「Theory of Quarks and Leptons」へ向けて

July 21, 2012 @ 素粒子物理学の進展 Taichiro Kugo, YITP

Here I would like to discuss only How to understand problems of

 Generations, i.e., chiral generations
 No promising ideas: enlarging GUT group – horizontal symmetry, Hodge numbers of CY manifold, orbifolds,

Dark energy or vacuum condensates

Generations:

Survival Hypothesis (Georgi)

Quarks and Leptons are light (compared with Planck scale),

because they are chiral (complex representation) with respect to the SM group $SU(3) \times SU(2) \times U(1)$

This beautifully explains why they exist, but it also pose a difficulty in naïve trials of

Bigger GUT groups Higher dimensions Higher N SUSY

to include generations

vector-like (non-chiral)

Simple Groups do not work (naively)

SU(n), SO(4k+2), E₆ allow complex rprs.
 But SU(n) with n>5, SO(4k+2) with k>2 have only real (vector-like) reprs wrt the subgroup SU(5) or SO(10).

- E_7 and E_8 have only real rprs.
- Needs:

orbifolding, or Kawamura mechanism complex structure for extra dimensions, CY Or simply, direct product horizontal symmetry other ideas?

Quasi-NG-fermions

- If spontaneous breaking of a global symmetry:
 G → H, then
 - Nambu-Goldstone bosons appear for

broken generators G/H at around M_{Planck}
 If ∃SUSY, NG bosons are accompanied by massless spin ½ fermions, called Quasi-NG-fermions

(Buchmüller-Peccei-Yanagida'87, Ong'83)

Kugo-Yanagida'84 three generations from E₇/SU(5) × SU(3) × U(1)

Exceptional Groups: E_n

E₈ 248 Maximal: a priori Raison d'être superstring, ... E₇ 133 N=8 SUGRA $E_{7(7)}$ E₆ 78 $E_5 = SO(10) 45$ $E_4 = SU(5) 24 \rightarrow E_3 = SU(3) \times SU(2)$

Suppose $\exists E_8$ or $E_7 \rightarrow E_4 \times U(1)^n$ $E_8 \rightarrow E_4 \times U(1)^4$ $\frac{E_8}{E_4 \times U(1)^4} = \frac{E_8}{E_7 \times U(1)} \times \frac{E_7}{E_4 \times U(1)^3}$ $E_7 \rightarrow E_4 \times U(1)^3$

 $\frac{E_7}{E_4 \times U(1)^3} = \frac{E_7}{E_6 \times U(1)} \times \frac{E_6}{E_5 \times U(1)} \times \frac{E_5}{E_4 \times U(1)}$

 $E_5 = SO(10)$, $E_4 = SU(5)$

Exceptional Groups: E_n

- E_8 248 ⊃ E_7 ↓ 248-(133+1) = 56 +1 + h.c.
 - → NG chiral multiplet 56 of E_7 but any reprs of E_7 are real 56 = 27+1+27*+1* → 0 generations

E₇ 133

133-(78+1) = 27 + h.c. →

Branching rules for E groups

 E_8

 $E_8 \supset E_7 \times SU(2)$ 248 = (3,1) + (1,133) + (2,56)3875 = (1,1) + (2,56) + (3,133) + (1,1539) + (2,912)

 E_7

$$E_7 \supset E_6 \times U(1)$$

$$56 = 1_3 + 1_{-3} + 27_1 + \overline{27}_{-1}$$

$$133 = 1_0 + 78_0 + 27_{-2} + \overline{27}_2$$

$$912 = 27_1 + \overline{27}_{-1} + 78_3 + 78_{-3} + 351_1 + \overline{351}_{-1}$$

 E_6

$$E_{6} \supset E_{5}[=SO(10)] \times U(1)$$

$$27 = 1_{4} + 10_{-2} + 16_{1}$$

$$78 = 1_{0} + 45_{0} + 16_{-3} + \overline{16}_{3}$$

$$351 = 10_{-2} + \overline{16}_{-5} + 16_{1} + 45_{4} + 120_{-2} + 144_{1}$$

$$351' = 1_{-8} + 10_{-2} + 16_{-5} + 54_{4} + \overline{126}_{-2} + 144_{1}$$

$$E_{5} = SO(10)$$

$$E_{5} \supset E_{4}[=SU(5)] \times U(1)$$

$$10 = 5_{-2} + \overline{5}_{2}$$

$$16 = 1_{5} + \overline{5}_{-3} + 10_{1}$$

$$45 = 1_{0} + 24_{0} + 10_{-4} + \overline{10}_{4}$$

$$54 = 24_{0} + 15_{-4} + \overline{15}_{4}$$

$$120 = 5_{-2} + \overline{5}_{2} + 10_{6} + \overline{10}_{-6} + 45_{-2} + \overline{45}_{2}$$

$$126 = 1_{10} + \overline{5}_{2} + 10_{6} + \overline{15}_{-6} + 45_{-2} + \overline{50}_{2}$$

Sequential Symmetry Breaking: E_n

E₇ 133 $\supset E_{6}$ ↓ 133-(78+1) = 27 + h.c. $\rightarrow E_{6} 27$ E₆ 78 $\supset E_5$ ↓ 78-(45+1) = 16 +h.c. \rightarrow E₅ 16 $E_5 = SO(10) 45 \supset E_4$ $45-(24+1) = 10 + h.c. \rightarrow E_4 10$ $E_4 = SU(5) 24$

Appearing NG chiral multiplets

 $\supset E_5$ E_7 $\downarrow \rightarrow E_6 27 = 16 + 10 + 1$ $= (10+5^*+1)+(5+5^*)+1$ ⊃E₄ E_6 $\downarrow \rightarrow E_5 16 = 10+5*+1$ $E_5 = SO(10) \supset E_4$ $\downarrow \rightarrow E_4 \ 10 = 10$ $E_{A} = SU(5)$

Appearing NG chiral multiplets

 $\supset E_5$ E_7 $\downarrow \rightarrow E_6 27 = 16 + 10 + 1$ $= (10+5^*+1)+(5+5^*)+1$ ⊃E₄ E_6 $\downarrow \rightarrow E_5 16 = 10 + 5^* + 1$ $E_5 = SO(10) \supset E_4$ $\downarrow \rightarrow E_4 \ 10 = 10$ $E_{A} = SU(5)$

Appearing NG chiral multiplets

```
E_7 \qquad \supset E_5
\downarrow \rightarrow E_6 27 = 16 + 10 + 1
                   = (10+5^*+1)+(5+5^*)+1
E<sub>6</sub>
                  ⊃E₄
\downarrow \rightarrow E_5 16 = 10 + 5^* + 1
E_5 = SO(10) \supset E_4
\downarrow \rightarrow E_{4} 10 = 10
E_{4} = SU(5)
```

Three generations $3 \times (10+5^*) + 5 + \text{singlets}$!

But this has an SU(5) anomaly

The original theory is anomaly free (E_7 , E_8 are safe)

't Hooft's anomaly matching condition

→ There should appear a massless 5* as a non-NG chiral matter field

Many problems to be considered

- Low energy effective Lagrangian
- Coupling to SUGRA
- Explicit G-symmetry breaking to make NG bosons massive

in particular, e.g., breaking by gauging H=SU(5)

- \rightarrow quasi-NG fermions remain massless SM symmetry
- → if SUSY remains, NG bosons are also massless not get $m^2 \sim g^2 v^2$ so $m^2 \sim g^2 v_{SUSY}^2$?

also to have superpotential terms

- Spontaneous GUT symmetry breaking
- Spontaneous or explicit soft SUSY breaking
- Yukawa coupling

Effective Theory for the NG superfields: BKMU non-linear Lagrangian

$$\mathcal{G} = \{ \overbrace{H, X}^{\widehat{H}}, \overbrace{X}^{\mathcal{G}^{\mathcal{C}}/\widehat{H}} \\ = 0, > 0, < 0 \end{cases} \stackrel{\mathcal{G}^{\mathcal{C}}/\widehat{H}}{\underbrace{K}} \stackrel{E_7 \supset E_6 \times U(1)}{\underbrace{56 = 1_3 + 1_{-3} + 27_1 + \overline{27}_{-1}}}_{\underbrace{133 = \underbrace{1_0 + 78_0}_{H} + \underbrace{27_{-2}}_{\overline{X}} + \underbrace{\overline{27}_2}_{X}}}_{\underbrace{K}} \}$$

BKMU basic variable $\xi(\phi) = e^{i\phi\cdot \bar{X}}$

変換則 $g\xi(\phi) = \xi(\phi')\hat{h}(g,\phi)$ $\xi(\phi) \to \xi(\phi') = g\xi(\phi)\hat{h}^{-1}(g,\phi)$

どの表現で計算しても良いが56で計算すると

$$\xi(\phi) = \exp \begin{pmatrix} 0 & 0 \\ \phi_{27} & 0 \\ \phi_{27} & 0 \\ \phi_{27} & 0 \\ \phi_{27} & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 \\ \phi_{27} & 0 \\ \phi_{27} & 0 \\ \phi_{27} & 0 \\ \phi_{27} & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \phi_{27} & 1 \\ \phi_{27} & 0 \\ \phi_{27} & \phi_{27} & 1 \\ \phi_{27} & \phi_{27} & 0 \\ \phi_{27} & \phi_{27} & 0 \\ \phi_{27} & \phi_{27} & 0 \\ \phi_{27} & \phi_{27} & \phi_{27} & 1 \\ \phi_{27} & \phi_{27} & \phi_{27} & 1 \\ \phi_{27} & \phi_{27} & \phi_{27} & 1 \end{pmatrix}$$

$$\hat{h} = \begin{pmatrix} 1 & 2\bar{7}_2 & (2\bar{7})^2 & (2\bar{7})^3 \\ & 1+78 & 2\bar{7} & (2\bar{7})^2 \\ & & 1+78 & 2\bar{7} \\ & & & 1 \end{pmatrix}$$

BKMU non-linear Lagrangian

$$\begin{split} K(\phi,\bar{\phi}) &= \sum_{i} c_{i} \ln \det_{\eta_{i}} \left(\xi^{\dagger}(\phi)\xi(\phi) \right) \\ \eta \ \&\widehat{H}\text{-closed projection s.t.} \quad \widehat{H}\eta = \eta \widehat{H}\eta \\ \eta &= \begin{pmatrix} 1 \\ & 0 \end{pmatrix} \quad \text{O} \\ \end{split}$$

Sequential breaking

Sequential breaking

 E_7 E_{6} E_5 \rightarrow E_4 \rightarrow \rightarrow

 $\xi(\phi_{27},\phi_{16},\phi_{10})$

Matter fields linear base non-linear _ $\xi(\phi)$ ψ $\overline{\mathbf{W}}$ $\Psi' = q\Psi \qquad \xi(\phi') = q\xi(\phi)\hat{h}^{-1}(q,\phi)$ $\psi' = \hat{h}(q,\phi)\psi$ $\begin{pmatrix} H & * & * \\ 0 & H & * \\ 0 & 0 & H \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_2 \end{pmatrix} \begin{pmatrix} \psi_1 \\ 0 \\ 0 \end{pmatrix} は H-変換のみ$ でnonlinear baseで

 $\begin{pmatrix} \psi_1 \\ \psi_2 \\ 0 \end{pmatrix} \overset{k}{} \overset{k}{} \begin{cases} \psi_1' = H\psi_1 + *\psi_2 \\ \psi_2' = H\psi_2 \end{pmatrix} \overset{\text{Cnonlinear base <math>\mathfrak{C}}}{\text{in Bill base } \mathfrak{C}}$ **i** 接 Invariant を作る のは難しい