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MoHvaHon	
•  Naïve	  Dimensional	  Analysis	  (NDA)	  
–  an	  ansatz	  for	  coupling	  constants	  among	  composite	  
states	  (hadrons)	  in	  (arbitrary)	  strongly	  coupled	  theories	  	  

– widely	  used	  not	  only	  in	  QCD,	  but	  also	  in	  many	  models	  
beyond	  standard	  models	  
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	   However,	  there	  is	  no	  clear	  jusHficaHon	  for	  NDA.	  

We	  examine	  the	  NDA	  ansatz	  from	  gauge/gravity	  duality,	  
	  by	  esHmaHng	  glueball	  couplings	



Statement	  of	  NDA	  ansatz	

1 Introduction

It is beneficial to theoretically understand parameters in the low-energy effective theory of

hadrons which emerges from a strong dynamics of a gauge theory. Models beyond the stan-

dard model sometimes contain a strongly coupled sector (e.g. technicolor models, dynamical

supersymmetry breaking models, etc.), and the parameters of the low-energy effective theory

of hadrons can be observable or at least relevant to phenomenology. Even within the stan-

dard model, the chiral Lagrangian is an effective theory of QCD. Although the parameters of

the effective theories such as masses and coupling constants should be determined in terms

of parameters in the theories at short distance, it is often difficult to calculate them due to

strong coupling.

However, there is an ansatz that is known to be reasonable to some extent; it is called

naive dimensional analysis (NDA) [1, 2, 3, 4], which roughly guesses magnitude of coupling

constants among hadrons. In the NDA ansatz, the effective action of glueballs is given by

S =

∫

d4x
N2

c

(4πβ)2
L(φ(x), ∂µ,ΛNDA), (1)

where ΛNDA is a parameter with mass dimension one and fields collectively denoted by φ(x)

represent glueballs. All terms in L(φ(x), ∂µ,ΛNDA) are assumed to have dimensionless coeffi-

cients of order unity (apart from an appropriate power of ΛNDA), and consequently, it follows

that ΛNDA is the mass scale of hadrons (except for Nambu-Goldstone bosons). The overall

factor N2
c should be replaced with Nc in the case of effective action of mesons [5, 6], so that

the Nc scaling rule in a large Nc gauge theory is satisfied. The essential point of the NDA

ansatz is that the overall factor contains 4π (! 13), which is sizable compared with unity;

this overall prefactor may not precisely be N2
c /(4π)

2, but the NDA ansatz assumes that the

deviation—represented by a yet undertermined factor 1/β2—is of order unity. After rescaling

of φ(x) so that the φ(x) fields have canonically normalized kinetic terms, the coefficients of

the interaction terms become of the forms, for example,

(∂µφ∂
µφ)

[

φ

ΛNDA

(

4πβ

Nc

)]I

×O(1), Λ2
NDAφ

2

[

φ

ΛNDA

(

4πβ

Nc

)]I

×O(1) (2)

for arbitrary integers I (≥ 1); any (I + 2)-point coupling constants will scale in I as

(4πβ/Nc)I ×O(1) in unit of ΛNDA. There is an experimental support for the NDA ansatz (1,

2

NDA	  ansatz	  claims	  that	  the	  effecHve	  acHon	  of	  an	  SU(Nc)	  gauge	  theory	  is	

Beta	  	  is	  order	  1.	  	  
Dimensionless	  coefficients	  of	  every	  terms	  in	  L	  are	  order	  1.	

EssenHal	  point:	  	  
overall	  4	  pi	  (~	  13)	  factor	  which	  is	  sizable	  compared	  with	  1.	

� : fields of composite states

(glueball)	
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Coupling	  constants	  from	  NDA	  ansatz	
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Amer	  rescaling	  so	  that	  phi’s	  are	  canonical	  normalized,	  	  
(I+2)-‐point	  coupling	  terms	  are	  given	  by	

(I + 2)-point coupling =

✓
4⇡�

Nc

◆I

in units of ⇤NDA



QCD	  seems	  to	  be	  consistent	  with	  NDA	
L⇡⇡⇡ ' f�1

⇡ (@⇡)2⇡From	  chiral	  Lagrangian,	  	

g⇡⇡⇡ = f�1
⇡ ' (93 MeV)�1

g⇡⇡⇡ ' 4⇡p
Nc

1

M⇢
' (110 MeV)�1

g⇢⇡⇡ ' 4⇡p
Nc

⇥ (0.83) g�K+K� ' 4⇡p
Nc

⇥ (0.87)

On	  the	  other	  hand,	  according	  to	  NDA	  ,	

From	  decay	  of	  vector	  mesons,	



Argument	  in	  favor	  of	  
NDA	  ansatz	

Tree	  level	  diagram	  ~	  loop	  diagram	  @	  energy	  scale	  ~	  hadron	  mass	
ansatz	  of	  “loop	  saturaHon”	

'
g g

1 ' 1

q2 +M2
g2

Z
d4p

(2⇡)4
1

(p2 +M2
)((q � p)2 +M2
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Vol(S3
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4⇡M
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4pi	  :	  loop	  factor	
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Loop	  saturaHon	  is	  also	  an	  ansatz.	  
Loop	  saturaHon	  seems	  to	  be	  inconsistent	  with	  large	  N_c.	



Hadron	  coupling	  in	  holography	
•  Today,	  it	  is	  well-‐known	  and	  straightorward	  to	  calculate	  
the	  mass	  spectra	  and	  coupling	  constants	  of	  hadrons	  in	  a	  
given	  gravity	  background.	  

–  ex)	  	  
•  Csaki,	  Ooguri,	  Oz,	  Terning	  ‘98	   	  glueball	  mass	  spectra	  
•  Hong,	  Yoon,	  Strassler	  ‘04,	  ’05 	  three	  point	  coupling	  of	  vector	  meson	  
•  Sakai,	  Sugimoto	  ’04,	  ‘05	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  pions,	  decay	  of	  meson	  

	  
•  More	  than	  3-‐point	  couplings	  were	  liule	  studied,	  because	  
it	  looked	  merely	  Hred	  calculaHon.	  

•  However,	  it	  is	  interesHng	  and	  physically	  important	  to	  
examine	  whether	  the	  NDA	  rule	  exist,	  which	  governs	  a	  lot	  
of	  coupling	  constants.	  	



Setup	  of	  gravitaHonal	  dual	
The	  gravity	  dual	  of	  conformal	  gauge	  theory:	  AdS_5	  x	  W	

p copies of SU(Nc)). In the extended version of the NDA scaling rule, Nc in the overall factor

in (1) will be replaced with
√
a multiplied by an O(1) factor, where a is something like a

“degree of freedom” of a gauge theory.

2 Glueball Coupling Constants in Gauge/String Dual-

ity

In the gauge/string duality [7, 8, 9], some gauge theories with a large number of color Nc

and a large ’t Hooft coupling λ = g2YMNc are dual to string theories on warped spaces. A

gravity dual of a four-dimensional conformal field theory is the type-IIB string theory on a

spacetime AdS5 ×W with a metric

ds2 = R2/z2(ηµνdx
µdxν + dz2) +R2ds2W , 0 < z < ∞, (7)

where W is a five-dimensional Einstein manifold. An infinite number of examples of W are

known, with each manifold W corresponding to a conformal field theory. For example, the

Type IIB string with W = S5 is dual to N = 4 SU(Nc) super Yang-Mills theory [7], and

a choice W = T 1,1 corresponds to an N = 1 SU(Nc) × SU(Nc) gauge theory with four

chiral multiplets in the bifundamental representation [17]. In references [18, 19], one can

find an infinite number of examples of gravity background geometries with W = Y p,q, which

correspond to (SU(Nc))p = SU(Nc)× SU(Nc)× · · ·× SU(Nc) (p factors of SU(Nc)) quiver

gauge theories with several chiral multiplets in the bifundamental representations between

two of the p SU(Nc) groups.

Gravity duals of confining gauge theories have also been constructed [20, 21, 22, 23, 24].

In most of them, the metric background in the string frame may be written without loss of

generality as,

ds2 = (f(z))−2(ηµνdx
µdxν + dz2) +R2ds2Wz

, (8)

with an appropriate definition of the z-coordinate. The warp factor R2/z2 in (7) for the case

of conformal theories is replaced by a more general form (f(z))−2. The internal manifold

Wz can also be dependent on z, and the other supergravity fields generally have nontrivial

5
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of conformal theories is replaced by a more general form (f(z))−2. The internal manifold
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5

0 < z < z
max

W = S5, T 1,1, Y p,q

We	  consider	  a	  confining	  gauge	  theory	  which	  is	  conformal	  in	  UV	  limit	

(f(z))�2 ! R2/z2, Wz ! W, (z ! 0)



EffecHve	  4d	  acHon	  from	  gravity	  
descripHon	

Ssugra =

Z
d10XL[�(X), . . . ]

�(X) =
X

i

�i(x) i(z, ✓)

S

SUGRA

!
Z

d

4

xL[�i(x)] = S

hadron

Gauge/gravity	  duality	  implies	  that	  we	  can	  obtain	  4d	  hadron	  acHon	  by	  dimensional	  
reducHon	  of	  10d	  sugra	  acHon	  on	  the	  corresponding	  background.	  	

Mode	  decomposiHon	  of	  sugra	  field	

Integrate	  out	  W	  and	  z	  direcHons	



Intermediate	  5d	  descripHon	

for simplicity. After dimensional reduction on the five dimensional compact manifold W , the

supergravity action using the Einstein frame metric becomes

S =
(R5Vol(W ))× R3

2κ210g
2
s

∫

d4x

∫ ∞

0

dz

z3

(

−1

2
((∂φ)2 + (∂zφ)

2)− 1

2
e2φ((∂c)2 + (∂zc)

2)

)

+ . . . ,

(9)

where 2κ210 = (2π)7α′4 is the gravitational coupling constant of ten dimensional type IIB

supergravity. Here we only keep track of φ(x, z) and c(x, z) fields in five dimensions2, which

correspond to fluctuations of Φ (dilaton) and C0 (RR scalar) with a constant profile on W ,

respectively. The AdS radius R is given by

R4 = 4π4gsα
′2 1

Vol(W )
= 4πgsα

′2Vol(S
5)

Vol(W )
. (10)

Then the overall factor is rewritten as

1

2κ210g
2
s

× (R5Vol(W ))× R3 =
4a

8π2
, (11)

with the definitions

4a ≡ p′N2
c , p′ ≡ Vol(S5)

Vol(W )
. (12)

The supergravity action (9) becomes an expression that is interesting in the context of

the NDA, by canonically rescaling the fields,

S =

∫

d4x

∫ ∞

0

dz

z3

[

−1

2
((∂φ′)2 + (∂zφ

′)2)− 1

2
((∂c′)2 + (∂zc

′)2)

−
∞
∑

I=1

(

4π√
2a

)I 1

I!2!
(φ′)I((∂c′)2 + (∂zc

′)2)

]

. (13)

Here, φ′ = φ − 〈Φ〉 and c′ = gsc. The second line plays a role of interaction terms, which

comes from the exponential dilaton factor e2φ. Besides combinatoric factors, the (I + 2)-

point interaction terms of the five dimensional fields φ′ and c′ have coefficients ((4π)/
√
2a)I .

2 The terms + · · · in (9) represent terms including the fluctuations other than φ and c. However, it
includes no mixing in the bilinear terms between φ or c and the other fluctuations in the case of the AdS

background considered here. On the other hand, the terms + · · · also includes interaction terms among φ
or c and the other fluctuations such as (∂mφ)(∂nφ)hmn, where hmn is a fluctuation of the metric. We are
keeping only the interaction terms among φ and c.

7

IntegraHng	  out	  the	  compact	  W	  direcHon	
for	  simplicity,	  consider	  only	  two	  scalars,	  dilaton	  and	  RR	  scalar,	  and	  
moreover	  only	  consider	  the	  constant	  mode	  on	  W	
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In most of them, the metric background in the string frame may be written without loss of

generality as,
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of conformal theories is replaced by a more general form (f(z))−2. The internal manifold

Wz can also be dependent on z, and the other supergravity fields generally have nontrivial
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e� = gs R4
= 4⇡gsNc↵

02Vol(S
5
)

Vol(W )

F5 =

(2⇡
p
↵0
)

4Nc

Vol(W )

(1 + ⇤)vol(W )

In	  the	  case	  of	  conformal	  gauge	  theory,	

backgrounds	



The	  overall	  factor	  (coupling	  const.)	  in	  5d	  acHon	
for simplicity. After dimensional reduction on the five dimensional compact manifold W , the

supergravity action using the Einstein frame metric becomes

S =
(R5Vol(W ))× R3

2κ210g
2
s

∫

d4x

∫ ∞

0

dz

z3

(

−1

2
((∂φ)2 + (∂zφ)

2)− 1

2
e2φ((∂c)2 + (∂zc)

2)

)

+ . . . ,

(9)

where 2κ210 = (2π)7α′4 is the gravitational coupling constant of ten dimensional type IIB

supergravity. Here we only keep track of φ(x, z) and c(x, z) fields in five dimensions2, which

correspond to fluctuations of Φ (dilaton) and C0 (RR scalar) with a constant profile on W ,

respectively. The AdS radius R is given by

R4 = 4π4gsα
′2 1

Vol(W )
= 4πgsα

′2Vol(S
5)

Vol(W )
. (10)

Then the overall factor is rewritten as

1

2κ210g
2
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× (R5Vol(W ))× R3 =
4a

8π2
, (11)

with the definitions

4a ≡ p′N2
c , p′ ≡ Vol(S5)

Vol(W )
. (12)

The supergravity action (9) becomes an expression that is interesting in the context of

the NDA, by canonically rescaling the fields,

S =

∫

d4x

∫ ∞

0
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[
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((∂φ′)2 + (∂zφ
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Here, φ′ = φ − 〈Φ〉 and c′ = gsc. The second line plays a role of interaction terms, which

comes from the exponential dilaton factor e2φ. Besides combinatoric factors, the (I + 2)-

point interaction terms of the five dimensional fields φ′ and c′ have coefficients ((4π)/
√
2a)I .

2 The terms + · · · in (9) represent terms including the fluctuations other than φ and c. However, it
includes no mixing in the bilinear terms between φ or c and the other fluctuations in the case of the AdS

background considered here. On the other hand, the terms + · · · also includes interaction terms among φ
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rescaling of the fields as in (13), the five dimensional supergravity action is written as

S =

∫

d4x

∫ zmax

0

dz

z3
Y (z)

[
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2
((∂φ′)2 + (∂zφ
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2
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+ . . . , (14)

where Y (z) is a dimensionless function defined as

Y (z) =
(f(z))−3

(R/z)3
Vol(Wz)

Vol(Wz=0)
, (15)

which is unity in the case of conformal geometries. In the z → 0 (UV) limit, Y (z) → 1, and

the integrand of (14) becomes identical to one of (13).

In the rest of this article, we omit the terms in + · · · in (14). In general confining geometry,

dilaton, RR scalar and the 3-form flux H3 and F3 would also have nontrivial background. In

this case φ′(x, z) and c′(x, z) would have mixings with other string fields such as the metric.

We neglect this technical complexity in this article. We expect that such details of the IR

background will affect coupling constants of glueballs at most by O(1) factors, and hence

they are unessential in trying to verify the NDA ansatz, whose predictions always come with

uncertainty of order unity.

We denote four dimensional glueball fields of the n-th excited modes by φ̃n(x) and

c̃n(x), which are created by operators dual to five-dimensional supergravity fields φ′(x, z)

and c′(x, z), respectively. We assign mass dimension one for glueball fields φ̃n(x) and c̃n(x)

just as usual for canonically normalized scalar fields in four dimensional field theory. The

five dimensional fields φ′(x, z) and c′(x, z) are decomposed into independent modes in four-

dimensions, each one of which corresponds to a normalizable wavefunction ψn(z);

φ′(x, z) =
∞
∑

m=1

ψm(z)φ̃m(x), c′(x, z) =
∞
∑

n=1

ψn(z)c̃n(x). (16)

The normalizable modes ψn(z) are defined as the solutions of the eigen-equation given by

z3Y −1(z)∂z
(

z−3Y (z)∂zψn(z)
)

= m2
nψn(z), (17)

with the normalization condition
∫ zmax

0

dz

z3
Y (z)ψn(z)ψm(z) = δnm, (18)
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which makes all the fields φ̃n(x) and c̃n(x) canonically normalized in the 4D effective action.

The modes ψn(z) satisfies an appropriate IR-boundary condition which is imposed so that

the field configuration in ten dimensional spacetime should be smooth at z = zmax. The

eigenvalue mn is the mass of glueballs5 φ̃n, c̃n. The effective action of glueballs is obtained

by substituting (16) to (14).

The interaction part of the effective Lagrangian Lint includes (I + 2)-point interaction

terms which consist of two types of couplings; one is of the form φ̃I
m(∂c̃n)

2, and the other

φ̃I
mc̃

2
n without derivatives:

Lint = −
∞
∑

I=1

∑

n1n2m1...mI

[

a(I)n1n2,m1...mI

Λ−I
NDA

2!I!
φ̃m1 . . . φ̃mI (∂µc̃n1)(∂

µc̃n2)

+b(I)n1n2,m1...mI

Λ2−I
NDA

2!I!
φ̃m1 . . . φ̃mI c̃n1 c̃n2

]

. (19)

The coupling constants a(I)n1n2m1...mI and b(I)n1n2...m1...mI are given by the following overlap integral

of normalizable wavefunctions;

a(I)n1n2m1...mI
=

(

4π√
2a

)I

× ΛI
NDA

∫ zmax

0

dz

z3
Y (z)ψn1ψn2ψm1 . . .ψmI , (20)

b(I)n1n2m1...mI
=

(

4π√
2a

)I

× ΛI−2
NDA

∫ zmax

0

dz

z3
Y (z)(∂zψn1)(∂zψn2)ψm1 . . .ψmI . (21)

These coupling constants have been made dimensionless by multiplying appropriate powers

of a parameter ΛNDA with mass dimension one. When we choose the mass scale ΛNDA as the

mass of the lightest glueball mass, these coupling constants are expected to be O(4πβ/Nc)

by the NDA ansatz (2).

We need to estimate the overlap integrals of (20, 21) in order to examine whether there
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NDA ansatz or not. The prefactor (4π/
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2a)I is identical to the coefficient of (I + 2)-

point interaction terms of (13), and is just determined only from conformal region in UV,

whereas the remaining overlap integrals are dependent on the detail of the IR geometry.

The estimation of the overlap integrals unavoidably requires numerical calculations in each

5 The normalizable wavefunctions ψn(z) and mass spectra mn are common in φ′ and c′ in our study. This
is because we are ignoring any kind of nontrivial vacuum expectation values and effects of mixing for the
fields of supergravity, and therefore equations of motion for φ′ and c′ become the same.

10

which makes all the fields φ̃n(x) and c̃n(x) canonically normalized in the 4D effective action.

The modes ψn(z) satisfies an appropriate IR-boundary condition which is imposed so that

the field configuration in ten dimensional spacetime should be smooth at z = zmax. The

eigenvalue mn is the mass of glueballs5 φ̃n, c̃n. The effective action of glueballs is obtained

by substituting (16) to (14).

The interaction part of the effective Lagrangian Lint includes (I + 2)-point interaction

terms which consist of two types of couplings; one is of the form φ̃I
m(∂c̃n)

2, and the other

φ̃I
mc̃

2
n without derivatives:

Lint = −
∞
∑

I=1

∑

n1n2m1...mI

[

a(I)n1n2,m1...mI

Λ−I
NDA

2!I!
φ̃m1 . . . φ̃mI (∂µc̃n1)(∂

µc̃n2)

+b(I)n1n2,m1...mI

Λ2−I
NDA

2!I!
φ̃m1 . . . φ̃mI c̃n1 c̃n2

]

. (19)

The coupling constants a(I)n1n2m1...mI and b(I)n1n2...m1...mI are given by the following overlap integral

of normalizable wavefunctions;

a(I)n1n2m1...mI
=

(

4π√
2a

)I

× ΛI
NDA

∫ zmax

0

dz

z3
Y (z)ψn1ψn2ψm1 . . .ψmI , (20)

b(I)n1n2m1...mI
=

(

4π√
2a

)I

× ΛI−2
NDA

∫ zmax

0

dz

z3
Y (z)(∂zψn1)(∂zψn2)ψm1 . . .ψmI . (21)

These coupling constants have been made dimensionless by multiplying appropriate powers

of a parameter ΛNDA with mass dimension one. When we choose the mass scale ΛNDA as the

mass of the lightest glueball mass, these coupling constants are expected to be O(4πβ/Nc)

by the NDA ansatz (2).

We need to estimate the overlap integrals of (20, 21) in order to examine whether there

exists a rule governing the coupling constants of four dimensional effective theory like the

NDA ansatz or not. The prefactor (4π/
√
2a)I is identical to the coefficient of (I + 2)-

point interaction terms of (13), and is just determined only from conformal region in UV,

whereas the remaining overlap integrals are dependent on the detail of the IR geometry.

The estimation of the overlap integrals unavoidably requires numerical calculations in each

5 The normalizable wavefunctions ψn(z) and mass spectra mn are common in φ′ and c′ in our study. This
is because we are ignoring any kind of nontrivial vacuum expectation values and effects of mixing for the
fields of supergravity, and therefore equations of motion for φ′ and c′ become the same.

10

4d	  coupling	  constants	  among	  glueballs	

Dimensionless	  (I+2)-‐point	  coupling	  constant	



both of the (I +2)-point coupling constants are estimated as I-th powers of the same factor,

|a(I)n1n2m1...mI
|, |b(I)n1n2m1...mI

| ∼
[(

4π√
2a

)

mzmax(Y (z ∼ γzmax))
−1/2

]I

∼
[(

4π√
2a

)

(mzmax)

]I

, (28)

where we have also used an approximation Y (z ∼ γzmax) ∼ 1 in the second line. The factor

(mzmax) is expected to be O(1) because 1/zmax corresponds to confinement scale of dual

gauge theory, but this factor turns out to be slightly large in numerical calculations as we

will see in the next section. Eq. (28) with the choice of (27) is just the same as what the

NDA predicts (1), with the identification of the NDA scaling factor

4πβ

Nc
∼
[(

4π√
2a

)

(mzmax)

]

. (29)

The NDA scaling rule shown in (29) has been generalized from the original NDA (1); the

factor Nc/β in the original NDA rule (1) is generalized into
√
2a/(mzmax). The identification

is natural in an SU(Nc) gauge theory because the factor
√
2a/(mzmax) is actually O(Nc),

which corresponds to the assumption of the original NDA that β is O(1). However, Eq.(29)

implies that β can take an arbitrarily small value, because 4a/N2
c = p′ can be arbitrarily

large, for example, in a quiver gauge theory (SU(Nc))p with arbitrarily large p. On the other

hand, we also find that β has an upper bound of O(1) value because p′ is bounded as p′ ≥ 1.

So far, we have only focused on UV-conformal theories, but it is possible to extend the

derivation above in order to cover theories with weakly running couplings even in the UV-

limit. To do this, note that the z-dependent function a(z) can be defined in gravity side even

in non-conformal theories6 [30]:

a(z) =
2π2R5

(2π)7g2sα′4

(

d

dz
(f(z)(Vol(Wz))

−1/3)

)−3

. (30)

One can see that a(z) approaches the value a defined in (12) when the geometry approaches

AdS5×W . In a theory which has a weakly running coupling in UV, the function a(z) varies

6 In a gauge theory which has both IR and UV fixed points, the central charge a (which is equal to c in
supergravity approximation) has a relation aUV ≥ aIR (see [31] and references therein). The z-dependent
function a(z) in (30) is defined so that it decreases monotonically as the holographic coordinate z is in-
creased [30].
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Rough	  esHmaHon	  of	  overlap	  integral	

 n ⇠ z
max

, @z n ⇠ mz
max

geometry and they will be the subject of section 3. Before numerical calculation, however,

we will give a crude estimation independently of the detail of geometries.

We may roughly estimate the overlap integrals for low excited modes and not too large I by

approximating the integrand as a constant value in the IR region. On general UV-conformal

geometry, normalizable wavefunctions behaves as z∆ (∆ is the conformal dimension and

∆ = 4 for φ(x, z) and c(x, z)) in the small z region, so the small z region have only small

contribution to the overlap integrals. They oscillate with relatively large amplitudes in the

IR region z ∼ O(zmax), say, z ! zmax/2. The normalizable wavefunctions of the first few

excited modes have only a small number of nodes. Then it might be justified to approximate

the integrand by a typical constant value in the IR region. Using the value of the integrand

at around z ∼ γzmax (γ ∼ O(1)) as the typical value, the overlap integrals are estimated as

|a(I)n1n2m1...mI
| ∼

(

4π√
2a

)I

ΛI
NDAz

−2
max [Y (z)ψn1ψn2ψm1 . . .ψmI ]z∼γzmax

, (22)

|b(I)n1n2m1...mI
| ∼

(

4π√
2a

)I

ΛI−2
NDAz

−2
max [Y (z)(∂zψn1)(∂zψn2)ψm1 . . .ψmI ]z∼γzmax

. (23)

Applying the same approximation for bilinear terms, we also obtain

ψn(z ∼ γzmax) ∼
[

z−2
maxY (z ∼ γzmax)

]−1/2
, ∂zψn(z ∼ γzmax) ∼ mψn(z ∼ γzmax). (24)

We are assuming that ni, mj and I are not large, because the integrand would oscillate rapidly

if they were large and the above estimation would break down. Here, γzmax is a typical value

of z around which the integrand is peaked, and should be near the IR boundary, say, γ ∼ 1/2,

and m is a typical mass of the low excited modes (say, m = m1). Substituting (24) to (22,

23), we obtain

|a(I)n1n2m1...mI
| ∼

[(

4π√
2a

)

ΛNDAzmax (Y (z ∼ γzmax))
−1/2

]I

, (25)

|b(I)n1n2m1...mI
| ∼

(

m

ΛNDA

)2 [( 4π√
2a

)

ΛNDAzmax (Y (z ∼ γzmax))
−1/2

]I

. (26)

The reason b(I) has the factor of (m/ΛNDA)2 is that (23) contains two (∂zψn)’s.

With these crude approximations, one can find that there is a scaling rule for coupling

constants like the NDA ansatz (1). When we choose ΛNDA as the typical mass of glueballs,

ΛNDA = m, (27)
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m:	  typical	  glueball	  mass	
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both of the (I +2)-point coupling constants are estimated as I-th powers of the same factor,

|a(I)n1n2m1...mI
|, |b(I)n1n2m1...mI

| ∼
[(

4π√
2a

)

mzmax(Y (z ∼ γzmax))
−1/2

]I

∼
[(

4π√
2a

)

(mzmax)

]I

, (28)

where we have also used an approximation Y (z ∼ γzmax) ∼ 1 in the second line. The factor

(mzmax) is expected to be O(1) because 1/zmax corresponds to confinement scale of dual

gauge theory, but this factor turns out to be slightly large in numerical calculations as we

will see in the next section. Eq. (28) with the choice of (27) is just the same as what the

NDA predicts (1), with the identification of the NDA scaling factor

4πβ

Nc
∼
[(

4π√
2a

)

(mzmax)

]

. (29)

The NDA scaling rule shown in (29) has been generalized from the original NDA (1); the

factor Nc/β in the original NDA rule (1) is generalized into
√
2a/(mzmax). The identification

is natural in an SU(Nc) gauge theory because the factor
√
2a/(mzmax) is actually O(Nc),

which corresponds to the assumption of the original NDA that β is O(1). However, Eq.(29)

implies that β can take an arbitrarily small value, because 4a/N2
c = p′ can be arbitrarily

large, for example, in a quiver gauge theory (SU(Nc))p with arbitrarily large p. On the other

hand, we also find that β has an upper bound of O(1) value because p′ is bounded as p′ ≥ 1.

So far, we have only focused on UV-conformal theories, but it is possible to extend the

derivation above in order to cover theories with weakly running couplings even in the UV-

limit. To do this, note that the z-dependent function a(z) can be defined in gravity side even

in non-conformal theories6 [30]:

a(z) =
2π2R5

(2π)7g2sα′4

(

d

dz
(f(z)(Vol(Wz))

−1/3)

)−3

. (30)

One can see that a(z) approaches the value a defined in (12) when the geometry approaches

AdS5×W . In a theory which has a weakly running coupling in UV, the function a(z) varies

6 In a gauge theory which has both IR and UV fixed points, the central charge a (which is equal to c in
supergravity approximation) has a relation aUV ≥ aIR (see [31] and references therein). The z-dependent
function a(z) in (30) is defined so that it decreases monotonically as the holographic coordinate z is in-
creased [30].
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Table 1: Geometric means a(I)typ and b(I)typ and the standard deviations σ(I)
ln a and σ

(I)
ln b calculated

numerically in the hard wall model. The standard deviation of ln |a(I)n1n2m1...mI |’s, that is, σ
(I)
ln a,

is presented in the 3rd column in the form of ln[ exp(σ(I)
ln a) ], so that the range of typical

values of |a(I)n1n2m1...mI | can be easily read out.

a(I)typ

(

4π√
2a

ΛNDAzmax · 0.8
)−I

σ(I)
ln a b(I)typ

(

4π√
2a

ΛNDAzmax · 0.8
)−I

σ(I)
ln b

I = 1 0.3 ln[2.]
(

m1
ΛNDA

)2
× 0.4 ln[3.]

I = 2 0.3 ln[2.]
(

m1
ΛNDA

)2
× 0.3 ln[3.]

I = 3 0.4 ln[2.]
(

m1
ΛNDA

)2
× 0.2 ln[3.]

I = 4 0.4 ln[2.]
(

m1
ΛNDA

)2
× 0.4 ln[4.]

from their geometric means. With the scaling factor (4π) × (ΛNDAzmax) being much larger

than the typical difference among the individual couplings [eσ
(I)
ln ], we see that the scaling

rule of the averaged value (33) contains valuable information (albeit statistical) on individual

(I + 2)-point coupling constants.

3.2 Klebanov-Strassler Metric

One of the flaws of the hard wall model is that the IR-region of the geometry is very ad hoc;

the IR-boundary zmax is introduced by hand. Such a crude treatment is meant only to be a

simplest toy model imaginable that implements the two essential ingredients of IR confining

models: i) finite range of the holographic radius, ∃zmax ≥ z ≥ 0, and ii) existence of the

minimal value of the warped factor f−2(z). It is not meant at all to be a faithful (and hence

stable) solution of the equation of motion of the Type IIB string theory.

In a full solution of equations of motion of supergravity, however, the IR boundary z =

zmax is not a singularity of the background geometry; the spacetime geometry is smooth in ten

dimensions, and the internal geometry Wz smoothly shrinks at z = zmax, and we encounter

a “boundary” of the geometry only after the description on 10 dimensions is reduced to that

on the five dimensions.

In the following, we construct a toy model using the Klebanov-Strassler metric so that the
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Numerical	  result	  in	  hard	  wall	  model	   	  (Y(z)=1)	

a(I)typ, b
(I)
typ : geometric means of (I + 2)-point couplings
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up	  to	  3rd	  excited	  mode	



Table 2: Geometric means a(I)typ and b(I)typ and the standard deviations of ln |a(I)n1n2m1...mI | and
ln |b(I)n1n2m1...mI |, σ
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both of the (I +2)-point coupling constants are estimated as I-th powers of the same factor,
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| ∼
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4π√
2a

)
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−1/2

]I

∼
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4π√
2a

)

(mzmax)

]I

, (28)

where we have also used an approximation Y (z ∼ γzmax) ∼ 1 in the second line. The factor

(mzmax) is expected to be O(1) because 1/zmax corresponds to confinement scale of dual

gauge theory, but this factor turns out to be slightly large in numerical calculations as we

will see in the next section. Eq. (28) with the choice of (27) is just the same as what the

NDA predicts (1), with the identification of the NDA scaling factor

4πβ

Nc
∼
[(

4π√
2a

)

(mzmax)

]

. (29)

The NDA scaling rule shown in (29) has been generalized from the original NDA (1); the

factor Nc/β in the original NDA rule (1) is generalized into
√
2a/(mzmax). The identification

is natural in an SU(Nc) gauge theory because the factor
√
2a/(mzmax) is actually O(Nc),

which corresponds to the assumption of the original NDA that β is O(1). However, Eq.(29)

implies that β can take an arbitrarily small value, because 4a/N2
c = p′ can be arbitrarily

large, for example, in a quiver gauge theory (SU(Nc))p with arbitrarily large p. On the other

hand, we also find that β has an upper bound of O(1) value because p′ is bounded as p′ ≥ 1.

So far, we have only focused on UV-conformal theories, but it is possible to extend the

derivation above in order to cover theories with weakly running couplings even in the UV-

limit. To do this, note that the z-dependent function a(z) can be defined in gravity side even

in non-conformal theories6 [30]:

a(z) =
2π2R5

(2π)7g2sα′4

(

d

dz
(f(z)(Vol(Wz))

−1/3)

)−3

. (30)

One can see that a(z) approaches the value a defined in (12) when the geometry approaches

AdS5×W . In a theory which has a weakly running coupling in UV, the function a(z) varies

6 In a gauge theory which has both IR and UV fixed points, the central charge a (which is equal to c in
supergravity approximation) has a relation aUV ≥ aIR (see [31] and references therein). The z-dependent
function a(z) in (30) is defined so that it decreases monotonically as the holographic coordinate z is in-
creased [30].
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3,	  Take	  care	  that	  	  (m	  z_max)	  ~	  (5~6)	  is	  a	  liule	  large	  number!	

2,	  N_c	  is	  naturally	  generalized	  into	  	
4a =

Vol(S5
)

Vol(W )

N2
c � N2

c

p
a

(SU(Nc))
p
-quiver gauge theory

W = Y p,q 4a ' pN2
c the	  dual	  gauge	  theory	  is	

a:	  central	  charge	  of	  CFT,	  which	  counts	  dof.s.	


