Non－minimal Universal Extra Dimension：the QCD interacting

sector at the LHC

Kenji Nishiwaki

（Harish－Chandra Research Institute）

In collaboration with

Aseshkrishna Datta（Harish－Chandra Research Institute） Saurabh Niyogi（Harish－Chandra Research Institute）

Based on anXiv：1206．398？
＠基研研究会 素粒子物理学の進展2012，7／20

minimal Universal Extra Dimension (mUDD)

minimal Universal Extra Dimension (mUPDD)

We consider the SM in 5D.
a SM particle

minimal Universal Extra Dimension (mUPID)

 We consider the SM in 5D.

Zooming up our world.:.

minimal Universal Extra Dimension (mUDD)

We consider the SM in 5D.

minimal Universal Extra Dimension (mUPID)

We consider the SM in 5D.

Interesting points
Dark matter candidate $=$ Lightest KK particle 125 GeV Higgs is possible [Kakuda-san's talk] Loose constraint on mkk - Possibly detectable at the LHC

Way of extensions

mUED (in 5D) on $S^{1 /} Z_{2}$

 \square SM matter \& gauge group
 - No tree-level
 brane-localized term
 \square Simplest background

Way of extensions

Go to 6id

Way of extensions

Go to 6id

Way of extensions

Go to 6id

Way of extensions

S1//Z geometry

\checkmark Tous hised points (iranes) emerge.

- Chiral fermions appear (at zero modes).
\square At these points, some terms can be localized.

S1/L2 geometry

\checkmark ruo nixed points (branes) emerge.
Chiral fermions appear (at zero modes).

- At these points, some terms can be localized.

[H. C. Cheng, K. T. Matchev, M. Schmaltz] (2002)

$\sqrt{ }$ MUED: No tree-level brane-localized terms, but they are induced at the 1 -loop level.

KK mass shift
 interaction
\checkmark When we introduce (tree-level) brane-localized terms, these interesting points possibly appear at the tree-level.

We can find few study on
LHC signature of this type "non-minimal" UED model.
\sqrt{V} In this work, the properties of production processes of 1st KK. particles via QCD interactions have been analyzed. (ignoring EW interactions.)

Contents

1. System with brane-localized terms

2. deviations in mass \& couplings

3. Anomalous properties in cross section with low R-1

Contents

1. Dystem with brane-locenized terms
2. deviations in mass \& couplings
3. Anomalous properties in cross section with low R^{-1}

Gluon part

[F. del Aguila, M. Perez-Victoria, J. Santiago] $(2003,2004)$

[T.Flacke, A.Menon. D.J. Phalen] (2009)

$$
\begin{aligned}
& S_{\text {gluon }}=\int d^{4} x \int_{-L}^{L} d y\{\underbrace{-\frac{1}{4} G_{M N}^{a} G^{a M N}}+\underbrace{(\delta(y-L)+\delta(y+L))\left[-G_{4} G_{\mu \nu}^{a} G^{a \mu \nu}\right]}\} \\
& S_{\mathrm{gluon}, \mathrm{gf}}=\int d^{4} x \int_{-L}^{L} d y\{\underbrace{-\frac{1}{2 \xi_{G}}\left(\partial_{\mu} G^{a \mu}-\xi_{G} \partial_{y} G_{y}^{a}\right)^{2}-} \underbrace{\frac{1}{2 \xi_{G, b}}\left[\left(\partial_{\mu} G^{a \mu}+\xi_{G, b} G_{y}^{a}\right)^{2} \delta(y-L)\right.}_{\text {- }} \\
& \left.+\left(\partial_{\mu} G^{a \mu}-\xi_{G, b} G_{y}^{a}\right)^{2} \delta(y+L)\right]
\end{aligned}
$$

Bulk terms

T These are the same with the mUED.
V Brans-loculizesd ierus
■4D gauge invariant term is introduced.
(with coefficient rs)
\square The system is invariant under $y \rightarrow-y$.
(KK-parity is conserved.)
G_{y} is unphysical d.o.f: (removed in the unitary gauge: $\left.\xi_{G}, \xi_{G, b} \rightarrow \infty\right)$
\sqrt{V} Bulk EOM of n-th mode is the same with the mUED.
$\underbrace{\frac{\partial^{2} f_{G_{(n)}}(y)}{\partial y^{2}}=-m_{G_{(n)}}^{2} f_{G_{(n)}}(y) \quad f_{G_{(n)}}(y)=N_{G_{(n)}} \times \begin{cases}\frac{\cos \left(m_{G_{(n)}} y\right)}{C_{G_{(n)}}} & \text { for } n \text { even (even KK-parity) } \\ \frac{-\sin \left(m_{G_{(n)}} y\right)}{S_{G_{(n)}}} & \text { for } n \text { odd (odd KK-parity) }\end{cases} }$

$$
C_{G_{(n)}}=\cos \left(\frac{m_{G_{(n)}} \pi R}{2}\right), \quad S_{G_{(n)}}=\sin \left(\frac{m_{G_{(n)}} \pi R}{2}\right), \quad T_{G_{(n)}}=\tan \left(\frac{m_{G_{(n)}} \pi R}{2}\right)
$$

Bulk EOM of n-th mode is the same with the mUED.

$$
\frac{\partial^{2} f_{G_{(n)}}(y)}{\partial y^{2}}=-m_{G_{(n)}}^{2} f_{G_{(n)}}(y)
$$

$$
f_{G_{(n)}}(y)=N_{G_{(n)}} \times \begin{cases}\frac{\cos \left(m_{G_{(n)}} y\right)}{C_{G_{(n)}}} & \text { for } n \text { even (even KK-parity) } \\ \frac{-\sin \left(m_{G_{(n)}} y\right)}{S_{G_{(n)}}} & \text { for } n \text { odd (odd KK-parity) }\end{cases}
$$

$$
C_{G_{(n)}}=\cos \left(\frac{m_{G_{(n)}} \pi R}{2}\right), \quad S_{G_{(n)}}=\sin \left(\frac{m_{G_{(n)}} \pi R}{2}\right), \quad T_{G_{(n)}}=\tan \left(\frac{m_{G_{(n)}} \pi R}{2}\right)
$$

But KK mass's dispersion relation is changed due to brane-localized terms.

$$
r_{G} m_{G_{(n)}}= \begin{cases}-T_{G_{(n)}} & \text { for } n \text { even } \\ 1 / T_{G_{(n)}} & \text { for } n \text { odd }\end{cases}
$$

Bulk EOM of n-th mode is the same with the mUED.

$$
\frac{\partial^{2} f_{G_{(n)}}(y)}{\partial y^{2}}=-m_{G_{(n)}}^{2} f_{G_{(n)}}(y)
$$

$$
f_{G_{(n)}}(y)=N_{G_{(n)}} \times \begin{cases}\frac{\cos \left(m_{G_{(n)}} y\right)}{C_{G_{(n)}}} & \text { for } n \text { even (even KK-parity) } \\ \frac{-\sin \left(m_{G_{(n)}} y\right)}{S_{G_{(n)}}} & \text { for } n \text { odd (odd KK-parity) }\end{cases}
$$

$$
C_{G_{(n)}}=\cos \left(\frac{m_{G_{(n)}} \pi R}{2}\right), \quad S_{G_{(n)}}=\sin \left(\frac{m_{G_{(n)}} \pi R}{2}\right), \quad T_{G_{(n)}}=\tan \left(\frac{m_{G_{(n)}} \pi R}{2}\right)
$$

But KK mass's dispersion relation is changed due to brane-localized terms.

$$
r_{G} m_{G_{(n)}}= \begin{cases}-T_{G_{(n)}} & \text { for } n \text { even } \\ 1 / T_{G_{(n)}} & \text { for } n \text { odd }\end{cases}
$$

massless mode exists irrespective of rg_{G}

A theoretical bound on rg:

No tachyonic zero mode
$\sqrt{ }$ A theoretical bound on rg:

$$
N_{G_{(0)}}=\frac{1}{\sqrt{2 r_{G}+\pi R}}
$$

No tachyonic zero mode

$$
r_{G}>-\frac{\pi R}{2}
$$

KK mode functions obey the relation:

$$
\int_{-L}^{L} d y\left[1+r_{G}(\delta(y-L)+\delta(y+L))\right] f_{G_{(m)}} f_{G_{(n)}}=\delta_{m, n}
$$

$$
g_{4 s} \equiv N_{G_{(0)}} g_{5 s}=\frac{g_{5 s}}{\sqrt{2 r_{G}+\pi R}}
$$

A theoretical bound on r :

$$
N_{G_{(0)}}=\frac{1}{\sqrt{2 r_{G}+\pi R}} \xrightarrow{\text { No tachyonic zero mode }} r_{G}>-\frac{\pi R}{2}
$$

KK mode functions obey the relation:

$$
\int_{-L}^{L} d y\left[1+r_{G}(\delta(y-L)+\delta(y+L))\right] f_{G_{(m)}} f_{G_{(n)}}=\delta_{m, n} \quad g_{4 s} \equiv N_{G_{(0)}} g_{5 s}=\frac{g_{5 s}}{\sqrt{2 r_{G}+\pi R}}
$$

Fermion part

[T. Flacke, A. Menon. D.J. Phalen] (2009)

$$
\begin{aligned}
S_{\text {quark }}=\int d^{4} x \int_{-L}^{L} d y \sum_{i=}^{3} & \left\{i \bar{U}_{i} \Gamma^{M} \mathcal{D}_{M} U_{i}+r(\delta(y-L)+\delta(y+L))\left[i \bar{U}_{i} \gamma^{\mu} \mathcal{D}_{\mu} P_{L} U_{i}\right]\right. \\
& +i \bar{D}_{i} \Gamma^{M} \mathcal{D}_{M} D_{i}+r(\delta(y-L)+\delta(y+L))\left[i \bar{D}_{i} \gamma^{\mu} \mathcal{D}_{\mu} P_{L} D_{i}\right] \\
& +i \bar{u}_{i} \Gamma^{M} \mathcal{D}_{M} u_{i}+r(\delta(y-L)+\delta(y+L))\left[i \bar{u}_{i} \gamma^{\mu} \mathcal{D}_{\mu} P_{R} u_{i}\right] \\
& \left.+i \bar{d}_{i} \Gamma^{M} \mathcal{D}_{M} d_{i}+r_{Q}(\delta(y-L)+\delta(y+L))\left[i \bar{d}_{i} \gamma^{\mu} \mathcal{D}_{\mu} P_{R} d_{i}\right]\right\}
\end{aligned}
$$

Bulk terms are also the same with the mUED.
$\square U_{i}, D_{i:} S U(2)_{w}$ doublet (with left-handed zero mode)
$\square u_{i,}$ di: SU(2)w singlet (with right-handed zero mode)
$\sqrt{ }$ We assume the coefficients take the same value ras_{5}.
\square The system is invariant under $y \rightarrow-y$.
(KK-parity is conserved.)

The situation is similar to the gluon case.

\square For orbifold Z_{2} even modes:

$$
\begin{gathered}
f_{Q_{(n)}} \equiv f_{U_{i(n) L}}=f_{D_{i(n) L}}=f_{u_{i(n) R}}=f_{d_{i(n) R}}=N_{Q_{(n)}} \times \begin{cases}\frac{\cos \left(M_{Q_{(n)}} y\right)}{C_{Q_{(n)}}} & \text { for } n \text { even } \\
\frac{-\sin \left(M_{Q_{(n)}} y\right)}{S_{Q_{(n)}}} & \text { for } n \text { odd }\end{cases} \\
\int_{-L}^{L} d y\left[1+r_{Q}(\delta(y-L)+\delta(y+L))\right] f_{Q_{(m)}} f_{Q_{(n)}}=\delta_{m, n}
\end{gathered}
$$

\square For orbifold Z_{2} oddd modes:

$$
\begin{aligned}
& g_{Q(n)} \equiv f_{U_{i(n) R}}=f_{D_{i(n) R}}=-f_{u_{i(n) L}}=-f_{d_{i(n) L}}=N_{Q_{(n)}} \times \begin{cases}\frac{\sin \left(M_{Q_{(n)}} y\right)}{C_{Q_{(n)}}} & \text { for } n \text { even } \\
\frac{\cos \left(M_{Q_{(n)}} y\right)}{S_{Q_{(n)}}} & \text { for } n \text { odd }\end{cases} \\
& \int_{-L}^{L} d y g_{Q_{(m)}} g_{Q_{(n)}}=\delta_{m, n}
\end{aligned}
$$

■ KK mass condition:

$$
r_{Q} M_{Q_{(n)}}= \begin{cases}-T_{Q_{(n)}} & \text { for } n \text { even } \\ 1 / T_{Q_{(n)}} & \text { for } n \text { odd }\end{cases}
$$

Yukawa part

$$
\begin{aligned}
S_{\text {Yukawa }}=\int d^{4} x \int_{-L}^{L} d y \sum_{i, j=1}^{3}\{ & -\left(1+\Gamma^{\gamma}(\delta(y-L)+\delta(y+L))\right) \\
& \left.\times\left[Y_{i j}^{u} \bar{Q}_{i} u_{j} \tilde{\Phi}+Y_{i j}^{d} \bar{Q}_{i} d_{j} \Phi+\text { h.c. }\right]\right\}
\end{aligned}
$$

Vulk terms are also the same with the mUED.
\square Here we assumed the ordinary figgs mechanism.
We assume the universal coefficient r_{1} for avoiding tree-level FCNC.
\square The system is invariant under $y \rightarrow=y$. (KK=parity is conserved.)

$$
\sin A+\pi
$$

away from 1 (mUED value)
(fie and ge are not orthonormal eash otherr)
\checkmark Zero mode Yukawa mass is identified as

$$
m_{q_{i}}=\left(\mathcal{Y}_{i i}^{q} \frac{v}{\sqrt{2}}\right) R_{Q 00}
$$

$$
R_{Q 00}=\frac{2 r_{Y}+\pi R}{2 r_{Q}+\pi R}
$$

$\square r_{Y}=-\pi R / 2$ is meaningless.

$$
\begin{aligned}
& \left.-\mathcal{Y}_{i i}^{q} \frac{v}{\sqrt{2}}\right) \int d^{4} x\left\{R_{Q 00 \bar{q}_{i L}^{(0)}} q_{i i R}^{(0)}+r_{Q 11} \bar{Q}_{Q L}^{(1)} q_{i R}^{(1)}-R_{\left.Q 11 \bar{q}_{i L}^{(1)} Q_{i R}^{(1)}+\text { h.c. }\right\}}\right. \\
& \text { Diagonalized }
\end{aligned}
$$

(fie and ge are not orthonormal each other.)
Zero mode Yukawa mass is identified as

$$
m_{q_{i}}=\left(\mathcal{Y}_{i i}^{q} \frac{v}{\sqrt{2}}\right) R_{Q 00}
$$

$$
R_{Q 00}=\frac{2 r_{Y}+\pi R}{2 r_{Q}+\pi R}
$$

$\square r_{Y}=-\pi R / 2$ is meaningless.
The mass matrix for 1 st KK quarks:

$$
\begin{gathered}
-\int d^{4} x\{\left[\bar{Q}_{i}^{(1)}, \bar{q}_{i}^{(1)}\right]_{L} \underbrace{\left[\begin{array}{cc}
M_{Q_{(1)}} & r_{Q 11}^{\prime} m_{q_{i}} \\
-R_{Q 11}^{\prime} m_{q_{i}} & M_{Q_{(1)}}
\end{array}\right]}_{\equiv \mathcal{M}_{q_{i}}^{(1)}}\left[\begin{array}{c}
Q_{i}^{(1)} \\
q_{i}^{(1)}
\end{array}\right]_{R}+\text { h.c. }\} \\
r_{Q 11}^{\prime}=\frac{r_{Q 11}}{R_{Q 00}}, \quad R_{Q 11}^{\prime}=\frac{R_{Q 11}}{R_{Q 00}}
\end{gathered}
$$

\square Two mass eigenstates are not degenerated.

Contents

1. System with brane-localized terms

2. deviations in mas * * *ouplings
3. Anomalous properties in cross section with low R-1

Values of 1st KK mass ($=1$ st KK gluon mass)

$$
\begin{gathered}
r_{X} m_{X_{(1)}}=1 / T_{X_{(1)}}=r_{X}^{\prime} m_{X_{(1)}}^{\prime} \\
\left(r_{X} \equiv r_{X}^{\prime} R, m_{X_{(1)}} \equiv m_{X_{(1)}}^{\prime} / R\right) \\
\text { scaled values }
\end{gathered}
$$

Values of 1st KK mass ($=1$ Ist KK gluon mass)

$$
\begin{array}{r}
r_{X} m_{X_{(1)}}=1 / T_{X_{(1)}}=r_{X}^{\prime} m_{X_{(1)}}^{\prime} \\
\left(r_{X} \equiv r_{X}^{\prime} R, m_{X_{(1)}} \equiv m_{X_{(1)}}^{\prime} / R\right) \\
\text { scaled values }
\end{array}
$$

Values of 1st KTK mass ($=1$ Ist KK gluon mass)

$$
\begin{array}{r}
r_{X} m_{X_{(1)}}=1 / T_{X_{(1)}}=r_{X}^{\prime} m_{X_{(1)}}^{\prime} \\
\left(r_{X} \equiv r_{X}^{\prime} R, m_{X_{(1)}} \equiv m_{X_{(1)}}^{\prime} / R\right) \\
\text { scaled values }
\end{array}
$$

Values of 1st quark masses

$$
-\int d^{4} x\{\left[\bar{Q}_{i}^{(1)}, \bar{q}_{i}^{(1)}\right]_{L} \underbrace{\left[\begin{array}{cc}
M_{Q_{(1)}} & r_{Q 11}^{\prime} m_{q_{i}} \\
-R_{Q 11}^{\prime} m_{q_{i}} & M_{Q_{(1)}}
\end{array}\right]}_{\equiv \mathcal{M}_{q_{i}}^{(1)}}\left[\begin{array}{c}
Q_{i}^{(1)} \\
q_{i}^{(1)}
\end{array}\right]_{R}+\text { h.c. }\}
$$

The mass matrix for 1st KK quarks:
I In general, Me(1) (KK mass) \geqslant Mai (SM quark mass).

Values of 1st quark masses

The mass matrix for 1st KK. quarks:

■ In general, Me(1) (KK. mass) $\geqslant \mathrm{mai}_{\text {(}}$ (SM quark mass).

for the irs rive rivors (eng: oriom); $r^{\prime} Q$ dominant (two mass eigenstates are almostr degenerated.)

for the top flavor: $r^{\prime} y$ is also effective

Values of 1st quark masses

The mass matrix for 1 st KK quarks:
\square In general, Me(!) (KK mass) $\geqslant \mathrm{m}_{\text {qi }}$ (SM quark mass).

for the top flavor: r^{\prime} y is also effective

Quark-gluon interactions

$$
\begin{aligned}
& \text { Nontrivial factor } \\
& \left.\left.\left.+\overline{\mathcal{Q}}_{i 2}^{(1)} \gamma^{\mu}\left(\left(v_{q_{i} R(21}^{(1)}\right) P_{R}+\left(v_{q_{i} L(11)}^{(1)}\right) P_{L}\right) q_{i}^{(0)}+\overline{\mathcal{Q}}_{i 1}^{(1)} \gamma^{\mu}\left(v_{q_{i} R(22)}^{(1)} P_{R}+v_{q_{i} L(12)}^{(1)} P_{L}\right) q_{i}^{(0)}\right)\right]\right\},
\end{aligned}
$$

$$
V_{q_{i} L}^{(1)}=\left[\begin{array}{cc}
v_{q_{i} L(11)}^{(1)} & v_{q_{i} L(12)}^{(1)} \\
v_{q_{i} L(21)}^{(1)} & v_{q_{i} L(22)}^{(1)}
\end{array}\right], \quad V_{q_{i} R}^{(1)}=\left[\begin{array}{cc}
v_{a_{i} R(11)}^{(1)} & v_{a_{i} R(12)}^{(1)} \\
v_{q_{i} R(21)}^{(1)} & v_{q_{i} R(22)}^{(1)}
\end{array}\right]
$$

Quark-gluon interactions

$$
\begin{aligned}
& \left.S_{\text {quark }}\right|_{\text {int }}=\int d^{4} x \sum_{i}\left\{g _ { 4 s } T ^ { a } \left[G_{\mu}^{a(0)}\left(\bar{q}_{i}^{(0)} \gamma^{\mu} q_{i}^{(0)}+\overline{\mathcal{Q}}_{i 1}^{(1)} \gamma^{\mu} \mathcal{Q}_{i 1}^{(1)}+\overline{\mathcal{Q}}_{i 2}^{(1)} \gamma^{\mu} \mathcal{Q}_{i 2}^{(1)}\right)\right.\right. \\
& \left.+G_{\mu}^{a(1)}\left(g_{G_{1} Q_{1} Q_{0}}^{\prime}\right)\left(\bar{q}_{i}^{(0)} \gamma^{\mu}\left(\vartheta_{\vartheta_{i} R(21)}^{(1)}\right) P_{R}+v_{q_{i} L 11}^{(1)}\right) P_{L}\right) \mathcal{Q}_{i 2}^{(1)}+\bar{q}_{i}^{(0)} \gamma^{\mu}\left(\vartheta_{q_{i} R(22)}^{(1)} P_{R}+\vartheta_{q_{i L 12}}^{(1)} P_{L}\right) \mathcal{Q}_{i 1}^{(1)}
\end{aligned}
$$

Nontrivial factor

$$
\left.\left.\left.\left.\left.+\overline{\mathcal{Q}}_{i 2}^{(1)} \gamma^{\mu}\left(\underline{v_{q_{i} R(21}^{(1)}}\right) P_{R}+\left(\underline{v_{q_{i L(11}}^{(1)}}\right) P_{L}\right) q_{i}^{(0)}+\overline{\mathcal{Q}}_{i 1}^{(1)} \gamma^{\mu}\left(v_{q_{i} R(22)}^{(1)}\right) P_{R}+\vartheta_{q_{i L(12}}^{(1)} P_{L}\right) q_{i}^{(0)}\right)\right]\right\},
$$

$$
\text { bi-unitary transformations: }\left[\begin{array}{l}
Q_{Q_{1}^{(1)}}^{g_{i}^{(1)}}
\end{array}\right]_{L}=V_{q_{i} L}^{(1)}\left[\begin{array}{l}
\mathcal{Q}_{i 2}^{(1)} \\
\mathcal{Q}_{i 1}^{(1)}
\end{array}\right]_{L},\left[\begin{array}{l}
Q_{Q_{1}^{(1)}}^{(1)} \\
q_{i}^{(1)}
\end{array}\right]_{R}=V_{q_{i} R}^{(1)}\left[\begin{array}{l}
\mathcal{Q}_{i 2}^{(1)} \\
\mathcal{Q}_{i 1}^{(1)}
\end{array}\right]_{R}
$$

$$
V_{q_{i} L}^{(1)}=\left[\begin{array}{ll}
v_{q_{L}}^{(1)} & v_{q_{1}}^{(1)} \\
v_{q_{i} L(12)}^{(1)} & v_{q_{i} L(22)}^{(1)}
\end{array}\right], \quad V_{q_{i} R}^{(1)}=\left[\begin{array}{ll}
v_{q_{i}}^{(1)} & v_{q_{i(1) R(12)}^{(1)}}^{(1)} \\
\left.v_{q_{i} R(21}\right) & v_{q_{i} R(22)}^{(1)}
\end{array}\right]
$$

For the first five flavors:

$$
V_{q_{i} L}^{(1)}=V_{q_{i} R}^{(1)} \approx\left[\begin{array}{cc}
-\operatorname{sgn}\left(r_{Q}^{\prime}\right) \cos \left(\frac{\pi}{4}\right) & \sin \left(\frac{\pi}{4}\right) \\
-\operatorname{sgn}\left(r_{Q}^{\prime}\right) \sin \left(\frac{\pi}{4}\right) & -\cos \left(\frac{\pi}{4}\right)
\end{array}\right] \neq\left. V_{q_{i} L}^{(1)}\right|_{\text {mUED }}=\left.V_{q_{i} R}^{(1)}\right|_{\text {mUED }} \simeq\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

discrepancy between degenerated and almost degenerated cases

The form of the nontrivial factor is as follows:

$$
\begin{aligned}
& g_{G_{1} Q_{1} Q_{0}}^{\prime} \equiv \frac{1}{N_{G_{(0)}}} \int_{-L}^{L} d y\left(1+r_{Q}(\delta(y-L)+\delta(y+L))\right) f_{G_{(1)}} f_{Q_{(1)}} f_{Q_{(0)}} \\
& =\frac{N_{Q_{(0)}}}{N_{G_{(0)}}} \frac{N_{G_{(1)}} N_{Q_{(1)}}}{S_{G_{(1)}} S_{Q_{(1)}}}\left[2 r_{Q} S_{G_{(1)}} S_{Q_{(1)}}-\frac{\sin \left(\left(M_{Q_{(1)}}+m_{G_{(1)}}\right) \frac{\pi R}{2}\right)}{M_{Q_{(1)}}+m_{G_{(1)}}}+\frac{\sin \left(\left(M_{Q_{(1)}}-m_{\left.G_{(1)}\right)} \frac{\pi R}{2}\right)\right.}{M_{Q_{(1)}}-m_{G_{(1)}}}\right]
\end{aligned}
$$

This factor is possibly important in production of 1st KK particle.

The form of the nontrivial factor is as follows:

$$
\begin{aligned}
& g_{G_{1} Q_{1} Q_{0}}^{\prime} \equiv \frac{1}{N_{G(0)}} \int_{-L}^{L} d y\left(1+r_{Q}(\delta(y-L)+\delta(y+L))\right) f_{G_{(1)}} f_{Q_{(1)}} f_{Q_{(0)}} \\
& =\frac{N_{Q_{(0)}}}{N_{G_{(0)}}} \frac{N_{G_{(1)}} N_{Q_{(1)}}}{S_{G_{(1)}} S_{Q_{(1)}}}\left[2 r_{Q} S_{G_{(1)}} S_{Q_{(1)}}-\frac{\sin \left(\left(M_{Q_{(1)}}+m_{G_{(1)}}\right) \frac{\pi R}{2}\right)}{M_{Q_{(1)}}+m_{G_{(1)}}}+\frac{\sin \left(\left(M_{Q_{(1)}}-m_{G_{(1)}}\right) \frac{\pi R}{2}\right)}{M_{Q_{(1)}}-m_{G_{(1)}}}\right]
\end{aligned}
$$

This factor is possibly important in production of 1st KK particle.

Anomalous region san be found.

Contents

1. System with brane-localized terms

2. deviations in mass \& couplings

$$
\begin{aligned}
& \text { 3. Anomenluns properies in erose section } \\
& \text { wih low f-1 }
\end{aligned}
$$

Numerical cross section calculation

We calculate the three processes:
$p p \Rightarrow G^{(1)} G^{(1)}, p p \Rightarrow G^{(1)} Q^{(1)}, p p \Rightarrow Q^{(1)} Q^{(1)}$.
[We sum up the KK. quarks' first five flavors \& particle/antiparticle.
\square We use Feynrules for launching our model, Madgraph5 for calculating the cross section.

■ We use CTEQ6L parametrization for PDF.
\square The QCD factorization/renormalization scale is fixed at sum of the masses of the final state particles.
\square We search for the range: $500 \mathrm{GeV}<M_{k k}<2$ (3) TeV © 8 (14) TeV run.

81 eV rum with $\mathrm{R}^{-1}=11 \mathrm{TeV}$

$$
G^{(0)} G^{(0)}
$$

$$
\begin{aligned}
& G^{(0)} \\
& G^{(0)} \partial G^{(1)} \\
& \begin{array}{l}
Q^{(0)} \longrightarrow \quad \cdots G^{(1)} \\
\bar{Q}^{(0)} \quad \cdot Q^{(1)} \\
\hline 0000 G^{(1)}
\end{array}
\end{aligned}
$$

$\sqrt{ }$ In $r^{\prime} G_{Q} \geqslant 0$ or $r^{\prime} Q_{1} \geqslant-1.0$, the cross section mostly depends on $r^{\prime} G$. \square S-channel is dominant:

$$
G^{(0)} G^{(0)}
$$

V In $r^{\prime} G \geqslant 0$ or $r^{\prime} Q \geqslant-1.0$, the cross section mostly depends on r^{\prime} g. \square S-channel is dominant:

In $r^{\prime} \in<0 \& r^{\prime} Q<-1.0$, anvmalu川s siruarion appears.
\square Ist KK gluon becomes heavy: lower gluon partonic flux, \square Very large value of nonirivial fastor.

In $r^{\prime} G \geqslant 0$ or $r^{\prime} Q_{2} \geqslant-1.0$, the gross section mostiy depends on $r^{\prime} G$. \square S-channel is dominant:

In $r^{\prime} G<0 \& r^{\prime} Q<-1.0$, ansmaleus sifuation appears.
\square 1st KK gluon becomes heavy: lower gluon partonic flux, \square Very large value of nonirivial fastor

The sidue of soniours is changed.
\square Mass of $Q^{(1)}$ becomes important.

The sinape of suniours is changed.

- Mass of $Q(1)$ becomes important.
\checkmark Anomalous range is enlarged.
- Less s-channel effects compared to the $G^{(1)} G^{(1)}$ case.

The sindp: of sumiours is changed.
\square Mass of $Q(1)$ becomes important.
\checkmark Anomalous range is enlarged.
\square Less s-channel effects compared to the $G(1) G(1)$ case.
Gross section differs more slowly in the Anlomalous range.
\square Nontrivial factor appears only once per diagram.

The singe of soliturs is cha

- Mass of $Q^{(1)}$ becomes important.
\checkmark Anomalous range is enlarged.
- Less s-channe! effects compared to the $G^{(1)} G^{(1)}$ case.

Gross section differs more slowly in the Anlomalous range.
\square Nontrivial factor appears only once per diagram.

The sidpa go soniours is flatten.
\square Final states are only 1 st KK. quarks, but $G^{(1)}$ appears in the t-channels.

The sisupe of soniours is flatten.
\square Final states are only 1st KK. quarks, but $G^{(!)}$appears in the t-channels.
Anomalous range is more enlarged.

- Much less s-channel dominant,
- Nontrivial factor appears twice per diagram.

The sisupe of soniours is flamorr
\square Final states are only 1 st KK. quarks, but $G(l)$ appears in the t-channels.
Anomalous range is more enlarged.
\square Much less s-channel dominant,

- Nontrivial factor appears twice per diagram.

8 TeV rum with $\mathrm{R}^{-1}=3 \mathrm{TeV}$

\square There is no anomalous region.
\square Values of cross section is almost the same in "normal" region.

14 TeV run with $\mathrm{R}^{-1}=1 \mathrm{TeV}$

\square KK mass range is the same with 8 TeV run.
\square The shapes are similar to those with 8 TeV run. (cross section is larger.)

Summary

[Gross section of 1 ist KKK particles possibly anomalous in low R^{-1}.

Iuture works

$\square K K$ top analysis.
\square Full simulation with EW sector:
\square considering Direct/indirect constraints on mode!

Thank

for

your attention

