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Interesting points

 Dark matter candidate = Lightest KK particle
 125GeV Higgs is possible [Kakuda-san’s talk]
 Loose constraint on mKK←Possibly detectable 

                                 at the LHC
 

[T.Appelquist,H.C.Cheng,B.A.Dobrescu] (2001)
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S1/Z2 geometry

the gauge symmetry of the QCD sector. We assume that the electroweak gauge symmetry

is spontaneously broken by the ordinary Higgs mechanism as it is in the case of mUED. It is

noted that the Vacuum Expectation Value (VEV) of the Higgs field can possess a constant

profile (even in the presence of brane-localized Higgs terms that have covariant forms in

4D) by tuning appropriate parameters [52].2 Note that the total action in equation (2.1) is

invariant under the transformation y → −y which exchanges the positions of the two fixed

points. This suggests that our theory has an accidental Z2 symmetry, called the KK parity,

which ensures the stability of the lightest KK particle thus making the same a viable dark

matter candidate. In figure 1 we illustrate the ‘geometry’ of the configuration through a

schematic diagram.

y
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Figure 1. A schematic diagram of the geometry of the orbifolded configuration. The thick red arc
(upper semi-circle) stands for the fundamental region of the background geometry of S1/Z2. The two
blue circular spots on diametrically opposite locations on the circle (along the horizontal) represent
the orbifold fixed points at which tree-level BLTs can appear. Every point on the dot-dashed red arc
(the lower semi-circle) is identified with the corresponding point on the fundamental region and these
are indicated by vertical arrows. The horizontal arrow depicts the accidental Z2 symmetry under the
reflection y → −y that is present in the set-up.

In the presence of brane-localized terms many new features emerge in the theory which

we never experience in a scenario like mUED. Here we take a glance at them.

• We find new contributions to the masses of the KK excitations. Because of the brane-

localized terms, the expressions that determine these masses get altered from those

in the mUED in a fundamental way. One can end up with a rather non-trivial mass

spectrum with large mass splittings among the KK excitations by tuning the coefficients

of the brane-localized terms.

• We also see alterations of some vertices containing KK particles. Orthonormal con-

ditions for the mode functions describing the profiles of various KK excitations are

modified affecting the values of some overlap integrals.

2
Another possibility of theories with non-constant (y-dependent) Higgs VEV have been pursued in refs. [56–

59].

– 6 –

 Two fixed points (branes) emerge.

 Chiral fermions appear (at zero modes).
 At these points, some terms can be 

   localized.
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 mUED: No tree-level brane-localized terms, but
            they are induced at the 1-loop level.

FIG. 6: The spectrum of the first KK level at (a) tree level and (b) one-loop, for R−1 = 500 GeV,

ΛR = 20, mh = 120 GeV, m2
H = 0, and assuming vanishing boundary terms at the cut-off scale Λ.

R−1 = 500 GeV, ΛR = 20, mh = 120 GeV, m2
H = 0 and assumed vanishing boundary

terms at the cut-off scale Λ. We see that the KK “photon” receives the smallest corrections

and is the lightest state at each KK level. Unbroken KK parity (−1)KK implies that the

lightest KK particle (LKP) at level one is stable. Hence the “photon” LKP γ1 provides an

interesting dark matter candidate. The corrections to the masses of the other first level KK

states are generally large enough that they will have prompt cascade decays down to γ1.3

Therefore KK production at colliders results in generic missing energy signatures, similar

to supersymmetric models with stable neutralino LSP. Collider searches for this scenario

appear to be rather challenging because of the KK mass degeneracy and will be discussed

in a separate publication [13].

V. CONCLUSIONS

Loop corrections to the masses of Kaluza-Klein excitations can play an important role

in the phenomenology of extra dimensional theories. This is because KK states of a given

level are all nearly degenerate, so that small corrections can determine which states decay

and which are stable.

3 The first level graviton G1 (or right-handed neutrino N1 if the theory includes right handed neutrinos N0)

could also be the LKP. However, the decay lifetime of γ1 to G1 or N1 would be comparable to cosmo-

logical scales. Therefore, G1 and N1 are irrelevant for collider phenomenology but may have interesting

consequences for cosmology.

20

KK mass shift
KK momentum violating

interaction

[H.C.Cheng,K.T.Matchev,M.Schmaltz] (2002)



 When we introduce (tree-level) brane-localized terms,
    these interesting points possibly appear at the tree-level.

 We can find few study on 
    LHC signature of this type “non-minimal” UED model.

 In this work, the properties of production processes of
    1st KK particles via QCD interactions have been analyzed. 
    (ignoring EW interactions.)
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Gluon part

We observe that BLTs can indeed inflict major distortions in the mUED spectrum be-

yond recognition [37, 38]. On top of that, distortions in couplings also open up many phe-

nomenological possibilities. When considered together, these would provide a rather relaxed

framework which can make the confusion among mUED, nmUED, and SUSY (and also pos-

sibly, T -parity conserving little Higgs framework (see refs. [54, 55] and references therein))

get more complete.

The paper is organized as follows. In section 2 we discuss the theoretical framework that

include the BLTs for the strongly interacting sector indicating their nontrivial implications.

In section 3 we derive the mass spectrum and the couplings and highlight their features by

contrasting them with those in the mUED framework. The resulting phenomenology at the

LHC is taken up in section 4 where the emphasis is on estimating the production rates of the

strongly interacting level ‘1’ KK excitations as functions of the fundamental parameters of

the framework. Situations in nmUED are studied with a concrete example to demonstrate

the possibility of a near-complete faking of mUED and SUSY scenarios. In section 5 we

conclude. We also provide an appendix for the Feynman rules involving the interactions of

the strongly interacting KK particles from level ‘1’ which are used in this work.

2 Theoretical framework

We consider the strongly interacting (QCD) sector of a 5D UED scenario compactified on

S1/Z2 in the presence of brane-localized terms. Under a Z2 orbifold on S1, two fixed points

appear and some 4D terms, consistent with gauge symmetry and Lorentz invariance, can be

localized around them. Theoretical aspects of brane-localized kinetic terms (BLKTs) have

been studied in refs. [45–51]. We follow the notations of ref. [52], where a UED-type scenario

with brane localized terms only for the electroweak gauge bosons and Higgs sectors (and not

for the gluon and the fermion sectors) are considered. The total action for the QCD sector

can be expressed as:

SNMQCD = Sgluon + Sgluon,gf + Squark + SYukawa, (2.1)

with the superscript ‘gf’ standing for ‘gauge-fixing’ and where the different components of

the complete action are as follows:

Sgluon =

�
d4x

� L

−L
dy

�
− 1

4
Ga

MNGaMN +
�
δ(y − L) + δ(y + L)

��
− rG

4
Ga

µνG
aµν

��
,

(2.2)

Sgluon,gf =

�
d4x

� L

−L
dy

�
− 1

2ξG

�
∂µG

aµ − ξG∂yG
a
y

�2 − 1

2ξG,b

� �
∂µG

aµ + ξG,bG
a
y

�2
δ(y − L)

+
�
∂µG

aµ − ξG,bG
a
y

�2
δ(y + L)

��
, (2.3)
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 Bulk terms

 Brane-localized terms
 These are the same with the mUED.

 4D gauge invariant term is introduced.
   (with coefficient rG)
 The system is invariant under y -> -y.

   (KK-parity is conserved.)

[F.del Aguila,M.Perez-Victoria,J.Santiago] (2003,2004)
[T.Flacke,A.Menon.D.J.Phalen] (2009)

 Gy is unphysical d.o.f. (removed in the unitary gauge: ξG, ξG,b->∞)



 Bulk EOM of n-th mode is the same with the mUED.
where mG(n)

is the physical mass of the n-th KK gluon’s physical mass. Using equations

(2.9), (2.12), (2.13), we obtain the equation for the mode function fG(n)
of the n-th level

gluon as

∂2fG(n)
(y)

∂y2
= −m2

G(n)
fG(n)

(y). (2.14)

We should take the values of Ga
µ’s orbifold conditions as even at the both boundaries, then

the form of the basic solution is as follows:

fG(n)
(y) = NG(n)

×






cos(mG(n)
y)

CG(n)

for n even (even KK-parity)

− sin(mG(n)
y)

SG(n)

for n odd (odd KK-parity)

, (2.15)

where NG(n)
is a normalization factor. Hereafter, we use the following short-hand notations

CG(n)
= cos

�
mG(n)

πR

2

�
, SG(n)

= sin

�
mG(n)

πR

2

�
, TG(n)

= tan

�
mG(n)

πR

2

�
. (2.16)

In the unitary gauge, we choose the Neumann-type boundary conditions for gluon field

resulting in

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν + ∂yG
aµ
����

y=L
= 0, (2.17)

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν − ∂yG
aµ
����

y=−L
= 0. (2.18)

Using equation (2.15), we obtain the following set of transcendental equations that determine

the mass of the KK-gluons

rGmG(n)
=

�
−TG(n)

for n even

1/TG(n)
for n odd

. (2.19)

We can find a massless zero mode in the spectrum regardless of the value of rG, which

corresponds to the gluon of the ordinary 4D QCD. The set of gluon mode functions {fG(n)
}

obeys the following generalized orthonormal relation

� L

−L
dy

�
1 + rG (δ(y − L) + δ(y + L))

�
fG(m)

fG(n)
= δm,n, (2.20)

which determines the normalizations to have the following forms

N−2
G(n)

=






2rG +
1

C2
G(n)

�
πR

2
+

1

2mG(n)

sin(mG(n)
πR)

�
for n even

2rG +
1

S2
G(n)

�
πR

2
− 1

2mG(n)

sin(mG(n)
πR)

�
for n odd

. (2.21)
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 But KK mass’s dispersion relation is changed due to 
    brane-localized terms.
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CG(n)

for n even (even KK-parity)

− sin(mG(n)
y)

SG(n)

for n odd (odd KK-parity)

, (2.15)

where NG(n)
is a normalization factor. Hereafter, we use the following short-hand notations

CG(n)
= cos

�
mG(n)

πR

2

�
, SG(n)

= sin

�
mG(n)

πR

2

�
, TG(n)

= tan

�
mG(n)

πR

2

�
. (2.16)

In the unitary gauge, we choose the Neumann-type boundary conditions for gluon field

resulting in

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν + ∂yG
aµ
����

y=L
= 0, (2.17)

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν − ∂yG
aµ
����

y=−L
= 0. (2.18)

Using equation (2.15), we obtain the following set of transcendental equations that determine

the mass of the KK-gluons

rGmG(n)
=

�
−TG(n)

for n even

1/TG(n)
for n odd

. (2.19)

We can find a massless zero mode in the spectrum regardless of the value of rG, which

corresponds to the gluon of the ordinary 4D QCD. The set of gluon mode functions {fG(n)
}

obeys the following generalized orthonormal relation

� L

−L
dy

�
1 + rG (δ(y − L) + δ(y + L))

�
fG(m)

fG(n)
= δm,n, (2.20)

which determines the normalizations to have the following forms

N−2
G(n)

=






2rG +
1

C2
G(n)

�
πR

2
+

1

2mG(n)

sin(mG(n)
πR)

�
for n even

2rG +
1

S2
G(n)

�
πR

2
− 1

2mG(n)

sin(mG(n)
πR)

�
for n odd

. (2.21)
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where mG(n)
is the physical mass of the n-th KK gluon’s physical mass. Using equations

(2.9), (2.12), (2.13), we obtain the equation for the mode function fG(n)
of the n-th level

gluon as

∂2fG(n)
(y)

∂y2
= −m2

G(n)
fG(n)

(y). (2.14)

We should take the values of Ga
µ’s orbifold conditions as even at the both boundaries, then

the form of the basic solution is as follows:

fG(n)
(y) = NG(n)

×






cos(mG(n)
y)

CG(n)

for n even (even KK-parity)

− sin(mG(n)
y)

SG(n)

for n odd (odd KK-parity)

, (2.15)

where NG(n)
is a normalization factor. Hereafter, we use the following short-hand notations

CG(n)
= cos

�
mG(n)

πR

2

�
, SG(n)

= sin

�
mG(n)

πR

2

�
, TG(n)

= tan

�
mG(n)

πR

2

�
. (2.16)

In the unitary gauge, we choose the Neumann-type boundary conditions for gluon field

resulting in

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν + ∂yG
aµ
����

y=L
= 0, (2.17)

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν − ∂yG
aµ
����

y=−L
= 0. (2.18)

Using equation (2.15), we obtain the following set of transcendental equations that determine

the mass of the KK-gluons

rGmG(n)
=

�
−TG(n)

for n even

1/TG(n)
for n odd

. (2.19)

We can find a massless zero mode in the spectrum regardless of the value of rG, which

corresponds to the gluon of the ordinary 4D QCD. The set of gluon mode functions {fG(n)
}

obeys the following generalized orthonormal relation

� L

−L
dy

�
1 + rG (δ(y − L) + δ(y + L))

�
fG(m)

fG(n)
= δm,n, (2.20)

which determines the normalizations to have the following forms

N−2
G(n)

=






2rG +
1

C2
G(n)

�
πR

2
+

1

2mG(n)

sin(mG(n)
πR)

�
for n even

2rG +
1

S2
G(n)

�
πR

2
− 1

2mG(n)

sin(mG(n)
πR)

�
for n odd

. (2.21)
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where mG(n)
is the physical mass of the n-th KK gluon’s physical mass. Using equations

(2.9), (2.12), (2.13), we obtain the equation for the mode function fG(n)
of the n-th level

gluon as

∂2fG(n)
(y)

∂y2
= −m2

G(n)
fG(n)

(y). (2.14)

We should take the values of Ga
µ’s orbifold conditions as even at the both boundaries, then

the form of the basic solution is as follows:

fG(n)
(y) = NG(n)

×






cos(mG(n)
y)

CG(n)

for n even (even KK-parity)

− sin(mG(n)
y)

SG(n)

for n odd (odd KK-parity)

, (2.15)

where NG(n)
is a normalization factor. Hereafter, we use the following short-hand notations

CG(n)
= cos

�
mG(n)

πR

2

�
, SG(n)

= sin

�
mG(n)

πR

2

�
, TG(n)

= tan

�
mG(n)

πR

2

�
. (2.16)

In the unitary gauge, we choose the Neumann-type boundary conditions for gluon field

resulting in

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν + ∂yG
aµ
����

y=L
= 0, (2.17)

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν − ∂yG
aµ
����

y=−L
= 0. (2.18)

Using equation (2.15), we obtain the following set of transcendental equations that determine

the mass of the KK-gluons

rGmG(n)
=

�
−TG(n)

for n even

1/TG(n)
for n odd

. (2.19)

We can find a massless zero mode in the spectrum regardless of the value of rG, which

corresponds to the gluon of the ordinary 4D QCD. The set of gluon mode functions {fG(n)
}

obeys the following generalized orthonormal relation

� L

−L
dy

�
1 + rG (δ(y − L) + δ(y + L))

�
fG(m)

fG(n)
= δm,n, (2.20)

which determines the normalizations to have the following forms

N−2
G(n)

=






2rG +
1

C2
G(n)

�
πR

2
+

1

2mG(n)

sin(mG(n)
πR)

�
for n even

2rG +
1

S2
G(n)

�
πR

2
− 1

2mG(n)

sin(mG(n)
πR)

�
for n odd

. (2.21)
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 Bulk EOM of n-th mode is the same with the mUED.
where mG(n)

is the physical mass of the n-th KK gluon’s physical mass. Using equations

(2.9), (2.12), (2.13), we obtain the equation for the mode function fG(n)
of the n-th level

gluon as

∂2fG(n)
(y)

∂y2
= −m2

G(n)
fG(n)

(y). (2.14)

We should take the values of Ga
µ’s orbifold conditions as even at the both boundaries, then

the form of the basic solution is as follows:

fG(n)
(y) = NG(n)

×






cos(mG(n)
y)

CG(n)

for n even (even KK-parity)

− sin(mG(n)
y)

SG(n)

for n odd (odd KK-parity)

, (2.15)

where NG(n)
is a normalization factor. Hereafter, we use the following short-hand notations

CG(n)
= cos

�
mG(n)

πR

2

�
, SG(n)

= sin

�
mG(n)

πR

2

�
, TG(n)

= tan

�
mG(n)

πR

2

�
. (2.16)

In the unitary gauge, we choose the Neumann-type boundary conditions for gluon field

resulting in

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν + ∂yG
aµ
����

y=L
= 0, (2.17)

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν − ∂yG
aµ
����

y=−L
= 0. (2.18)

Using equation (2.15), we obtain the following set of transcendental equations that determine

the mass of the KK-gluons

rGmG(n)
=

�
−TG(n)

for n even

1/TG(n)
for n odd

. (2.19)

We can find a massless zero mode in the spectrum regardless of the value of rG, which

corresponds to the gluon of the ordinary 4D QCD. The set of gluon mode functions {fG(n)
}

obeys the following generalized orthonormal relation

� L

−L
dy

�
1 + rG (δ(y − L) + δ(y + L))

�
fG(m)

fG(n)
= δm,n, (2.20)

which determines the normalizations to have the following forms

N−2
G(n)

=






2rG +
1

C2
G(n)

�
πR

2
+

1

2mG(n)

sin(mG(n)
πR)

�
for n even

2rG +
1

S2
G(n)

�
πR

2
− 1

2mG(n)

sin(mG(n)
πR)

�
for n odd

. (2.21)
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 But KK mass’s dispersion relation is changed due to 
    brane-localized terms.

where mG(n)
is the physical mass of the n-th KK gluon’s physical mass. Using equations

(2.9), (2.12), (2.13), we obtain the equation for the mode function fG(n)
of the n-th level

gluon as

∂2fG(n)
(y)

∂y2
= −m2

G(n)
fG(n)

(y). (2.14)

We should take the values of Ga
µ’s orbifold conditions as even at the both boundaries, then

the form of the basic solution is as follows:

fG(n)
(y) = NG(n)

×






cos(mG(n)
y)

CG(n)

for n even (even KK-parity)

− sin(mG(n)
y)

SG(n)

for n odd (odd KK-parity)

, (2.15)

where NG(n)
is a normalization factor. Hereafter, we use the following short-hand notations

CG(n)
= cos

�
mG(n)

πR

2

�
, SG(n)

= sin

�
mG(n)

πR

2

�
, TG(n)

= tan

�
mG(n)

πR

2

�
. (2.16)

In the unitary gauge, we choose the Neumann-type boundary conditions for gluon field

resulting in

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν + ∂yG
aµ
����

y=L
= 0, (2.17)

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν − ∂yG
aµ
����

y=−L
= 0. (2.18)

Using equation (2.15), we obtain the following set of transcendental equations that determine

the mass of the KK-gluons

rGmG(n)
=

�
−TG(n)

for n even

1/TG(n)
for n odd

. (2.19)

We can find a massless zero mode in the spectrum regardless of the value of rG, which

corresponds to the gluon of the ordinary 4D QCD. The set of gluon mode functions {fG(n)
}

obeys the following generalized orthonormal relation

� L

−L
dy

�
1 + rG (δ(y − L) + δ(y + L))

�
fG(m)

fG(n)
= δm,n, (2.20)

which determines the normalizations to have the following forms

N−2
G(n)

=






2rG +
1

C2
G(n)

�
πR

2
+

1

2mG(n)

sin(mG(n)
πR)

�
for n even

2rG +
1

S2
G(n)

�
πR

2
− 1

2mG(n)

sin(mG(n)
πR)

�
for n odd

. (2.21)
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where mG(n)
is the physical mass of the n-th KK gluon’s physical mass. Using equations

(2.9), (2.12), (2.13), we obtain the equation for the mode function fG(n)
of the n-th level

gluon as

∂2fG(n)
(y)

∂y2
= −m2

G(n)
fG(n)

(y). (2.14)

We should take the values of Ga
µ’s orbifold conditions as even at the both boundaries, then

the form of the basic solution is as follows:

fG(n)
(y) = NG(n)

×






cos(mG(n)
y)

CG(n)

for n even (even KK-parity)

− sin(mG(n)
y)

SG(n)

for n odd (odd KK-parity)

, (2.15)

where NG(n)
is a normalization factor. Hereafter, we use the following short-hand notations

CG(n)
= cos

�
mG(n)

πR

2

�
, SG(n)

= sin

�
mG(n)

πR

2

�
, TG(n)

= tan

�
mG(n)

πR

2

�
. (2.16)

In the unitary gauge, we choose the Neumann-type boundary conditions for gluon field

resulting in

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν + ∂yG
aµ
����

y=L
= 0, (2.17)

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν − ∂yG
aµ
����

y=−L
= 0. (2.18)

Using equation (2.15), we obtain the following set of transcendental equations that determine

the mass of the KK-gluons

rGmG(n)
=

�
−TG(n)

for n even

1/TG(n)
for n odd

. (2.19)

We can find a massless zero mode in the spectrum regardless of the value of rG, which

corresponds to the gluon of the ordinary 4D QCD. The set of gluon mode functions {fG(n)
}

obeys the following generalized orthonormal relation

� L

−L
dy

�
1 + rG (δ(y − L) + δ(y + L))

�
fG(m)

fG(n)
= δm,n, (2.20)

which determines the normalizations to have the following forms

N−2
G(n)

=






2rG +
1

C2
G(n)

�
πR

2
+

1

2mG(n)

sin(mG(n)
πR)

�
for n even

2rG +
1

S2
G(n)

�
πR

2
− 1

2mG(n)

sin(mG(n)
πR)

�
for n odd

. (2.21)

– 8 –

where mG(n)
is the physical mass of the n-th KK gluon’s physical mass. Using equations

(2.9), (2.12), (2.13), we obtain the equation for the mode function fG(n)
of the n-th level

gluon as

∂2fG(n)
(y)

∂y2
= −m2

G(n)
fG(n)

(y). (2.14)

We should take the values of Ga
µ’s orbifold conditions as even at the both boundaries, then

the form of the basic solution is as follows:

fG(n)
(y) = NG(n)

×






cos(mG(n)
y)

CG(n)

for n even (even KK-parity)

− sin(mG(n)
y)

SG(n)

for n odd (odd KK-parity)

, (2.15)

where NG(n)
is a normalization factor. Hereafter, we use the following short-hand notations

CG(n)
= cos

�
mG(n)

πR

2

�
, SG(n)

= sin

�
mG(n)

πR

2

�
, TG(n)

= tan

�
mG(n)

πR

2

�
. (2.16)

In the unitary gauge, we choose the Neumann-type boundary conditions for gluon field

resulting in

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν + ∂yG
aµ
����

y=L
= 0, (2.17)

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν − ∂yG
aµ
����

y=−L
= 0. (2.18)

Using equation (2.15), we obtain the following set of transcendental equations that determine

the mass of the KK-gluons

rGmG(n)
=

�
−TG(n)

for n even

1/TG(n)
for n odd

. (2.19)

We can find a massless zero mode in the spectrum regardless of the value of rG, which

corresponds to the gluon of the ordinary 4D QCD. The set of gluon mode functions {fG(n)
}

obeys the following generalized orthonormal relation

� L

−L
dy

�
1 + rG (δ(y − L) + δ(y + L))

�
fG(m)

fG(n)
= δm,n, (2.20)

which determines the normalizations to have the following forms

N−2
G(n)

=






2rG +
1

C2
G(n)

�
πR

2
+

1

2mG(n)

sin(mG(n)
πR)

�
for n even

2rG +
1

S2
G(n)

�
πR

2
− 1

2mG(n)

sin(mG(n)
πR)

�
for n odd

. (2.21)
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�
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2
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�
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�

massless mode exists
irrespective of rG

value of KK mass
is changed



 A theoretical bound on rG:

Note that, in the presence of BLTs, these normalization-factors have rather nontrivial forms

when compared to the simple forms like 1√
πR

or 1√
2πR

as in the case of mUED. Especially,

the profile for the zero mode is normalized as

NG(0)
=

1√
2rG + πR

, (2.22)

which results in the following theoretical lower bound on rG in order to circumvent a tachyonic

zero mode:

rG > −πR

2
. (2.23)

We mention that the form in equation (2.22) can be obtained using l’Hôpital’s theorem from

equation (2.21) using only the information that mG(0)
= 0, irrespective of the value of rG. We

discuss this point in section 3. We can thus summarize the free part of (Sgluon + Sgluon,gf) |free
in the unitary gauge as

�
d4x

�
− 1

4
G(0)a

µν G(0)aµν +
∞�

n=1

�
−1

4
G(n)a

µν G(n)aµν +
1

2
m2

G(n)
G(n)a

µ G(n)aµ

��
. (2.24)

2.2 Quark free part in Squark

First, we consider the case of SU(2)W quark doublets for which the brane-localized inter-

actions for the 4D left-handed components are introduced. Here, Ψ represents the ‘up’ and

‘down’-type KK quark fields of the SU(2)W doublet, Ui, Di where ‘i’ stands for flavour. How-

ever, we do not distinguish between quark flavours because the structure of Squark in equation

(2.4) is flavour-blind. The free part of the action is shown as

�
d4x

� L

−L
dy

�
iΨΓM∂MΨ+ rQ

�
δ(y − L) + δ(y + L)

��
iΨγµ∂µPLΨ

��
, (2.25)

and the 4D left/right-handed modes are decomposed as

ΨL(x, y) = Ψ(0)
L (x)fΨ(0)L

(y) +
�

n>0:even

Ψ(n)
L (x)fΨ(n)L

(y) +
�

n>0:odd

Ψ(n)
L (x)fΨ(n)L

(y), (2.26)

ΨR(x, y) =
�

n>0:even

Ψ(n)
R (x)fΨ(n)R

(y) +
�

n>0:odd

Ψ(n)
R (x)fΨ(n)R

(y). (2.27)

Using 4D Dirac equation with Ψ(n)
L,R(x), we can derive the bulk EOMs for mode function

profiles of fΨ(n)L,R
using variational principle as

MΨ(n)
fΨ(n)L

�
1 + rQ(δ(y − L) + δ(y + L))

�
−

∂fΨ(n)R

∂y
= 0, (2.28)

MΨ(n)
fΨ(n)R

+
∂fΨ(n)L

∂y
= 0, (2.29)
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Note that, in the presence of BLTs, these normalization-factors have rather nontrivial forms

when compared to the simple forms like 1√
πR

or 1√
2πR

as in the case of mUED. Especially,

the profile for the zero mode is normalized as

NG(0)
=

1√
2rG + πR

, (2.22)

which results in the following theoretical lower bound on rG in order to circumvent a tachyonic

zero mode:

rG > −πR

2
. (2.23)

We mention that the form in equation (2.22) can be obtained using l’Hôpital’s theorem from

equation (2.21) using only the information that mG(0)
= 0, irrespective of the value of rG. We

discuss this point in section 3. We can thus summarize the free part of (Sgluon + Sgluon,gf) |free
in the unitary gauge as

�
d4x

�
− 1

4
G(0)a

µν G(0)aµν +
∞�

n=1

�
−1

4
G(n)a

µν G(n)aµν +
1

2
m2

G(n)
G(n)a

µ G(n)aµ

��
. (2.24)

2.2 Quark free part in Squark

First, we consider the case of SU(2)W quark doublets for which the brane-localized inter-

actions for the 4D left-handed components are introduced. Here, Ψ represents the ‘up’ and

‘down’-type KK quark fields of the SU(2)W doublet, Ui, Di where ‘i’ stands for flavour. How-

ever, we do not distinguish between quark flavours because the structure of Squark in equation

(2.4) is flavour-blind. The free part of the action is shown as

�
d4x

� L

−L
dy

�
iΨΓM∂MΨ+ rQ

�
δ(y − L) + δ(y + L)

��
iΨγµ∂µPLΨ

��
, (2.25)

and the 4D left/right-handed modes are decomposed as

ΨL(x, y) = Ψ(0)
L (x)fΨ(0)L

(y) +
�

n>0:even

Ψ(n)
L (x)fΨ(n)L

(y) +
�

n>0:odd

Ψ(n)
L (x)fΨ(n)L

(y), (2.26)

ΨR(x, y) =
�

n>0:even

Ψ(n)
R (x)fΨ(n)R

(y) +
�

n>0:odd

Ψ(n)
R (x)fΨ(n)R

(y). (2.27)

Using 4D Dirac equation with Ψ(n)
L,R(x), we can derive the bulk EOMs for mode function

profiles of fΨ(n)L,R
using variational principle as

MΨ(n)
fΨ(n)L

�
1 + rQ(δ(y − L) + δ(y + L))

�
−

∂fΨ(n)R

∂y
= 0, (2.28)

MΨ(n)
fΨ(n)R

+
∂fΨ(n)L

∂y
= 0, (2.29)
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No tachyonic zero mode



 KK mode functions obey the relation:

where mG(n)
is the physical mass of the n-th KK gluon’s physical mass. Using equations

(2.9), (2.12), (2.13), we obtain the equation for the mode function fG(n)
of the n-th level

gluon as

∂2fG(n)
(y)

∂y2
= −m2

G(n)
fG(n)

(y). (2.14)

We should take the values of Ga
µ’s orbifold conditions as even at the both boundaries, then

the form of the basic solution is as follows:

fG(n)
(y) = NG(n)

×






cos(mG(n)
y)

CG(n)

for n even (even KK-parity)

− sin(mG(n)
y)

SG(n)

for n odd (odd KK-parity)

, (2.15)

where NG(n)
is a normalization factor. Hereafter, we use the following short-hand notations

CG(n)
= cos

�
mG(n)

πR

2

�
, SG(n)

= sin

�
mG(n)

πR

2

�
, TG(n)

= tan

�
mG(n)

πR

2

�
. (2.16)

In the unitary gauge, we choose the Neumann-type boundary conditions for gluon field

resulting in

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν + ∂yG
aµ
����

y=L
= 0, (2.17)

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν − ∂yG
aµ
����

y=−L
= 0. (2.18)

Using equation (2.15), we obtain the following set of transcendental equations that determine

the mass of the KK-gluons

rGmG(n)
=

�
−TG(n)

for n even

1/TG(n)
for n odd

. (2.19)

We can find a massless zero mode in the spectrum regardless of the value of rG, which

corresponds to the gluon of the ordinary 4D QCD. The set of gluon mode functions {fG(n)
}

obeys the following generalized orthonormal relation

� L

−L
dy

�
1 + rG (δ(y − L) + δ(y + L))

�
fG(m)

fG(n)
= δm,n, (2.20)

which determines the normalizations to have the following forms

N−2
G(n)

=






2rG +
1

C2
G(n)

�
πR

2
+

1

2mG(n)

sin(mG(n)
πR)

�
for n even

2rG +
1

S2
G(n)

�
πR

2
− 1

2mG(n)

sin(mG(n)
πR)

�
for n odd

. (2.21)
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 A theoretical bound on rG:

Note that, in the presence of BLTs, these normalization-factors have rather nontrivial forms

when compared to the simple forms like 1√
πR

or 1√
2πR

as in the case of mUED. Especially,

the profile for the zero mode is normalized as

NG(0)
=

1√
2rG + πR

, (2.22)

which results in the following theoretical lower bound on rG in order to circumvent a tachyonic

zero mode:

rG > −πR

2
. (2.23)

We mention that the form in equation (2.22) can be obtained using l’Hôpital’s theorem from

equation (2.21) using only the information that mG(0)
= 0, irrespective of the value of rG. We

discuss this point in section 3. We can thus summarize the free part of (Sgluon + Sgluon,gf) |free
in the unitary gauge as

�
d4x

�
− 1

4
G(0)a

µν G(0)aµν +
∞�

n=1

�
−1

4
G(n)a

µν G(n)aµν +
1

2
m2

G(n)
G(n)a

µ G(n)aµ

��
. (2.24)

2.2 Quark free part in Squark

First, we consider the case of SU(2)W quark doublets for which the brane-localized inter-

actions for the 4D left-handed components are introduced. Here, Ψ represents the ‘up’ and

‘down’-type KK quark fields of the SU(2)W doublet, Ui, Di where ‘i’ stands for flavour. How-

ever, we do not distinguish between quark flavours because the structure of Squark in equation

(2.4) is flavour-blind. The free part of the action is shown as

�
d4x

� L

−L
dy

�
iΨΓM∂MΨ+ rQ

�
δ(y − L) + δ(y + L)

��
iΨγµ∂µPLΨ

��
, (2.25)

and the 4D left/right-handed modes are decomposed as

ΨL(x, y) = Ψ(0)
L (x)fΨ(0)L

(y) +
�

n>0:even

Ψ(n)
L (x)fΨ(n)L

(y) +
�

n>0:odd

Ψ(n)
L (x)fΨ(n)L

(y), (2.26)

ΨR(x, y) =
�

n>0:even

Ψ(n)
R (x)fΨ(n)R

(y) +
�

n>0:odd

Ψ(n)
R (x)fΨ(n)R

(y). (2.27)

Using 4D Dirac equation with Ψ(n)
L,R(x), we can derive the bulk EOMs for mode function

profiles of fΨ(n)L,R
using variational principle as

MΨ(n)
fΨ(n)L

�
1 + rQ(δ(y − L) + δ(y + L))

�
−

∂fΨ(n)R

∂y
= 0, (2.28)

MΨ(n)
fΨ(n)R

+
∂fΨ(n)L

∂y
= 0, (2.29)
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Note that, in the presence of BLTs, these normalization-factors have rather nontrivial forms

when compared to the simple forms like 1√
πR

or 1√
2πR

as in the case of mUED. Especially,

the profile for the zero mode is normalized as

NG(0)
=

1√
2rG + πR

, (2.22)

which results in the following theoretical lower bound on rG in order to circumvent a tachyonic

zero mode:

rG > −πR

2
. (2.23)

We mention that the form in equation (2.22) can be obtained using l’Hôpital’s theorem from

equation (2.21) using only the information that mG(0)
= 0, irrespective of the value of rG. We

discuss this point in section 3. We can thus summarize the free part of (Sgluon + Sgluon,gf) |free
in the unitary gauge as

�
d4x

�
− 1

4
G(0)a

µν G(0)aµν +
∞�

n=1

�
−1

4
G(n)a

µν G(n)aµν +
1

2
m2

G(n)
G(n)a

µ G(n)aµ

��
. (2.24)

2.2 Quark free part in Squark

First, we consider the case of SU(2)W quark doublets for which the brane-localized inter-

actions for the 4D left-handed components are introduced. Here, Ψ represents the ‘up’ and

‘down’-type KK quark fields of the SU(2)W doublet, Ui, Di where ‘i’ stands for flavour. How-

ever, we do not distinguish between quark flavours because the structure of Squark in equation

(2.4) is flavour-blind. The free part of the action is shown as

�
d4x

� L

−L
dy

�
iΨΓM∂MΨ+ rQ

�
δ(y − L) + δ(y + L)

��
iΨγµ∂µPLΨ

��
, (2.25)

and the 4D left/right-handed modes are decomposed as

ΨL(x, y) = Ψ(0)
L (x)fΨ(0)L

(y) +
�

n>0:even

Ψ(n)
L (x)fΨ(n)L

(y) +
�

n>0:odd

Ψ(n)
L (x)fΨ(n)L

(y), (2.26)

ΨR(x, y) =
�

n>0:even

Ψ(n)
R (x)fΨ(n)R

(y) +
�

n>0:odd

Ψ(n)
R (x)fΨ(n)R

(y). (2.27)

Using 4D Dirac equation with Ψ(n)
L,R(x), we can derive the bulk EOMs for mode function

profiles of fΨ(n)L,R
using variational principle as

MΨ(n)
fΨ(n)L

�
1 + rQ(δ(y − L) + δ(y + L))

�
−

∂fΨ(n)R

∂y
= 0, (2.28)

MΨ(n)
fΨ(n)R

+
∂fΨ(n)L

∂y
= 0, (2.29)
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No tachyonic zero mode

level.

The expression for the 5D action of the gluon field in equation (2.2) leads to the following

form of the effective 4D action that involves gluon-excitations up to the first KK level:

Sgluon =

�
d4x

�
− 1

2
g4sf

abc
� �

∂µG
a(0)
ν − ∂νG

a(0)
µ

�
Gb(0)µGc(0)ν

+

�
∂µG

a(1)
ν − ∂νG

a(1)
µ

�
Gb(1)µGc(0)ν

+

�
∂µG

a(1)
ν − ∂νG

a(1)
µ

�
Gb(0)µGc(1)ν

+

�
∂µG

a(0)
ν − ∂νG

a(0)
µ

�
Gb(1)µGc(1)ν

�

− 1

4
g24sf

abcfab�c�
�
Gb(0)

µ Gc(0)
ν Gb�(0)µGc�(0)ν

+Gb(1)
µ Gc(1)

ν Gb�(0)µGc�(0)ν

+Gb(1)
µ Gc(0)

ν Gb�(1)µGc�(0)ν
+Gb(1)

µ Gc(0)
ν Gb�(0)µGc�(1)ν

+Gb(0)
µ Gc(1)

ν Gb�(1)µGc�(0)ν

+Gb(0)
µ Gc(1)

ν Gb�(0)µGc�(1)ν
+Gb(0)

µ Gc(0)
ν Gb�(1)µGc�(1)ν

+ (g�G1G1G1G1
)Gb(1)

µ Gc(1)
ν Gb�(1)µGc�(1)ν

��
, (3.3)

where the 4D QCD coupling g4s is defined as

g4s ≡ NG(0)
g5s =

g5s√
2rG + πR

. (3.4)

A nontrivial vertex factor g�G1G1G1G1
only appears in the G(1)

µ ’s quartic interaction as

g�G1G1G1G1
≡ 1

N2
G(0)

� L

−L
dy

�
1 + rG (δ(y − L) + δ(y + L))

�
f4
G(1)

=
1

8S4
G(1)

2rG + πR
�
2rG +

1
S2
G(1)

�
πR
2 − 1

2mG(1)
sin

�
mG(1)

πR
���2

×
�
3πR− 4

mG(1)

sin

�
mG(1)

πR
�

+
1

2mG(1)

sin

�
2mG(1)

πR
�
+ 2rG

�
3− 4 cos

�
mG(1)

πR
�
+ cos

�
2mG(1)

πR
���

,

(3.5)

whose property is shown in Fig. 6.

We mention that g�G1G1G1G1
is a dimensionless quantity that can be expressed in terms of

the dimensionless quantities like r�G and m�
G(1)

. The mUED limit of the coupling is recovered

for r�G = 0 where the value of the scaled coupling is 1.5. All other self-coupling terms

involving level ‘1’ KK gluon and SM gluon (both 3-point and 4-point ones) remain the same

as in mUED. Note, however, that the deviation (from mUED) that occurs in the self-coupling

involving four level ‘1’ KK gluons is rather inconsequential for the LHC phenomenology.

Next, we turn to the case of the interaction involving a level ‘1’ KK gluon and a level

‘1’ KK quark along with an (level ‘0’) SM quark. Here we comment on the forms of the
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 KK mode functions obey the relation:

where mG(n)
is the physical mass of the n-th KK gluon’s physical mass. Using equations

(2.9), (2.12), (2.13), we obtain the equation for the mode function fG(n)
of the n-th level

gluon as

∂2fG(n)
(y)

∂y2
= −m2

G(n)
fG(n)

(y). (2.14)

We should take the values of Ga
µ’s orbifold conditions as even at the both boundaries, then

the form of the basic solution is as follows:

fG(n)
(y) = NG(n)

×






cos(mG(n)
y)

CG(n)

for n even (even KK-parity)

− sin(mG(n)
y)

SG(n)

for n odd (odd KK-parity)

, (2.15)

where NG(n)
is a normalization factor. Hereafter, we use the following short-hand notations

CG(n)
= cos

�
mG(n)

πR

2

�
, SG(n)

= sin

�
mG(n)

πR

2

�
, TG(n)

= tan

�
mG(n)

πR

2

�
. (2.16)

In the unitary gauge, we choose the Neumann-type boundary conditions for gluon field

resulting in

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν + ∂yG
aµ
����

y=L
= 0, (2.17)

�
rG

�
ηµν∂2 − ∂µ∂ν

�
Ga

ν − ∂yG
aµ
����

y=−L
= 0. (2.18)

Using equation (2.15), we obtain the following set of transcendental equations that determine

the mass of the KK-gluons

rGmG(n)
=

�
−TG(n)

for n even

1/TG(n)
for n odd

. (2.19)

We can find a massless zero mode in the spectrum regardless of the value of rG, which

corresponds to the gluon of the ordinary 4D QCD. The set of gluon mode functions {fG(n)
}

obeys the following generalized orthonormal relation

� L

−L
dy

�
1 + rG (δ(y − L) + δ(y + L))

�
fG(m)

fG(n)
= δm,n, (2.20)

which determines the normalizations to have the following forms

N−2
G(n)

=






2rG +
1

C2
G(n)

�
πR

2
+

1

2mG(n)

sin(mG(n)
πR)

�
for n even

2rG +
1

S2
G(n)

�
πR

2
− 1

2mG(n)

sin(mG(n)
πR)

�
for n odd

. (2.21)
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 A theoretical bound on rG:

Note that, in the presence of BLTs, these normalization-factors have rather nontrivial forms

when compared to the simple forms like 1√
πR

or 1√
2πR

as in the case of mUED. Especially,

the profile for the zero mode is normalized as

NG(0)
=

1√
2rG + πR

, (2.22)

which results in the following theoretical lower bound on rG in order to circumvent a tachyonic

zero mode:

rG > −πR

2
. (2.23)

We mention that the form in equation (2.22) can be obtained using l’Hôpital’s theorem from

equation (2.21) using only the information that mG(0)
= 0, irrespective of the value of rG. We

discuss this point in section 3. We can thus summarize the free part of (Sgluon + Sgluon,gf) |free
in the unitary gauge as

�
d4x

�
− 1

4
G(0)a

µν G(0)aµν +
∞�

n=1

�
−1

4
G(n)a

µν G(n)aµν +
1

2
m2

G(n)
G(n)a

µ G(n)aµ

��
. (2.24)

2.2 Quark free part in Squark

First, we consider the case of SU(2)W quark doublets for which the brane-localized inter-

actions for the 4D left-handed components are introduced. Here, Ψ represents the ‘up’ and

‘down’-type KK quark fields of the SU(2)W doublet, Ui, Di where ‘i’ stands for flavour. How-

ever, we do not distinguish between quark flavours because the structure of Squark in equation

(2.4) is flavour-blind. The free part of the action is shown as

�
d4x

� L

−L
dy

�
iΨΓM∂MΨ+ rQ

�
δ(y − L) + δ(y + L)

��
iΨγµ∂µPLΨ

��
, (2.25)

and the 4D left/right-handed modes are decomposed as

ΨL(x, y) = Ψ(0)
L (x)fΨ(0)L

(y) +
�

n>0:even

Ψ(n)
L (x)fΨ(n)L

(y) +
�

n>0:odd

Ψ(n)
L (x)fΨ(n)L

(y), (2.26)

ΨR(x, y) =
�

n>0:even

Ψ(n)
R (x)fΨ(n)R

(y) +
�

n>0:odd

Ψ(n)
R (x)fΨ(n)R

(y). (2.27)

Using 4D Dirac equation with Ψ(n)
L,R(x), we can derive the bulk EOMs for mode function

profiles of fΨ(n)L,R
using variational principle as

MΨ(n)
fΨ(n)L

�
1 + rQ(δ(y − L) + δ(y + L))

�
−

∂fΨ(n)R

∂y
= 0, (2.28)

MΨ(n)
fΨ(n)R

+
∂fΨ(n)L

∂y
= 0, (2.29)
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Note that, in the presence of BLTs, these normalization-factors have rather nontrivial forms

when compared to the simple forms like 1√
πR

or 1√
2πR

as in the case of mUED. Especially,

the profile for the zero mode is normalized as

NG(0)
=

1√
2rG + πR

, (2.22)

which results in the following theoretical lower bound on rG in order to circumvent a tachyonic

zero mode:

rG > −πR

2
. (2.23)

We mention that the form in equation (2.22) can be obtained using l’Hôpital’s theorem from

equation (2.21) using only the information that mG(0)
= 0, irrespective of the value of rG. We

discuss this point in section 3. We can thus summarize the free part of (Sgluon + Sgluon,gf) |free
in the unitary gauge as

�
d4x

�
− 1

4
G(0)a

µν G(0)aµν +
∞�

n=1

�
−1

4
G(n)a

µν G(n)aµν +
1

2
m2

G(n)
G(n)a

µ G(n)aµ

��
. (2.24)

2.2 Quark free part in Squark

First, we consider the case of SU(2)W quark doublets for which the brane-localized inter-

actions for the 4D left-handed components are introduced. Here, Ψ represents the ‘up’ and

‘down’-type KK quark fields of the SU(2)W doublet, Ui, Di where ‘i’ stands for flavour. How-

ever, we do not distinguish between quark flavours because the structure of Squark in equation

(2.4) is flavour-blind. The free part of the action is shown as

�
d4x

� L

−L
dy

�
iΨΓM∂MΨ+ rQ

�
δ(y − L) + δ(y + L)

��
iΨγµ∂µPLΨ

��
, (2.25)

and the 4D left/right-handed modes are decomposed as

ΨL(x, y) = Ψ(0)
L (x)fΨ(0)L

(y) +
�

n>0:even

Ψ(n)
L (x)fΨ(n)L

(y) +
�

n>0:odd

Ψ(n)
L (x)fΨ(n)L

(y), (2.26)

ΨR(x, y) =
�

n>0:even

Ψ(n)
R (x)fΨ(n)R

(y) +
�

n>0:odd

Ψ(n)
R (x)fΨ(n)R

(y). (2.27)

Using 4D Dirac equation with Ψ(n)
L,R(x), we can derive the bulk EOMs for mode function

profiles of fΨ(n)L,R
using variational principle as

MΨ(n)
fΨ(n)L

�
1 + rQ(δ(y − L) + δ(y + L))

�
−

∂fΨ(n)R

∂y
= 0, (2.28)

MΨ(n)
fΨ(n)R

+
∂fΨ(n)L

∂y
= 0, (2.29)
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No tachyonic zero mode

Appendix

A Feynman rules

We write down the concrete forms of Feynman rules, where we take all the directions of 4D momenta as
incoming.

Ga(0)
µ (k)

Gc(0)
ρ (q)

Gb(0)
ν (p)

= g4sf
abc

�
ηµν(k − p)ρ + ηνρ(p− q)µ + ηρµ(q − k)ν

�
, (76)

Gb(0)
ν

Ga(0)
µ

Gd(0)
σ

Gc(0)
ρ

= −ig24s

�
fabef cde (ηµρηνσ − ηµσηνρ) + facef bde (ηµνηρσ − ηµσηνρ)

+ fadef bce (ηµνηρσ − ηµρηνσ)
�
, (77)

Ga(0)
µ (k)

Gc(1)
ρ (q)

Gb(1)
ν (p)

= g4sf
abc

�
ηµν(k − p)ρ + ηνρ(p− q)µ + ηρµ(q − k)ν

�
, (78)

Gb(0)
ν

Ga(0)
µ

Gd(1)
σ

Gc(1)
ρ

= −ig24s

�
fabef cde (ηµρηνσ − ηµσηνρ) + facef bde (ηµνηρσ − ηµσηνρ)

+ fadef bce (ηµνηρσ − ηµρηνσ)
�
, (79)

Gb(1)
ν

Ga(1)
µ

Gd(1)
σ

Gc(1)
ρ

= −ig24s(g
�
G1G1G1G1

)
�
fabef cde (ηµρηνσ − ηµσηνρ) + facef bde (ηµνηρσ − ηµσηνρ)

+ fadef bce (ηµνηρσ − ηµρηνσ)
�
, (80)

13

= −ig24s(g
�
G1G1G1G1

)

�
fabef cde

(ηµρηνσ − ηµσηνρ)

+ facef bde
(ηµνηρσ − ηµσηνρ) + fadef bce

(ηµνηρσ − ηµρηνσ)
�
,

(A.5)

Ga(0)
µ

q(0)i

q(0)i

= Ga(0)
µ

Q(1)
i1

Q(1)
i2

= Ga(0)
µ

Q(1)
i2

Q(1)
i2

= ig4sT
aγµ, (81)

Ga(1)
µ

q(0)i

Q(1)
i2

= Ga(1)
µ

Q(1)
i2

q(0)i

= ig4s(g
�
G1Q1Q0

)T aγµ
�
v(1)qiR(21)PR + v(1)qiL(11)

PL

�
, (82)

Ga(1)
µ

q(0)i

Q(1)
i1

= Ga(1)
µ

Q(1)
i1

q(0)i

= ig4s(g
�
G1Q1Q0

)T aγµ
�
v(1)qiR(22)PR + v(1)qiL(12)

PL

�
. (83)
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Appendix

A Feynman rules

We write down the concrete forms of Feynman rules where we take all the directions of 4D

momenta as incoming. Please refer to section 3 for details of our conventions.

Appendix
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incoming.
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momenta as incoming. Please refer to section 3 for details of our conventions.
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No difference

level.

The expression for the 5D action of the gluon field in equation (2.2) leads to the following

form of the effective 4D action that involves gluon-excitations up to the first KK level:
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ν Gb�(1)µGc�(1)ν

��
, (3.3)

where the 4D QCD coupling g4s is defined as

g4s ≡ NG(0)
g5s =

g5s√
2rG + πR

. (3.4)

A nontrivial vertex factor g�G1G1G1G1
only appears in the G(1)

µ ’s quartic interaction as

g�G1G1G1G1
≡ 1

N2
G(0)

� L

−L
dy

�
1 + rG (δ(y − L) + δ(y + L))

�
f4
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1

8S4
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2rG + πR
�
2rG +

1
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�
πR
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2mG(1)
sin

�
mG(1)

πR
���2

×
�
3πR− 4

mG(1)

sin

�
mG(1)

πR
�

+
1

2mG(1)

sin

�
2mG(1)

πR
�
+ 2rG

�
3− 4 cos

�
mG(1)

πR
�
+ cos

�
2mG(1)

πR
���

,

(3.5)

whose property is shown in Fig. 6.

We mention that g�G1G1G1G1
is a dimensionless quantity that can be expressed in terms of

the dimensionless quantities like r�G and m�
G(1)

. The mUED limit of the coupling is recovered

for r�G = 0 where the value of the scaled coupling is 1.5. All other self-coupling terms

involving level ‘1’ KK gluon and SM gluon (both 3-point and 4-point ones) remain the same

as in mUED. Note, however, that the deviation (from mUED) that occurs in the self-coupling

involving four level ‘1’ KK gluons is rather inconsequential for the LHC phenomenology.

Next, we turn to the case of the interaction involving a level ‘1’ KK gluon and a level

‘1’ KK quark along with an (level ‘0’) SM quark. Here we comment on the forms of the
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Fermion part

Squark =

�
d4x

� L

−L
dy

3�

i=1

�
iU iΓ

MDMUi + rQ
�
δ(y − L) + δ(y + L)

��
iU iγ

µDµPLUi

�

+ iDiΓ
MDMDi + rQ

�
δ(y − L) + δ(y + L)

��
iDiγ

µDµPLDi

�

+ iuiΓ
MDMui + rQ

�
δ(y − L) + δ(y + L)

��
iuiγ

µDµPRui
�

+ idiΓ
MDMdi + rQ

�
δ(y − L) + δ(y + L)

��
idiγ

µDµPRdi
��

,

(2.4)

SYukawa =

�
d4x

� L

−L
dy

3�

i,j=1

�
−
�
1 + rY (δ(y − L) + δ(y + L))

�

×
�
Y u
ijQiujΦ̃+ Y d

ijQidjΦ+ h.c.

��
. (2.5)

In the above set of expressions, y represents the compact extra spatial direction; M,N run

over 0, 1, 2, 3, y while µ, ν run over 0, 1, 2, 3. Representations of the 5D Minkowski metric

and the Clifford algebra are chosen as ηMN = diag(1,−1,−1,−1,−1) and ΓM
= {γµ, iγ5},

respectively. The 4D chiral projectors for the right and the left-handed states have the usual

definition of PR,L =
1±γ5

2 . Ga
M , Ui, Di, ui, di,Φ correspond to the 5D gluon, the 5D up-

and down-type SU(2)W doublet quarks from the i-th generation, the same for the SU(2)W

singlet quarks, SU(2)W Higgs doublet, respectively. ‘a’ is the SU(3)C adjoint index. To fix

the gauge symmetry for the 5D gluon sector, we introduce the bulk and the boundary gauge

fixing parameters, ξG and ξG,b, respectively. Y u
ij and Y d

ij are the 5D Yukawa matrices. Φ̃

respects the condition Φ̃ = iσ2Φ∗
with σ2 being the conventional Pauli matrix. Concrete

forms of the 5D covariant derivative for the fermions (DM ) and that for the gluon field are

given by

DM = ∂M − ig5sG
a
MT a, (2.6)

Ga
MN = ∂MGa

N − ∂NGa
M + g5sf

abcGb
MGc

N , (2.7)

where g5s is the 5D strong (QCD) coupling, T a
is the SU(3)C generator from the fundamental

representation and fabc
is the SU(3)C group structure constant.

In this paper, we consider the so-called “downstairs” picture where we only focus on the

fundamental region of the Z2-orbifold extended over [−L,L] with L = πR/2, R being the

radius of the compact extra dimension [58]. The Z2 orbifolding leads to a discrete symmetry

in the extra-dimensional (y) coordinate that can be expressed as

y + L ∼ −(y + L) (2.8)

with two fixed points at y = ±L. The 5D covariant forms of the brane-localized terms in

equations (2.2), (2.4), (2.5) can be shown to have their 4D counterparts which do not break
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 Bulk terms are also the same with the mUED.

 We assume the coefficients take the same value rQ.

 Ui, Di: SU(2)W doublet (with left-handed zero mode)
 ui, di: SU(2)W singlet (with right-handed zero mode)

 The system is invariant under y -> -y.
   (KK-parity is conserved.)



 The situation is similar to the gluon case.

 For orbifold Z2 even modes:subsection. Those are as follows:

fQ(n)
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= fDi(n)L
= fui(n)R
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for n even
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,

(2.47)
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= NQ(n)
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for n even

cos(MQ(n)
y)

SQ(n)

for n odd

,

(2.48)

where Q stands for Ψ and ψ. Hereafter, we restrict ourselves to the first KK mode (un-

less otherwise indicated) and focus on the generic flavour ‘i’ with qi (Qi) representing the

corresponding SU(2)W singlet (doublet), respectively. After some calculations, we obtain

−
�
Yq
ii

v√
2

��
d4x

�
RQ00q

(0)
iL q(0)iR + rQ11Q

(1)
iL q(1)iR −RQ11q

(1)
iL Q(1)

iR + h.c.

�
, (2.49)

where, for clarity, we make a redefinition of u(0)iL = U (0)
iL . RQ00, rQ11, RQ11 results from the

overlap integral and are given by

RQ00 =

� L

−L
dy

�
1 + rY (δ(y − L) + δ(y + L))

�
f2
Q(0)

=
2rY + πR

2rQ + πR
, (2.50)

rQ11 =

� L

−L
dy

�
1 + rY (δ(y − L) + δ(y + L))

�
f2
Q(1)

=

2rY + 1
S2
Q(1)

�
πR
2 − 1

2MQ(1)
sin(MQ(1)

πR)

�

2rQ + 1
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Q(1)

�
πR
2 − 1

2MQ(1)
sin(MQ(1)

πR)

� , (2.51)

RQ11 =

� L
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dy
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1 + rY (δ(y − L) + δ(y + L))

�
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=

2rY (CQ(1)
/SQ(1)

)2 + 1
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sin(MQ(1)

πR)

�

1
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Q(1)

�
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2 + 1
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sin(MQ(1)

πR)

� . (2.52)

The zero mode masses (i.e., the masses of the SM quarks) are fixed as

mqi =
�
Yq
ii

v√
2

�
RQ00. (2.53)

It is noted that when rY = −πR/2, the value of RQ00 becomes zero and the SM quarks

become massless. Obviously, this limit is meaningless in phenomenology and we should avoid
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 For orbifold Z2 odd modes:

 KK mass condition:
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where Q stands for Ψ and ψ. Hereafter, we restrict ourselves to the first KK mode (un-

less otherwise indicated) and focus on the generic flavour ‘i’ with qi (Qi) representing the

corresponding SU(2)W singlet (doublet), respectively. After some calculations, we obtain
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iR + h.c.

�
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where, for clarity, we make a redefinition of u(0)iL = U (0)
iL . RQ00, rQ11, RQ11 results from the

overlap integral and are given by
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�
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=
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The zero mode masses (i.e., the masses of the SM quarks) are fixed as

mqi =
�
Yq
ii

v√
2

�
RQ00. (2.53)

It is noted that when rY = −πR/2, the value of RQ00 becomes zero and the SM quarks

become massless. Obviously, this limit is meaningless in phenomenology and we should avoid
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The zero mode masses (i.e., the masses of the SM quarks) are fixed as
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It is noted that when rY = −πR/2, the value of RQ00 becomes zero and the SM quarks

become massless. Obviously, this limit is meaningless in phenomenology and we should avoid
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the possibility. On the other hand, in the limit rQ = rY , values of both RQ00 and rQ11 become

1 while RQ11 is still away from 1. This implies that deviations from the mUED case may

still be present in the physical mass spectrum of the level ‘1’ KK quarks. The mUED limit

is recovered with rG = rQ = 0 when all of RQ00, rQ11, RQ11 become equal to 1. This, in turn,

implies that non-vanishing rY may play some role in determining even the spectrum of the

KK quarks that correspond to the lighter flavours of the SM. The effect is generally miniscule

as can be expected since equation (2.49) has an overall factor mqi which is the mass of the

SM quark of i-th light flavour. Exception to this, though primarily of theoretical interest,

will be pointed out at the end of section 3.1.

There is another interesting phenomenon known as level-mixing that can take place

between similar states from two different KK levels. This explicitly violates KK number.

However, this is perfectly admissible since the translational invariance in 5D is broken at the

orbifold fixed points which is otherwise synonymous with the idea of KK number conservation.

However, to conserve KK-parity, the mixings would be limited to those between two even or

two odd states only. The possibility of such level-mixings has already been pointed out in the

literature but its phenomenological implications are yet to be explored thoroughly in various

different contexts. In the case of mUED, such effects can only be induced at a higher order.

However, presence of BLTs ensures overlap integrals of the following form:
� L

−L
dy

�
1 + rY (δ(y − L) + δ(y + L))

�
fQ(m)

gQ(n)
, (2.54)

which triggers level-mixings even at the tree-level for cases with (m,n) = (even, even) or

(odd, odd). Note that such effects are only possible when Y q
ij �= 0. The contribution is

found to be negligible though for the first two generations but is not always so for the KK

top quarks. We will indicate the phenomenological implications of such mixing effects in the

later part of this work. However, we postpone a somewhat elaborate discussion on the issue

to a future work [64]. In any case, for convenience at a later stage, we rewrite equation (2.49)

as follows:

−mqi

�
d4x

�
q(0)iL q(0)iR + r�Q11Q

(1)
iL q(1)iR −R�

Q11q
(1)
iL Q(1)

iR + h.c.

�
, (2.55)

where r�Q11, R
�
Q11 are defined as

r�Q11 =
rQ11

RQ00
, R�

Q11 =
RQ11

RQ00
. (2.56)

2.4 The quark mass matrix

Combining equations (2.38), (2.45), (2.55), we can obtain the mass matrix for the level ‘1’ KK

quarks as

−
�

d4x

��
Q

(1)
i , q(1)i

�

L

�
MQ(1)

r�Q11mqi

−R�
Q11mqi MQ(1)

�

� �� �
≡M(1)

qi

�
Q(1)

i

q(1)i

�

R

+ h.c.

�
, (2.57)
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 The mass matrix for 1st KK quarks:

 Two mass eigenstates are not degenerated.
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It is instructive to note that the generic solutions for the actual masses at different

KK levels can be found graphically as their values at the intersection points of the curves

representing the trigonometric functions on the right hand side of the mass determining

condition in equation (3.2) (and its counter-part for even KK level which is not explicitly

shown there) and the straight lines representing the left hand side of the same. This is

illustrated in figure 2. The magenta curves represent the mass-determining condition for

alternate even KK modes while the cyan ones do the same for the alternate odd KK modes.

All these curves are intersecting the abscissa at integer values like 0, 1, 2, 3 and so on signalling

the actual masses at the n-th level to be just nR−1 (since M �
Q = MQ/R−1) i.e., for r�Q = 0

where r�Q = rQR−1, i.e., in the limit of vanishing brane-localized terms. It is clear from

this figure that a massless mode exists (at the origin) for the even mode with n = 0. For

demonstrative purposes only, we choose three straight lines that correspond to three values

of the brane-localized parameters r�X , viz., r�X = 5, 2,−1 as we go down from above. The

red (blue) blobs at the intersections of these straight lines and the magenta (cyan) curves

indicate the mass value (in units of m�
X) for the gluon or the quark at the even (odd) KK

level for the value of r�X that the straight line in context stands for. To elucidate further, it is

obvious that as we follow a particular curve (magenta and cyan, that correspond to even and

odd KK levels, respectively) the masses of the KK quark or KK gluon drops as r�X increases,

for a given KK level.
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Figure 3. Ratio of actual mass of level ‘1’ KK gluon/quark and R−1 (left panel) and the corresponding
actual masses (right panel; for different values of R−1) plotted against the parameter r�X characterizing
the brane-localized term. The trivial case of m�

X(1)
= 1 (left panel) or mX(1)

= R−1 (right panel) is
retrieved when r�G = 0, i.e., in the limit of vanishing brane-localized term.

The left panel of figure 3 illustrates the variation of the ratio of the mass of level ‘1’ KK

gluon or quark and R−1 (i.e., of m�
X(1)

) as a function of r�X . By virtue of equation (3.2), this

dependence is blind to R−1. It is interesting to note that for r�X < 0, m�
X(1)

> 1 signifying

the actual KK mass to be larger than R−1. The reverse is true for r�X > 0. As we can see

from this panel that the variation flattens up quickly with increasing r�X .

In the right panel of figure 3 we show the actual variations of masses (i.e., of mX(1)
) for
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Values of 1st quark masses

the possibility. On the other hand, in the limit rQ = rY , values of both RQ00 and rQ11 become

1 while RQ11 is still away from 1. This implies that deviations from the mUED case may

still be present in the physical mass spectrum of the level ‘1’ KK quarks. The mUED limit

is recovered with rG = rQ = 0 when all of RQ00, rQ11, RQ11 become equal to 1. This, in turn,

implies that non-vanishing rY may play some role in determining even the spectrum of the

KK quarks that correspond to the lighter flavours of the SM. The effect is generally miniscule

as can be expected since equation (2.49) has an overall factor mqi which is the mass of the

SM quark of i-th light flavour. Exception to this, though primarily of theoretical interest,

will be pointed out at the end of section 3.1.

There is another interesting phenomenon known as level-mixing that can take place

between similar states from two different KK levels. This explicitly violates KK number.

However, this is perfectly admissible since the translational invariance in 5D is broken at the

orbifold fixed points which is otherwise synonymous with the idea of KK number conservation.

However, to conserve KK-parity, the mixings would be limited to those between two even or

two odd states only. The possibility of such level-mixings has already been pointed out in the

literature but its phenomenological implications are yet to be explored thoroughly in various

different contexts. In the case of mUED, such effects can only be induced at a higher order.

However, presence of BLTs ensures overlap integrals of the following form:
� L

−L
dy

�
1 + rY (δ(y − L) + δ(y + L))

�
fQ(m)

gQ(n)
, (2.54)

which triggers level-mixings even at the tree-level for cases with (m,n) = (even, even) or

(odd, odd). Note that such effects are only possible when Y q
ij �= 0. The contribution is

found to be negligible though for the first two generations but is not always so for the KK

top quarks. We will indicate the phenomenological implications of such mixing effects in the

later part of this work. However, we postpone a somewhat elaborate discussion on the issue

to a future work [64]. In any case, for convenience at a later stage, we rewrite equation (2.49)

as follows:

−mqi

�
d4x

�
q(0)iL q(0)iR + r�Q11Q

(1)
iL q(1)iR −R�

Q11q
(1)
iL Q(1)

iR + h.c.

�
, (2.55)

where r�Q11, R
�
Q11 are defined as

r�Q11 =
rQ11

RQ00
, R�

Q11 =
RQ11

RQ00
. (2.56)

2.4 The quark mass matrix

Combining equations (2.38), (2.45), (2.55), we can obtain the mass matrix for the level ‘1’ KK

quarks as

−
�

d4x

��
Q

(1)
i , q(1)i

�

L

�
MQ(1)

r�Q11mqi

−R�
Q11mqi MQ(1)

�

� �� �
≡M(1)

qi

�
Q(1)

i

q(1)i

�

R

+ h.c.

�
, (2.57)
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 The mass matrix for 1st KK quarks:
 In general, MQ(1) (KK mass) > mqi (SM quark mass).
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quarks as
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 The mass matrix for 1st KK quarks:
 In general, MQ(1) (KK mass) > mqi (SM quark mass).

for the first five flavors (e.g. bottom):
r’Q dominant (two mass eigenstates are almost 

degenerated.)

for the top flavor:
r’Y is also effective 
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 The mass matrix for 1st KK quarks:
 In general, MQ(1) (KK mass) > mqi (SM quark mass).

for the first five flavors (e.g. bottom):
r’Q dominant (two mass eigenstates are almost 

degenerated.)

for the top flavor:
r’Y is also effective 

For 1st KK states of the first five flavors,
(physical mass) ~ MQ(1) 



equation (3.7) to the following trivial form:

V (1)
qiL

|mUED = V (1)
qiR

|mUED =

�
1 0

0 1

�
(i.e., θ(1)qi = 0), (3.9)

whose form is different from that of equation (3.6).

Using equation (2.4), the 4D effective action depicting the quark-gluon interaction up to

the first KK level can be written down as follows:

Squark|int =
�

d4x
�

i

�
g4sT

a

�
Ga(0)

µ

�
q(0)i γµq(0)i +Q(1)

i1 γµQ(1)
i1 +Q(1)

i2 γµQ(1)
i2

�

+Ga(1)
µ (g�G1Q1Q0

)

�
q(0)i γµ

�
v(1)qiR(21)PR + v(1)qiL(11)

PL

�
Q(1)

i2 + q(0)i γµ
�
v(1)qiR(22)PR + v(1)qiL(12)

PL

�
Q(1)

i1

+Q(1)
i2 γµ

�
v(1)qiR(21)PR + v(1)qiL(11)

PL

�
q(0)i +Q(1)

i1 γµ
�
v(1)qiR(22)PR + v(1)qiL(12)

PL

�
q(0)i

���
,

(3.10)

where the superscripts 0, 1 in parenthesis indicate the KK level. Q1,2 represent the quark

mass-eigenstates at the first KK level, i is the generic flavour-index and vq-s are the elements

of the Vq matrices in equations (2.63), (3.6). The latter can now be rewritten in the following

general form:

V (1)
qiL

=

�
v(1)qiL(11)

v(1)qiL(12)

v(1)qiL(21)
v(1)qiL(22)

�
, V (1)

qiR
=

�
v(1)qiR(11) v

(1)
qiR(12)

v(1)qiR(21) v
(1)
qiR(22)

�
. (3.11)

Note that in equation (3.10) the first term has two parts: the first part, consisting only of the

first term, represents interaction of the SM gluon with a pair of SM quark and the interaction

strength is, as expected, just that of the SM. The second part involves the rest two terms that

gives the interactions of the SM gluon with two different pairs of level ‘1’ KK quarks. This

also has the same interaction strength as the corresponding mUED case. The only deviation

that occurs is in the case of an SM quark interacting with a level ‘1’ KK quark and a level

‘1’ KK gluon. The concrete form of the deviation (with respect to the mUED case) can be

shown to be as in equation (3.12).

g�G1Q1Q0
≡ 1

NG(0)

� L

−L
dy

�
1 + rQ (δ(y − L) + δ(y + L))

�
fG(1)

fQ(1)
fQ(0)

=
NQ(0)

NG(0)

NG(1)
NQ(1)

SG(1)
SQ(1)

�
2rQSG(1)

SQ(1)
−

sin((MQ(1)
+mG(1)

)
πR
2 )

MQ(1)
+mG(1)

+
sin((MQ(1)

−mG(1)
)
πR
2 )

MQ(1)
−mG(1)

�
.

(3.12)

Here we mention that in the vertices of G(0)Q(1)
i1 Q(1)

i1 and G(0)Q(1)
i2 Q(1)

i2 , which include the

SM gluon, we cannot find a deviation with respect to the corresponding SM interaction
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Quark-gluon interactions

The KK masses that appear in the diagonal entries of equation (2.57), i.e., MQ(1)
, are deter-

mined by the second transcendental equation in equation (2.35). By choosing same mass for

these entries we implicitly assume that the BLKTs for the quarks are blind to SU(2)W quan-

tum numbers (singlet or doublet) they possess. The set of eigenvalues,
�
m(1)

qi1

�2
,
�
m(1)

qi2

�2
, of

the mass matrix squared M(1)
qi M

(1)†
qi are evaluated to be

�
M2

Q(1)
+

m2
qi

2
(r�Q11

2 +R�
Q11

2)
�
∓m2

qi

�
1

4
(r�Q11

2 −R�
Q11

2)2 +
�MQ(1)

mqi

�2
(r�Q11 −R�

Q11)
2

� �� �
≡B(1)

qi

,

(2.58)

with m(1)
qi2

> m(1)
qi1

. The squared matrix M(1)
qi M

(1)†
qi is diagonalized as

P (1)
qi

�
M(1)

qi M
(1)†
qi

�
P (1)†
qi =





�
m(1)

qi2

�2

�
m(1)

qi1

�2



 , (2.59)

with the diagonalizing matrix P (1)
qi being

P (1)
qi =

�
N (1)

qi+

�
mqiMQ(1)

(r�Q11 −R�
Q11)

−1
2(r

�
Q11

2 −R�
Q11

2)m2
qi +B(1)

qi

�
, N (1)

qi−

�
mqiMQ(1)

(r�Q11 −R�
Q11)

−1
2(r

�
Q11

2 −R�
Q11

2)m2
qi −B(1)

qi

��
,

(2.60)

with 5

N (1)
qi± =

��
∓1

2
(r�Q11

2 −R�
Q11

2)m2
qi +B(1)

qi

�2

+
�
mqiMQ(1)

(r�Q11 −R�
Q11)

�2
. (2.61)

By use of the following bi-unitary transformation of
�
Q(1)

i

q(1)i

�

L

= V (1)
qiL

�
Q(1)

i2

Q(1)
i1

�

L

,

�
Q(1)

i

q(1)i

�

R

= V (1)
qiR

�
Q(1)

i2

Q(1)
i1

�

R

, (2.62)

with

V (1)
qiL

= P (1)†
qi , V (1)

qiR
=

�
1/m(1)

qi2

1/m(1)
qi1

�
P (1)†
qi M(1)

qi , (2.63)

we can diagonalize equation (2.57) as follows:

−
�

d4x
�
Q(1)

i2 , Q(1)
i1

� �m(1)
qi2

m(1)
qi1

��
Q(1)

i2

Q(1)
i1

�
, (2.64)

where Q(1)
i1 ,Q(1)

i2 are the mass eigenstates of level ‘1’ KK quarks.

5
Note at this point that the KK level-indices are indicated interchangeably with both super- and subscripts

for the mass-variables and should not lead to any confusion. We have to be flexible with this notation because

of presence of too many indices in these cases. However, it is ensured that a level-index always comes within

a parenthesis.
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bi-unitary transformations:
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where the superscripts 0, 1 in parenthesis indicate the KK level. Q1,2 represent the quark

mass-eigenstates at the first KK level, i is the generic flavour-index and vq-s are the elements

of the Vq matrices in equations (2.63), (3.6). The latter can now be rewritten in the following
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Note that in equation (3.10) the first term has two parts: the first part, consisting only of the

first term, represents interaction of the SM gluon with a pair of SM quark and the interaction

strength is, as expected, just that of the SM. The second part involves the rest two terms that

gives the interactions of the SM gluon with two different pairs of level ‘1’ KK quarks. This

also has the same interaction strength as the corresponding mUED case. The only deviation

that occurs is in the case of an SM quark interacting with a level ‘1’ KK quark and a level

‘1’ KK gluon. The concrete form of the deviation (with respect to the mUED case) can be

shown to be as in equation (3.12).
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Here we mention that in the vertices of G(0)Q(1)
i1 Q(1)

i1 and G(0)Q(1)
i2 Q(1)

i2 , which include the

SM gluon, we cannot find a deviation with respect to the corresponding SM interaction
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Note that in equation (3.10) the first term has two parts: the first part, consisting only of the

first term, represents interaction of the SM gluon with a pair of SM quark and the interaction

strength is, as expected, just that of the SM. The second part involves the rest two terms that

gives the interactions of the SM gluon with two different pairs of level ‘1’ KK quarks. This

also has the same interaction strength as the corresponding mUED case. The only deviation

that occurs is in the case of an SM quark interacting with a level ‘1’ KK quark and a level

‘1’ KK gluon. The concrete form of the deviation (with respect to the mUED case) can be
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The KK masses that appear in the diagonal entries of equation (2.57), i.e., MQ(1)
, are deter-

mined by the second transcendental equation in equation (2.35). By choosing same mass for
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. The squared matrix M(1)
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with the diagonalizing matrix P (1)
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with 5
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By use of the following bi-unitary transformation of
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with
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we can diagonalize equation (2.57) as follows:

−
�
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��
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�
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where Q(1)
i1 ,Q(1)

i2 are the mass eigenstates of level ‘1’ KK quarks.

5
Note at this point that the KK level-indices are indicated interchangeably with both super- and subscripts

for the mass-variables and should not lead to any confusion. We have to be flexible with this notation because

of presence of too many indices in these cases. However, it is ensured that a level-index always comes within

a parenthesis.
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bi-unitary transformations:

equation (3.7) to the following trivial form:
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|mUED =
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1 0

0 1

�
(i.e., θ(1)qi = 0), (3.9)

whose form is different from that of equation (3.6).

Using equation (2.4), the 4D effective action depicting the quark-gluon interaction up to

the first KK level can be written down as follows:
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where the superscripts 0, 1 in parenthesis indicate the KK level. Q1,2 represent the quark

mass-eigenstates at the first KK level, i is the generic flavour-index and vq-s are the elements

of the Vq matrices in equations (2.63), (3.6). The latter can now be rewritten in the following

general form:
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Note that in equation (3.10) the first term has two parts: the first part, consisting only of the

first term, represents interaction of the SM gluon with a pair of SM quark and the interaction

strength is, as expected, just that of the SM. The second part involves the rest two terms that

gives the interactions of the SM gluon with two different pairs of level ‘1’ KK quarks. This

also has the same interaction strength as the corresponding mUED case. The only deviation

that occurs is in the case of an SM quark interacting with a level ‘1’ KK quark and a level

‘1’ KK gluon. The concrete form of the deviation (with respect to the mUED case) can be

shown to be as in equation (3.12).
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Here we mention that in the vertices of G(0)Q(1)
i1 Q(1)

i1 and G(0)Q(1)
i2 Q(1)

i2 , which include the

SM gluon, we cannot find a deviation with respect to the corresponding SM interaction
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Figure 6. Scaled couling for the quartic interaction involving four level ‘1’ KK gluons (with respect
to the corresponding mUED value).

bi-unitary matrices V (1)
qiL

and V (1)
qiR

of equation (2.63) that diagonalize the mass matrix for

level-1 KK quarks where ‘i’ refers to the quark-flavour. For (almost) mass-degenerate KK

quarks ( in the limit of r�Q = r�Y which we adopt for studying the KK quarks corresponding

to lighter SM flavours), V (1)
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and V (1)
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can be shown, to a very good approximation, to have

the following form that reflects maximal mixing:
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except for the case of r�Q = 0.6 In the case of conventional UED scenarios without brane-

localized terms, one finds the mass-eigenvalues to be exactly degenerate (before radiative

correction to the masses) and these matrices look like:
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sin(2θ(1)qi ) =
mqi�

M2
Q(1)

+m2
qi

, cos(2θ(1)qi ) =
MQ(1)�

M2
Q(1)

+m2
qi

, (3.8)

where mqi is the mass of the ‘i’ th flavour SM quark. The difference in form of the matrices

presented in equations (3.6) and (3.7) owes its origin to the difference between ‘approximate

degeneracy’ and ‘exact degeneracy’ of the mass-eigenvalues of the quarks. Further, it may

be noted that for the five light flavours, MQ(1)
� mqi . Thus, use of equation (3.8) reduces

6This general form of the matrix is used in our subsequent analysis. It should be noted that this expression

is qualitatively different from its mUED counterpart for which it is an unit matrix (see equation (3.9)) and

this cannot be seen as a limiting case (i.e., r�G = r�Q = 0) of the former.
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whose form is different from that of equation (3.6).

Using equation (2.4), the 4D effective action depicting the quark-gluon interaction up to

the first KK level can be written down as follows:
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where the superscripts 0, 1 in parenthesis indicate the KK level. Q1,2 represent the quark

mass-eigenstates at the first KK level, i is the generic flavour-index and vq-s are the elements

of the Vq matrices in equations (2.63), (3.6). The latter can now be rewritten in the following

general form:
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Note that in equation (3.10) the first term has two parts: the first part, consisting only of the

first term, represents interaction of the SM gluon with a pair of SM quark and the interaction

strength is, as expected, just that of the SM. The second part involves the rest two terms that

gives the interactions of the SM gluon with two different pairs of level ‘1’ KK quarks. This

also has the same interaction strength as the corresponding mUED case. The only deviation

that occurs is in the case of an SM quark interacting with a level ‘1’ KK quark and a level

‘1’ KK gluon. The concrete form of the deviation (with respect to the mUED case) can be

shown to be as in equation (3.12).
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Here we mention that in the vertices of G(0)Q(1)
i1 Q(1)

i1 and G(0)Q(1)
i2 Q(1)

i2 , which include the

SM gluon, we cannot find a deviation with respect to the corresponding SM interaction
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 The form of the nontrivial factor is as follows:

This factor is possibly important in production of 1st KK particle.
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Note that in equation (3.10) the first term has two parts: the first part, consisting only of the

first term, represents interaction of the SM gluon with a pair of SM quark and the interaction

strength is, as expected, just that of the SM. The second part involves the rest two terms that

gives the interactions of the SM gluon with two different pairs of level ‘1’ KK quarks. This

also has the same interaction strength as the corresponding mUED case. The only deviation

that occurs is in the case of an SM quark interacting with a level ‘1’ KK quark and a level

‘1’ KK gluon. The concrete form of the deviation (with respect to the mUED case) can be

shown to be as in equation (3.12).
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Here we mention that in the vertices of G(0)Q(1)
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SM gluon, we cannot find a deviation with respect to the corresponding SM interaction
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table are picked up directly from the contour-plots in figure 9. Note that the values 0.85 and

1.1 that are chosen for g�G1Q1Q0
in table 2 could result in ∼ 50% deviations from the nominal

values of the cross sections (which go as g�4G1Q1Q0
) for the strong production modes at the

LHC. This kind of a departure can be expected to be measured efficiently enough and thus

can be used for further inferences. It is then informative to find from table 2 that for an

experimentally estimated value of g�G1Q1Q0
and for a known set of masses for the KK gluon

and KK quarks, the value of R−1
is pretty distinct and thus can be estimated unambiguously.
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table are picked up directly from the contour-plots in figure 9. Note that the values 0.85 and

1.1 that are chosen for g�G1Q1Q0
in table 2 could result in ∼ 50% deviations from the nominal

values of the cross sections (which go as g�4G1Q1Q0
) for the strong production modes at the

LHC. This kind of a departure can be expected to be measured efficiently enough and thus

can be used for further inferences. It is then informative to find from table 2 that for an

experimentally estimated value of g�G1Q1Q0
and for a known set of masses for the KK gluon

and KK quarks, the value of R−1
is pretty distinct and thus can be estimated unambiguously.
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Anomalous region can be found.



Contents

1. System with brane-localized terms

2. deviations in mass & couplings

3. Anomalous properties in cross section
    with low R-1



Numerical cross section calculation
 We calculate the three processes:

    pp -> G(1)G(1), pp -> G(1)Q(1), pp -> Q(1)Q(1).

 We sum up the KK quarks’ first five flavors & 
   particle/antiparticle.

 We use Feynrules for launching our model,
   Madgraph5 for calculating the cross section.

 We use CTEQ6L parametrization for PDF.

 The QCD factorization/renormalization scale is fixed
   at sum of the masses of the final state particles.

 We search for the range: 500 GeV < MKK < 2 (3) TeV
   @ 8 (14) TeV run.



8TeV run with R-1 = 1TeV





 In r’G > 0 or r’Q > -1.0, the cross section mostly depends on r’G.
 S-channel is dominant.
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 Very large value of nontrivial factor.
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8TeV run with R-1 = 3 TeV

 There is no anomalous region.

 Values of cross section is almost the same
   in “normal” region.



14TeV run with R-1 = 1 TeV

 KK mass range is the same with 8 TeV run.
 The shapes are similar to those with 8 TeV run.

   (cross section is larger.)



Summary

 Cross section of 1st KK particles possibly anomalous
   in low R-1.

Future works
 KK top analysis.

 Full simulation with EW sector.

 considering Direct/indirect constraints on model



Thank
you
for

your attention


