素粒子物理学の進展、基礎物理学研究所、2012年7月

# **Compact Supersymmetry**

#### 飛岡 幸作 Kavli IPMU, 東京大学

arXiv:1206.4993[hep-ph] Collaboration with Hitoshi Murayama, Yasunori Nomura and Satoshi Shirai



# Table of my talk

#### 1. Introduction

- I. Current Situation
- II. Weaker constraint by LHC on Compressed Scenario
- 2. Compact Supersymmetry model
  - I. Scherk-Schwarz mechanism ~ Radion Mediation
  - II. Model setup
  - III. Phenomenology
- 3. Summary

1. Higgs like particle is discovered around 125 GeV

### Implication to Supersymmetry

Tightly constraints MSSM, need to boost the Higgs mass by radiative corrections:

- High scale of M<sub>SUSY</sub> (Split) and/or
- Large A term

1. Higgs like particle is discovered around 125 GeV

### Implication to Supersymmetry

Tightly constraints MSSM, need to boost the Higgs mass by radiative corrections:

- High scale of M<sub>SUSY</sub> (Split) and/or
- Large A term

Measure M<sub>SUSY</sub> arXiv:1207.3608 Sato, Shirai, Tobioka

2. No signal of Beyond Standard Model with Missing Energy



Kohsaku Tobioka (Kavli IPMU)

4/35

PPP2012, Yukawa Institute, Kyoto

2. No signal of Beyond Standard Model with Missing Energy

### Implication to Supersymmetry

- Split -> Small cross section
- R-parity violation
- Compressed Spectrum -> Small q-value (this talk)

- 2. No signal of Beyond Standard Model with Missing Energy
  - Compressed Spectrum -> Small q-value (this talk)



Kohsaku Tobioka (Kavli IPMU) 6/35

### Weaker constraint by LHC in Compressed scenario

Experimentalist's Analysis ATLAS-CONF-2011-155

- •Gluino+LSP model M<sub>gluino</sub>~350GeV
- •Squark+LSP model M<sub>squark</sub>~250GeV (Δm >100GeV)

•Gluino+Squark+LSP model M<sub>gluino</sub>=M<sub>squark</sub>~400GeV (Δm =5GeV!)



#### Actually much weaker constraint, 400 GeV <<1TeV

PPP2012, Yukawa Institute, Kyoto

Kohsaku Tobioka (Kavli IPMU) 7/35

### Weaker constraint by LHC in Compressed scenario

Theorist's Analysis LeCompte, S. P. Martin [arXiv:1111.6897]

Phenomenological model + ATLAS Multijet search  $M_{gluino} \simeq M_{squark} \sim 650 \text{GeV}$  when  $\Delta m \ge 100 \text{GeV}$  $M_2 = \left(\frac{1+2c}{3}\right) M_{\tilde{g}}$ 

Recent analysis H. K. Dreiner et al. [arXiv: 1207.1613]

Phenomenological model + Monojet/Various CMS analyses  $M_{gluino} \simeq M_{squark} \sim 650 GeV$  when  $\Delta m \ge 1 GeV$  !

Still much weaker constraint, 650 GeV <<1TeV

### Weaker constraint by LHC in Compressed scenario

Theorist's Analysis LeCompte, S. P. Martin [arXiv:1111.6897]

Phenomenological model + ATLAS Multijet search  $M_{gluino} \simeq M_{squark} \sim 650 \text{GeV}$  when  $\Delta m \ge 100 \text{GeV}$  $M_2 = \left(\frac{1+2c}{3}\right) M_{\tilde{g}}$ 

Recent analysis H. K. Dreiner et al. [arXiv: 1207.1613]

Phenomenological model + Monojet/Various CMS analyses  $M_{gluino} \simeq M_{squark} \sim 650 \text{GeV}$  when  $\Delta m \ge 1 \text{GeV}$  !

Still much weaker constraint, 650 GeV <<1TeV

Mostly based on <u>Phenomenological models</u>, Scherk-Schwarz SUSY breaking generates universal soft masses

PPP2012, Yukawa Institute, Kyoto Kohsaku Tobioka (Kavli IPMU) 9/35

# Table of my talk

### ✓ 1. Introduction

- I. Current Situation
- II. Weaker constraint by the LHC on Compressed Scenario
- 2. Compact Supersymmetry model
  - I. Scherk-Schwarz mechanism ~ Radion Mediation
  - II. Model setup
  - III. Phenomenology
- 3. Summary

### Scherk-Schwarz mechanism

[Scherk and Schwarz (1979)]

□ 5D Minimal SUSY (corresponding to  $\mathcal{N}=2$  in 4D) □ Geometry: S<sup>1</sup>/Z<sub>2</sub> (chiral for zero mode,  $\mathcal{N}=1$  in 4D)

Kohsaku Tobioka (Kavli IPMU) 11/35

### Scherk-Schwarz mechanism

#### [Scherk and Schwarz (1979)]

■ 5D Minimal SUSY (corresponding to  $\mathcal{N}=2$  in 4D) ■ Geometry:  $S^{1}/Z_{2}$  (chiral for zero mode,  $\mathcal{N}=1$  in 4D) ■ Non-trivial boundary condition on  $SU(2)_{R}$  space breaks supersymmetry =Scherk-Schwarz mechanism

Non-trivial B.C.

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} (x_{\mu}, y + 2\pi R) = e^{-2\pi i \alpha \sigma_2} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} (x_{\mu}, y)$$

y: 5<sup>th</sup> dimensional coordinate R: radius of extra dimension Continuous twist parameter We take  $\alpha << 1$ 

### Scherk-Schwarz mechanism

#### [Scherk and Schwarz (1979)]

■ 5D Minimal SUSY (corresponding to  $\mathcal{N}=2$  in 4D) ■ Geometry:  $S^1/Z_2$  (chiral for zero mode,  $\mathcal{N}=1$  in 4D) ■ Non-trivial boundary condition on  $SU(2)_R$  space breaks supersymmetry =Scherk-Schwarz mechanism

Non-trivial B.C.

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} (x_{\mu}, y + 2\pi R) = e^{-2\pi i \alpha \sigma_2} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} (x_{\mu}, y)$$

y: 5<sup>th</sup> dimensional coordinate R: radius of extra dimension

Resulting KK decomposition

$$\begin{aligned} \left. \right) (x_{\mu}, y) &= \sum_{n=0}^{\infty} e^{-i\alpha\sigma_2 y/R} \left( \begin{array}{c} \lambda_1^{(n)}(x_{\mu}) \cos[ny/R] \\ \lambda_2^{(n)}(x_{\mu}) \sin[ny/R] \end{array} \right) \\ & \supset \left( \begin{array}{c} \lambda_1^{(0)}(x_{\mu}) \cos[\alpha y/R] \\ \lambda_1^{(0)}(x_{\mu}) \sin[\alpha y/R] \end{array} \right) \end{aligned}$$

5D derivative generates (soft) masses in 4D

$$m_n = \begin{cases} \alpha/R & \text{zero mode} \\ (\alpha \pm n)/R & \text{non-zero modes} \end{cases}$$

We take  $\alpha <<1$ 

Continuous twist parameter

PPP2012, Yukawa Institute, Kyoto

Kohsaku Tobioka (Kavli IPMU)

## Field Properties in 5th dimension

Fields:  $V, \chi, \Phi, \Phi^c$  Higgs localized at y=0:  $H_u(x), H_d(x)$ 

- V:Vector superfield
- $\chi_{\rm c}$  : Adjoint chiral superfield
- $\Phi^{(c)}$ : Hypermultiplet of matter fields  $\phi^{(c)}, \psi$

$$A_{\mu}, \lambda_{1}$$
$$\lambda_{2}, A_{5}, \Sigma$$
$$\phi^{(c)}, \psi^{(c)}$$

## Field Properties in 5th dimension

Fields: 
$$V, \chi, \Phi, \Phi^c$$

Higgs localized at y=0: 
$$H_u(x), H_d(x)$$

V :Vector superfield  $\chi$  : Adjoint chiral superfield  $\Phi^{(c)}$ : Hypermultiplet of matter fields

Inversion

$$\binom{V(x,-y)}{\chi(x,-y)} = \binom{V(x,y)}{-\chi(x,y)}$$

$$\begin{pmatrix} \Phi(x,-y) \\ \Phi^c(x,-y) \end{pmatrix} = \begin{pmatrix} \Phi(x,y) \\ -\Phi^c(x,y) \end{pmatrix}$$

$$egin{aligned} &A_{\mu},\lambda_{1}\ &\lambda_{2},\ A_{5},\ \Sigma\ &\phi^{(c)},\psi^{(c)} \end{aligned}$$

#### Translation (SS mechanism)

15/35

For  $SU(2)_R$  doublets, common twist

$$\begin{pmatrix} \lambda_1(x, y + 2\pi R) \\ \lambda_2(x, y + 2\pi R) \end{pmatrix} = e^{-2\pi\alpha\sigma_2} \begin{pmatrix} \lambda_1(x, y) \\ \lambda_2(x, y) \end{pmatrix}$$
$$\begin{pmatrix} \phi(x, y + 2\pi R) \\ \phi^{c\dagger}(x, y + 2\pi R) \end{pmatrix} = e^{-2\pi\alpha\sigma_2} \begin{pmatrix} \phi(x, y) \\ \phi^{c\dagger}(x, y) \end{pmatrix}$$

For others,  $\frac{\text{same for gravitinos}}{X(x, y + 2\pi R) = X(x, y)}$ 

PPP2012, Yukawa Institute, Kyoto

Kohsaku Tobioka (Kavli IPMU)

## Field Properties in 5th dimension

Fields: 
$$V, \chi, \Phi, \Phi^c$$

Higgs localized at y=0: 
$$H_u(x), H_d(x)$$

V :Vector superfield $\overset{\mathcal{F}}{\chi}$  $\chi$  : Adjoint chiral superfield $\overset{\mathcal{F}}{\chi}$  $\Phi^{(c)}$ : Hypermultiplet of matter fields $\phi$ 

Inversion

$$\binom{V(x,-y)}{\chi(x,-y)} = \binom{V(x,y)}{-\chi(x,y)}$$

$$\begin{pmatrix} \Phi(x,-y) \\ \Phi^c(x,-y) \end{pmatrix} = \begin{pmatrix} \Phi(x,y) \\ -\Phi^c(x,y) \end{pmatrix}$$

$$egin{array}{lll} A_{\mu},\lambda_{1}\ \lambda_{2},\ A_{5},\ \Sigma\ \phi^{(c)},\psi^{(c)} \end{array}$$

Translation (SS mechanism)

For SU(2)<sub>R</sub> doublets, common twist

$$\begin{pmatrix} \lambda_1(x, y + 2\pi R) \\ \lambda_2(x, y + 2\pi R) \end{pmatrix} = e^{-2\pi\alpha\sigma_2} \begin{pmatrix} \lambda_1(x, y) \\ \lambda_2(x, y) \end{pmatrix}$$
$$\begin{pmatrix} \phi(x, y + 2\pi R) \\ \phi^{c\dagger}(x, y + 2\pi R) \end{pmatrix} = e^{-2\pi\alpha\sigma_2} \begin{pmatrix} \phi(x, y) \\ \phi^{c\dagger}(x, y) \end{pmatrix}$$

For others,  $\frac{\text{same for gravitinos}}{X(x, y + 2\pi R) = X(x, y)}$ 

PPP2012, Yukawa Institute, Kyoto Ronsaka rooma (Ravii IPMU) **16/35** 

### Radion Mediation ~ SS mechanism

Radion mediation: SUSY breaking by the Radion superfield vev  $T = R + iB_5 + \theta \Psi_R^5 + \theta^2 F_T$ 

~Dynamical realization of Scherk-Schwarz mechanism

[D.Marti and A.Pomarol(2001), D.Kaplan and N. Weiner(2001)]

Kohsaku Tobioka (Kavli IPMU) 17/35

### Radion Mediation ~ SS mechanism

Radion mediation: SUSY breaking by the Radion superfield vev  $T = R + iB_5 + \theta \Psi_R^5 + \theta^2 F_T$ 

~Dynamical realization of Scherk-Schwarz mechanism

[D.Marti and A.Pomarol(2001), D.Kaplan and N. Weiner(2001)]



#### Matter sector

$$S_5 = \int dx^4 dy \left[ \frac{1}{4g_5^2} \int d^4\theta \, \frac{T + T^{\dagger}}{2R} \left( \Phi^{\dagger} e^{-V} \Phi + \Phi^c e^V \Phi^{c\dagger} \right) + \int d^2\theta \, \Phi^c \left( \partial_5 - \frac{\chi}{\sqrt{2}} \right) \Phi + \text{h.c.} \right]$$

<u>Radion vev:</u>  $\langle T \rangle = R + F_T \theta^2$   $\frac{F_T}{2} = -\alpha$ 

Canonically normalize: 
$$\Phi^{(c)} \rightarrow \left(1 - \frac{F_T}{2R}\theta^2\right) \Phi^{(c)}, \ \chi \rightarrow \left(1 + \frac{F_T}{2R}\theta^2\right) \chi$$

Actually this theory is identified as SSSB

PPP2012, Yukawa Institute, Kyoto

Kohsaku Tobioka (Kavli IPMU)

Higgs fields and Yukawa interactions are localized on the brane at y=0  $\mathcal{L}_{\text{brane}} = \delta(y) \int d^2 \theta \left( y_U^{ij} Q_i U_j H_u + y_D^{ij} Q_i D_j H_d + y_E^{ij} L_i E_j H_d + \mu H_u H_d \right).$ 



PPP2012, Yukawa Institute, Kyoto

Kohsaku Tobioka (Kavli IPMU)

Higgs fields and Yukawa interactions are localized on the brane at y=0  $\mathcal{L}_{\text{brane}} = \delta(y) \int d^2\theta \left( y_U^{ij} Q_i U_j H_u + y_D^{ij} Q_i D_j H_d + y_E^{ij} L_i E_j H_d + \mu H_u H_d \right).$ 

Large A term is generated by the field redefinition



PPP2012, Yukawa Institute, Kyoto

Kohsaku Tobioka (Kavli IPMU)

Take alpha<<1</li>
KK states(~n/R) are decoupled ->MSSM at low energy
Compact parameter set rather than CMSSM:

At tree level and at scale ~1/R,

$$M_{1/2} = \frac{\alpha}{R}, \quad m_{\tilde{Q},\tilde{U},\tilde{D},\tilde{L},\tilde{E}}^2 = \left(\frac{\alpha}{R}\right)^2, \quad m_{H_u,H_d}^2 = 0,$$
$$A_0 = -\frac{2\alpha}{R}, \quad \mu \neq 0, \quad B = 0,$$

Take alpha<<1</li>
KK states(~n/R) are decoupled ->MSSM at low energy
Compact parameter set rather than CMSSM:

At tree level and at scale ~1/R,

$$M_{1/2} = \frac{\alpha}{R}, \quad m_{\tilde{Q},\tilde{U},\tilde{D},\tilde{L},\tilde{E}}^2 = \left(\frac{\alpha}{R}\right)^2, \quad m_{H_u,H_d}^2 = 0,$$
$$A_0 = -\frac{2\alpha}{R}, \quad \mu \neq 0, \quad B = 0,$$

Radiative corrections from at and above 1/R are under control because of symmetries of higher dimensions

Calculated threshold corrections to the Higgs mass parameters

$$\begin{split} \delta m_{H_u}^2 &= \left( -\frac{33y_t^2}{8\pi^2} + \frac{9(g_2^2 + g_1^2/5)}{16\pi^2} \right) \left( \frac{\alpha}{R} \right)^2, \\ \delta m_{H_d}^2 &= \frac{9(g_2^2 + g_1^2/5)}{16\pi^2} \left( \frac{\alpha}{R} \right)^2, \\ \delta B &= \left( \frac{9y_t^2}{8\pi^2} - \frac{3(g_2^2 + g_1^2/5)}{8\pi^2} \right) \frac{\alpha}{R}, \end{split}$$

PPP2012, Yukawa Institute, Kyoto

Kohsaku Tobioka (Kavli IPMU) 22/35

Take alpha<<1</li>
KK states(~n/R) are decoupled ->MSSM at low energy
Compact parameter set rather than CMSSM:

At tree level and at scale ~1/R,

$$M_{1/2} = \frac{\alpha}{R}, \quad m_{\tilde{Q},\tilde{U},\tilde{D},\tilde{L},\tilde{E}}^2 = \left(\frac{\alpha}{R}\right)^2, \quad m_{H_u,H_d}^2 = 0,$$
$$A_0 = -\frac{2\alpha}{R}, \quad \mu \neq 0, \quad B = 0,$$

Radiative corrections from at and above 1/R are under control because of symmetries of higher dimensions

Calculated threshold corrections to the Higgs mass parameters

$$\begin{split} \delta m_{H_u}^2 &= \left( -\frac{33y_t^2}{8\pi^2} + \frac{9(g_2^2 + g_1^2/5)}{16\pi^2} \right) \left( \frac{\alpha}{R} \right)^2, \\ \delta m_{H_d}^2 &= \frac{9(g_2^2 + g_1^2/5)}{16\pi^2} \left( \frac{\alpha}{R} \right)^2, \\ \delta B &= \left( \frac{9y_t^2}{8\pi^2} - \frac{3(g_2^2 + g_1^2/5)}{8\pi^2} \right) \frac{\alpha}{R}, \end{split}$$

Only three parameters!

$$\frac{1}{R}, \qquad \frac{\alpha}{R}, \qquad \mu.$$

23/35

PPP2012, Yukawa Institute, Kyoto

Kohsaku Tobioka (Kavli IPMU)

Take alpha<<1</li>
KK states(~n/R) are decoupled ->MSSM at low energy
Compact parameter set rather than CMSSM:

At tree level and at scale ~1/R,

$$M_{1/2} = \frac{\alpha}{R}, \quad m_{\tilde{Q},\tilde{U},\tilde{D},\tilde{L},\tilde{E}}^2 = \left(\frac{\alpha}{R}\right)^2, \quad m_{H_u,H_d}^2 = 0,$$
$$A_0 = -\frac{2\alpha}{R}, \quad \mu \neq 0, \quad B = 0,$$

Radiative corrections from at and above 1/R are under control because of symmetries of higher dimensions

Calculated threshold corrections to the Higgs mass parameters

$$\begin{split} \delta m_{H_u}^2 &= \left( -\frac{33y_t^2}{8\pi^2} + \frac{9(g_2^2 + g_1^2/5)}{16\pi^2} \right) \left( \frac{\alpha}{R} \right)^2, \\ \delta m_{H_d}^2 &= \frac{9(g_2^2 + g_1^2/5)}{16\pi^2} \left( \frac{\alpha}{R} \right)^2, \\ \delta B &= \left( \frac{9y_t^2}{8\pi^2} - \frac{3(g_2^2 + g_1^2/5)}{8\pi^2} \right) \frac{\alpha}{R}, \end{split}$$
 Only three parameters!

•No physical phase •Geometry is universal •PP2012, Yukawa Institute, Kyoto •No physical phase •Geometry is universal •CP •Flavor

#### Brane-localized kinetic terms and cutoff

Radiative corrections from above 1/R generates boundary kinetic terms from dimensional analysis

$$\frac{\delta M_{1/2}}{M_{1/2}}, \, \frac{\delta m_{\tilde{f}}^2}{m_{\tilde{f}}^2}, \, \frac{\delta A_0}{A_0} \approx O\left(\frac{1}{16\pi^2}\ln(\Lambda R)\right).$$

□ Assume the tree level contributions are same size of radiative ones  $\sim \frac{y_t^2}{16\pi^2} O(1)$ 

Effective theory with tree level estimation of soft parameters is valid for  $~\Lambda R \ll 16\pi^2$ 

#### Power of $\mathcal{N}=2$

□  $S^1/Z_2$  orbifolding makes zero modes chiral, but higher KK modes consists  $\mathcal{N}$ =2 multiplets □ No wavefunction renormalization of hypermultiplet in  $\mathcal{N}$ =2 SUSY

$$S_5 = \int dx^4 dy \left[ \frac{1}{4g_5^2} \int d^4\theta \, \frac{T+T^{\dagger}}{2R} \left( \Phi^{\dagger} e^{-V} \Phi + \Phi^c e^V \Phi^{c\dagger} \right) + \int d^2\theta \, \Phi^c \left( \partial_5 - \frac{\chi}{\sqrt{2}} \right) \Phi + \text{h.c.} \right]$$

• Even log divergences are cancelled out for each KK mode (n>0)

Only MSSM(n=0) particles give log divergences

#### Gravitino mass

Obviously the SU(2)R doublets should have same soft mass from their 5d derivatives

SUSY breaking is from Radion

•GR action  $M_{pl}^2 \mathcal{R} \to M_{pl}^2 \left( \frac{T+T^{\dagger}}{R} \right)^2$   $\left( g_{55} \to \frac{T+T^{\dagger}}{R} \right)$ •Gravitino n Radion sho normalized  $M_{3/2} \sim \frac{\leq}{R}$ 

•Gravitino mass Radion should be canonically normalized

$$M_{3/2} \sim \frac{\langle \mathcal{F} \rangle}{M_{pl}} \sim \frac{(F_T/R)M_{pl}}{M_{pl}}$$

$$M_{1/2, \text{ squark, slepton}} = M_{3/2} = \frac{\alpha}{R}$$

PPP2012, Yukawa Institute, Kyoto

Kohsaku Tobioka (Kavli IPMU)

# Spectrum



Point1:  $\alpha/R = 1400 \text{ GeV}, \ 1/R = 10^4 \text{ GeV}$ Point2:  $\alpha/R = 800 \text{ GeV}, \ 1/R = 10^5 \text{ GeV}$ 

| Particle               | Point1 | Point2 | Particle               | Point1 | Point2 |
|------------------------|--------|--------|------------------------|--------|--------|
| $	ilde{g}$             | 1494   | 949    | _                      | _      | _      |
| $	ilde{u}_L$           | 1467   | 939    | $\tilde{u}_R$          | 1459   | 925    |
| $	ilde{d}_L$           | 1469   | 942    | $\widetilde{d}_R$      | 1458   | 924    |
| $\tilde{b}_2$          | 1460   | 924    | $\tilde{b}_1$          | 1430   | 875    |
| $	ilde{t}_2$           | 1557   | 988    | $\tilde{t}_1$          | 1267   | 681    |
| $\tilde{\nu}$          | 1411   | 822    | $\tilde{\nu}_{\tau}$   | 1410   | 822    |
| $\tilde{e}_L$          | 1413   | 826    | $\tilde{e}_R$          | 1406   | 812    |
| $	ilde{	au}_2$         | 1417   | 823    | $\tilde{\tau}_1$       | 1402   | 809    |
| $	ilde{\chi}_1^0$      | 767    | 630    | $\tilde{\chi}_2^0$     | 777    | 671    |
| $	ilde{\chi}^0_3$      | 1384   | 755    | $	ilde{\chi}_4^0$      | 1410   | 821    |
| $\tilde{\chi}_1^{\pm}$ | 771    | 642    | $\tilde{\chi}_2^{\pm}$ | 1409   | 817    |
| $h^0$                  | 125    | 120    | $H^0$                  | 819    | 718    |
| $A^0$                  | 819    | 717    | $H^{\pm}$              | 822    | 722    |

PPP2012, Yukawa Institute, Kyoto

Kohsaku Tobioka (Kavli IPMU)

# Spectrum



Point1:  $\alpha/R = 1400 \text{ GeV}, \ 1/R = 10^4 \text{ GeV}$ Point2:  $\alpha/R = 800 \text{ GeV}, \ 1/R = 10^5 \text{ GeV}$ 

| Particle               | Point1 | Point2 | Particle               | Point1 | Point2 |
|------------------------|--------|--------|------------------------|--------|--------|
| $	ilde{g}$             | 1494   | 949    | _                      | _      | _      |
| $	ilde{u}_L$           | 1467   | 939    | $	ilde{u}_R$           | 1459   | 925    |
| $\widetilde{d}_L$      | 1469   | 942    | $\widetilde{d}_R$      | 1458   | 924    |
| $\tilde{b}_2$          | 1460   | 924    | $\tilde{b}_1$          | 1430   | 875    |
| $\tilde{t}_2$          | 1557   | 988    | $\tilde{t}_1$          | 1267   | 681    |
| $\tilde{\nu}$          | 1411   | 822    | $\tilde{\nu}_{\tau}$   | 1410   | 822    |
| $\tilde{e}_L$          | 1413   | 826    | $\tilde{e}_R$          | 1406   | 812    |
| $	ilde{	au}_2$         | 1417   | 823    | $\tilde{\tau}_1$       | 1402   | 809    |
| $	ilde{\chi}^0_1$      | 767    | 630    | $	ilde{\chi}^0_2$      | 777    | 671    |
| $	ilde{\chi}^0_3$      | 1384   | 755    | $	ilde{\chi}_4^0$      | 1410   | 821    |
| $\tilde{\chi}_1^{\pm}$ | 771    | 642    | $\tilde{\chi}_2^{\pm}$ | 1409   | 817    |
| $h^0$                  | 125    | 120    | $H^0$                  | 819    | 718    |
| $A^0$                  | 819    | 717    | $H^{\pm}$              | 822    | 722    |

Spectra are available! http://www-theory.lbl.gov/~shirai/compactSUSY.php

PPP2012, Yukawa Institute, Kyoto

Kohsaku Tobioka (Kavli IPMU)

# Spectrum and LHC constraint



PPP2012, Yukawa Institute, Kyoto

Kohsaku Tobioka (Kavli IPMU)

# Higgs mass and tuning



 $\Delta^{-1} \equiv \min_{x} |\partial \ln m_{Z}^{2} / \partial \ln x|^{-1}$  with  $x = \alpha, \mu, 1/R, y_{t}, g_{3}, \cdots$ 

Spectra are available! http://www-theory.lbl.gov/~shirai/compactSUSY.php

Kohsaku Tobioka (Kavli IPMU) 31/35

# Possible NMSSM extension

Work in progress [Murayama, Nomura, Shirai, KT]

Singlet Hypermultiplet in the bulk

$$W_{NMSSM} = \left(\lambda SH_uH_d + \frac{1}{3}\kappa S^3\right)\,\delta(y)$$

Again, soft parameters of singlet are automatically determined by SS mechanism

$$V_{soft}^{\text{NMSSM}} = (a_{\lambda}SH_{u}H_{d} + \frac{1}{3}a_{\kappa}S^{3} + \text{h.c.}) + m_{s}|S|^{2}$$

where 
$$a_{\lambda} = -\frac{\alpha}{R}, \ a_{\kappa} = -\frac{3\alpha}{R}, \ m_s^2 = \left(\frac{\alpha}{R}\right)^2,$$

•No CP violation source•Cubic term of *S* is important for vacuum

#### Not necessarily consider the landau pole

• Relatively free  $\lambda, \kappa$  realize various Higgs mass

# **Dark Matter Nature**

 $\square$  Thermal relic of LSP is not enough for observed DM density unless LSP  $\gtrsim {\rm TeV}$   $$\Omega_{\rm DM}h^2\simeq 0.1$$ 

•Relic abundance

 $\alpha/R$  [GeV]



Direct detection of DM does not exclude this scenario, and the future update will be interesting

PPP2012, Yukawa Institute, Kyoto

Kohsaku Tobioka (Kavli IPMU)

# Summary

Compressed scenario is rather difficult to test at the LHC
This scenario is realized by Compact SUSY model

This model has only 3 parameters (No Flavor and CP problem)
Less fine-tuned than CMSSM, and alive in sub-TeV

□ Large radiative corrections boost Higgs mass (up to 125GeV?)

LSP is sub-dominant component of DM

### Future work

- Higgs sector and DM in NMSSM
- Non-thermal production of DM
- Non-trivial radiative corrections from KK modes
- Correspondence of SS mechanism and Radion mediation

### Thank you for your attention

### ありがとうございました

PPP2012, Yukawa Institute, Kyoto

Kohsaku Tobioka (Kavli IPMU)

#### ATLAS-CONF-2011-155



PPP2012, Yukawa Institute, Kyoto Kohsaku Tobioka (Kavli IPMU)

#### ATLAS-CONF-2011-155



#### T.J. LeCompte, S. P. Martin [arXiv:1111.6897]



$$M_1 = \left(\frac{1+5c}{6}\right) M_{\tilde{g}}, \qquad M_2 = \left(\frac{1+2c}{3}\right) M_{\tilde{g}}.$$

PPP2012, Yukawa Institute, Kyoto

Kohsaku Tobioka (Kavli IPMU)