- 2010.10.26 •
- 2010.10.31

Xe Collection

100kg 1129kg 液体のまま回収 することで、測定 器内部をきれい 1065kg にする。

- Xe Collection 2011.01.21 • for the work to fix the stacked calibration rod
- 2011.01.31 3rd filling • 1085kg

commissioning run

- calibration
 - source rod (57Co, 241Am, 137Cs, 109Cd, 55Fe)
 - external source (60Co, 137Cs, 232Th, neutron)
- normal run data taking
- develop software
- change of the xenon quality
 - hight/low pressure run
 (change of Xe refractive index)
 - O2 injected run (change of absorption length)
 - boiling run
 (make convection flow)
- Xe gas run
 - important to identify the surface background.
- measurement of the background candidate material
 - Al, goretex, Cu, Ni plate (measured at calibration source rod)

commissioning run history

			special runs		electronics		
2010	42	l		ATM	1		
2010	12			(AD	C+TDC, old SK	elec.)	
2011	01	3 ^{ra} filling					
	02			+FA	DC		
	03		Low pressure run		(60ch, 10-11 PMTSUM)		
	04		High pressure ru	n			
	05						
	06	Xe collection	Casimum				
	07	4 th filling	Gas run				
	08						
	09	add 1ppm O2	O2 run				
	10						
	11						
	12		remove O2	+FA	DC		
2012	01	Xe collection	Gas run	(642	2 individual cha	annels)	
	02	5 ^m filling					
	03						

04

05

Calibration system Source introduce machine **RI** sources φ [mm] package RI energy [keV] Top PMT moving machine 5.9 350 5 brass 22, 25, 88 5 800 brass Gate valve SUS 59.5 485 0.15 SUS 122 100 0.21

(1) Fe-55

(2) Cd-109

(3) Am-241

(4) Co-57

(removed between calibration)

24

~5m

Detector response for a point-like source (~WIMPs)

- ⁵⁷Co source @ center gives a typical response of the detector.
- 14.7p.e./keV_{ee} (⇔ 2.2 for S1 in XENON100)
- The pe dist. well as vertex dist. were reproduced by a simulation well.
- Signals would be <150p.e. exp shape.

Background and its understanding

- Major origin of BG was considered to be γ from PMTs. But the observed data seemed to have additional surface BG.
- Detector parts which touch liquid xenon were carefully evaluated again:
 - Aluminum sealing parts for the PMT (btw metal body and quartz glass) contains U238 and Pb210 (secular equiv. broken).
 - GORE-TEX between PMT and holder contains modern carbon (C14) 0~6+/-3%.

background contribution to NPE spectrum

- Three contributions to the NPE spectrum
 - High energy (0.1-3MeV): PMT γ rays: <u>Measured by Ge</u> <u>detectors and well understood.</u>
 - 2. Mid. energy (5keV-1MeV): Aluminum and radon daughters: <u>Measured by Ge</u> <u>det. and consistent with</u> <u>observed α -ray events</u> (61/64mcps in data/MC). Rn daughters on the inner wall identified by α events.

25/18

Low background even with the surface BG

- Our BG is still quite low, even with the extra surface BG!
- In principle, the surface BG can be eliminated by vertex reconstruction. Optimization of the reconstruction program is on going to minimize a possible leakage to the inner volume.

Low energy, full volume analysis for low mass WIMPs

- The dark matter signal rapidly increase toward low energy end. <u>The large p.e. yield enables us to see light WIMPs.</u> Try to set absolute maxima of the cross section (predicted spectrum must not exceed the observed spectrum).
- The largest BG at the low energy end is the Cherekov emission from ⁴⁰K in the photo cathodes.
- Selection criteria
 - Triggered by the inner detector only (no water tank trigger)
 - RMS of hit timing <100ns (rejection of after pulses of PMTs)
 - Cherenkov rejection
 - Time difference to the previous/next event >10ms

Detail of the Cherenkov rejection

- Basically, separation between scintillation lights and Cherenkov lights can done using timing profile.
- (# of hits in 20ns window) / (total # of hits) = "head total ratio" is a good parameter for the separation.

"head total ratio" distribution

- Cherenkov events peaks around 1
 scintillation ~ 0.5
- Low energy events observed in Fe55 calibration source as well as DM simulation (t=25ns) show similar distributions.
- Efficiency ranges from 40% to 70% depending on the p.e. range.

p.e. distribution after each cut

- 6.64 days data
- The Cherenkov events are efficiently reduced by the cut.

cut0: trigId == 1 :932863 cut1: + dT_Pre(10msec) :866343 cut2: +tdcRMS<100 :570025 cut3: +Chrenkov :28863

exclusion region

- Sensitive to the allowed region of DAMA/CoGeNT.
- Some part of the allowed regions can be excluded.

Uncertainties

- Major uncertainty is the scintillation efficiency of nuclear recoil in liquid xenon.
- Uncertainties of the trigger thre. (hard trig. 4hits), cut eff., and energy scale are also taken into account.

35

Sensitivity on the axio-electric dark matter coupling

 The DAMA signal may be due to electromagnetic interaction of WIMPs to the NaI detectors by such as a nonrelativistic axion dark matter. See J. Collar, arXiv: 0903.5068

Solar axion search Bremsstrahlung + Compton: gaee only

- Large flux can be expected for DFSZ axions.
- m_A=0 by Derbin gaee=1
- Analytical expression for mA=0 is in PRD 83, 023505 (2011)

Expected signals and MC simulation

- Left: analytical spectrum
- Right: simulated spectrum overlaid with observed spectrum

solar axion sensitivity

Plan: Refurbishment work

- Tuning of reconstruction/reduction is on going but for better sensitivity, removing the origins of BG must be done.
- To reduce the BG caused by Aluminum, we are planning to cover the part and surfaces by copper rings and plates:

- BG > 5keV must be reduced significantly.
- Schedule: latter half of this fiscal year

