g-2
 - Recent progress on the lattice -

Norikazu Yamada (KEK, GUAS)

Thanks to
Tom Blum, Masashi Hayakawa, and Taku Izubuchi for many discussions and providing materials

- Slides given by Tom Blum and Taku Izubuchi@Lattice 2012 http://www.physics.adelaide.edu.au/cssm/lattice2012/program.php
- Many talks@2nd Workshop on Muon g-2 and EDM in the LHC Era https://indico.in2p3.fr/conferenceOtherViews.py?view=standard\&confId=6637
-Endo-san @ this workshop

Introduction

Particle having spin feels potential in the external magnetic field.

$$
V(x)=-\vec{\mu}_{l} \cdot \vec{B}
$$

Particle's magnetic moment $\mu_{l} \propto$ its spin.

$$
\vec{\mu}_{l}=g_{l} \frac{e}{2 m_{l}} \vec{S}_{l}
$$

g_{l} : Landé g-factor (= 2 for elementary fermions@tree level)
Anomalous magnetic moment (g-2): Deviation from 2

$$
a_{l}=\frac{g_{l}-2}{2}
$$

Introduction

At tree level, $\quad F_{1}\left(q^{2}\right)=1, \quad F_{2}\left(q^{2}\right)=0$

After quantum correction $\Rightarrow a_{l}=F_{2}(0)$

Experimental status of $(g-2)_{e}$ and $(g-2)_{\mu}$

$$
\begin{array}{llll}
\hline a_{e}^{\text {EXP }}=\left(\begin{array}{llll}
11596 & 521.807 & 6 & \pm 0.0027
\end{array}\right) & \times 10^{-10} \\
a_{\mu}^{\text {EXP }} & =\left(\begin{array}{lll}
11659 & 208.9 & \pm 6.3
\end{array}\right) & \times 10^{-10} \\
\hline
\end{array}
$$

Theoretical calcs. are important because
a_{e} tests validity of QED or (perturbative) field theory Determining $\alpha_{Q E D}$ (important in EW precision test)
a_{μ} tests the SM or constraints BSM
Much more sensitive to heavy dof than a_{e} by $\left(m_{\mu} / m_{e}\right)^{2}$

Current status of $(g-2)_{\mu}$

K. Hagiwara, R. Liao, A. D. Martin, D. Nomura and T.Teubner, J. Phys. G: Nucl. Part. Phys. 38 (20II) 085003

5-loop calc. in QED part completed!

T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, arXiv:1205.5370 [hep-ph];arXiv:1205.5368 [hep-ph]

$$
\begin{aligned}
& a_{e}{ }^{\mathrm{EXP}}-a_{e}{ }^{\mathrm{THEORY}}=-1.09(83) \times 10^{-12} \\
& \alpha^{-1} \mathrm{QED}=137.035999166(34)[0.25 \mathrm{ppb}] \\
& a_{\mu}(\mathrm{QED} \text { part })=11658471.8853(9)(19)(7)(29) \times 10^{-10} \\
& {\left[\text { using } \alpha^{-1} \mathrm{QED} \text { above }\right]} \\
& a_{\mu}{ }^{\mathrm{SM}}=11659184.0(5.9) \times 10^{-10} \\
& {\left[2.9 \sigma \text { between this and EXP. } a_{\mu}(\mathrm{Hlbl})=11.6(4.0) \text { is used. }\right]}
\end{aligned}
$$

Classification of diagrams

Breakdown

K. Hagiwara, R. Liao, A. D. Martin, D. Nomura and T.Teubner, J. Phys. G: Nucl. Part. Phys. 38 (20 I I) 085003

$$
a_{\mu}^{\mathrm{SM}}=\left(\begin{array}{lllll}
11 & 659 & 182.8 & \pm 4.9
\end{array}\right) \times 10^{-10}
$$

$$
a_{\mu}^{\mathrm{EXP}}-a_{\mu}^{\mathrm{SM}}=(26.1 \pm 8.0) \times 10^{-10}
$$

- Discrepancy between EXP and SM is larger than EW!

$$
\begin{aligned}
& a_{\mu}^{\mathrm{QED}}=\left(\begin{array}{llll}
11 & 658 & 471.808 & \pm 0.015
\end{array}\right) \times 10^{-10}
\end{aligned}
$$

Breakdown

K. Hagiwara, R. Liao, A. D. Martin, D. Nomura and T.Teubner, J. Phys. G: Nucl. Part. Phys. 38 (20 I I) 085003

$$
a_{\mu}^{\mathrm{SM}}=\left(\begin{array}{lllll}
11 & 659 & 182.8 & \pm 4.9
\end{array}\right) \times 10^{-10}
$$

$$
a_{\mu}^{\mathrm{EXP}}-a_{\mu}^{\mathrm{SM}}=(26.1 \pm 8.0) \times 10^{-10}
$$

- Discrepancy between EXP and SM is larger than EW!
- Currently the dominant uncertainty comes from HVP.

Breakdown

K. Hagiwara, R. Liao, A. D. Martin, D. Nomura and T.Teubner, J. Phys. G: Nucl. Part. Phys. 38 (20 I I) 085003

$$
a_{\mu}^{\mathrm{SM}}=\left(\begin{array}{lllll}
11 & 659 & 182.8 & \pm 4.9
\end{array}\right) \times 10^{-10}
$$

$$
a_{\mu}^{\mathrm{EXP}}-a_{\mu}^{\mathrm{SM}}=(26.1 \pm 8.0) \times 10^{-10}
$$

- Discrepancy between EXP and SM is larger than EW!
- Currently the dominant uncertainty comes from HVP.
- Theoretical estimate of Hlbl is really under control?

Breakdown

K. Hagiwara, R. Liao, A. D. Martin, D. Nomura and T.Teubner, J. Phys. G: Nucl. Part. Phys. 38 (20 I I) 085003

$$
a_{\mu}^{\mathrm{SM}}=\left(\begin{array}{lllll}
11 & 659 & 182.8 & \pm 4.9
\end{array}\right) \times 10^{-10}
$$

$$
a_{\mu}^{\mathrm{EXP}}-a_{\mu}^{\mathrm{SM}}=(26.1 \pm 8.0) \times 10^{-10}
$$

- Discrepancy between EXP and SM is larger than EW!
- Currently the dominant uncertainty comes from HVP.
- Theoretical estimate of Hlbl is really under control?
$\bullet \mathrm{LQCD} \Rightarrow$ the first principles' estimate for the hadronic parts.

Contents

1.Introduction

2.Leading order hadronic contribution (HVP)
3.Hadronic light-by-light contribution (Hlbl) + ...
4.Summary

Leading order hadronic contribution (HVP)

Hadronic Vacuum Polarization (HVP)

- Current best estimate using dispersion relation and $\sigma_{\text {total }}(\mathrm{e}+\mathrm{e}-)$

$$
a_{\mu}^{\mathrm{HVP}}=\frac{1}{4 \pi^{2}} \int_{4 m_{\pi}^{2}}^{\infty} d s K(s) \sigma_{\text {total }}(s)
$$

$K(s)$: known function

$$
\begin{aligned}
& a_{\mu}^{\text {had,LOVP }}=\left(\begin{array}{rl}
694.91 & \pm 4.27 \\
a_{\mu}^{\text {had,HOVP }}=\left(\begin{array}{rl}
& -9.84
\end{array} \pm \pm 0.07\right.
\end{array}\right) \times 10^{-10} \\
&
\end{aligned}
$$

Current uncertainty ~0.6 \%!
$\sim 0.3 \%$ in 3-5 years?
depending on upcoming e+e- EXP and existing Belle data.

HVP on the lattice т. Blum, PRL91(2003)052001

- $f\left(Q^{2}\right)$ is known and singular toward $Q^{2} \rightarrow 0$.
- The integral is dominated by small Q^{2} region.

HVP on the lattice [pioneering work]

T. Blum, PRL91(2003)052001

$$
\Pi_{\mu \nu}(Q)=i \int d^{4} x e^{i Q \cdot x}\langle 0| T\left[j_{\mu}(x) j_{\nu}(0)\right]|0\rangle|0\rangle=\left(Q_{\mu} Q_{\nu}-Q^{2} g_{\mu \nu}\right) \Pi\left(Q^{2}\right)
$$

- Quenched approximation
 - $O\left(a^{2}\right)$ error at large Q^{2}. \Rightarrow Use PT for high Q^{2}.
- L sets the non-zero minimum momentum, $q^{\text {lat }} \sim 2 \pi / L$.
- $a_{\mu}{ }^{\mathrm{LOHVP}}=460(78) \times 10^{-10}$ ($@ m_{q} \sim m_{s}$) is roughly consistent with what is expected in quench.

Feasibility was demonstrated!

HVP on the lattice [recent calc.]

 ex) P. Boyle, L. Del Debbio, E. Kerrane and J. Zanotti, PRD85, 074504(2012)$$
\Pi_{\mu \nu}(Q)=i \int d^{4} x e^{i Q \cdot x}\langle 0| T\left[j_{\mu}(x) j_{\nu}(0)\right]|0\rangle|0\rangle=\left(Q_{\mu} Q_{\nu}-Q^{2} g_{\mu \nu}\right) \Pi\left(Q^{2}\right)
$$

Source of uncertainties

- Quench approximation
- Disconnected diagram ($\approx \mathrm{O}(10 \%)$?)

- Finite volume effect (not seen at present accuracy)
- Discretization error (not seen at present accuracy)
- Need more data in small mom. region
- Chiral extrapolation
- Statistical error

Importance of small q^{2} region

$$
\int_{0}^{Q_{C}^{2}} d Q^{2} f\left(Q^{2}\right) \times \hat{\Pi}\left(Q^{2}\right) \rightarrow \int_{0}^{1} d t f\left(Q^{2}\right) \times \hat{\Pi}\left(Q^{2}\right) \times \frac{Q^{2}}{t^{2}} \quad \text { where } \quad t=\frac{1}{1+\log \frac{Q_{C}^{2}}{Q^{2}}}
$$

- In dominant region, only a few points exists, and they are inaccurate.
- More accurate data in this region are clearly favorable.

Twisted boundary condition

```
P.F. Bedaque, PLB }593\mathrm{ (2004) 82; C.T. Sachrajda and G. Villadoro, PLB }609\mathrm{ (2005)}7
```


B. Jaeger [Mainz group] @ Lattice 2012

- On a torus, the action must be single-valued, while fields do not have to be.
- Impose the twisted boundary condition on quark fields.

$$
q(x+L)=q(x) e^{i \theta}
$$

(θ :arbitrary)

- q^{2} can be arbitrary small.

Chiral extrapolation

- One of the dominant sys. errors ~ 5%
- Functional form unknown
- Simulations@physical m_{q} are becoming a trend.
\Rightarrow no need to extrapolation or only a small extrapolation in future
P. Boyle, L. Del Debbio, E. Kerrane and J. Zanotti, PRD85, 074504(2012)

Statistical error

E. Shintani and T. Izubuchi, poster@Lattice 2012; Blum, Izubuchi, Shintani, et al.,(RBC/UKQCD)

New error reduction technique, All Mode Averaging (AMA), significantly reduces stat. error $(\times 1 / 5 \sim 1 / 20)$!

- Full use of translational invariance.
- Wide range of application
- Stat. error won't limit the accuracy.
- Potentially a game changer?

Summary of recent lattice calc. of HVP

a_{μ}	N_{f}	errors	action	group
$713(15)$	$2+1$	stat.	Asqtad	Aubin, Blum (2006)
$748(21)$	$2+1$	stat.	Asqtad	Aubin, Blum (2006)
$641(33)(32)$	$2+1$	stat., sys.	DWF	UKQCD (2011)
$572(16)$	2	stat.	TM	ETMC (2011)
$618(64)$	$2+1^{1}$	stat., sys.	Wilson	Mainz (2011)

presented by T. Blum@Lattice 2012
0.5% accuracy is challenging, but we should be able to come close to it by combining

Twisted b.c. + Simulation@physical $m_{q}+\mathrm{AMA}+\ldots$ and Supercomputer.

Hadronic light-by-light contribution

Hadronic light-by-light

$$
\begin{gathered}
\Gamma_{\mu}^{(\mathrm{Hlbl})}\left(p_{2}, p_{1}\right)=i e^{6} \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \frac{\Pi_{\mu \nu \rho \sigma}^{(4)}\left(q, k_{1}, k_{3}, k_{2}\right)}{k_{1}^{2} k_{2}^{2} k_{3}^{2}} \\
\times \gamma_{\nu} S^{(\mu)}\left(p_{2}+k_{2}\right) \gamma_{\rho} S^{(\mu)}\left(p_{1}+k_{1}\right) \gamma_{\sigma}
\end{gathered} \rightarrow \sum^{\Pi_{\mu \nu \rho \sigma}^{(4)}\left(q, k_{1}, k_{3}, k_{2}\right)=\int d^{4} x_{1} d^{4} x_{2} d^{4} x_{3} \exp \left[-i\left(k_{1} \cdot x_{1}+k_{2} \cdot x_{2}+k_{3} \cdot x_{3}\right)\right]} \begin{gathered}
\times\langle 0| T\left[j_{\mu}(0) j_{\nu}\left(x_{1}\right) j_{\rho}\left(x_{2}\right) j_{\sigma}\left(x_{3}\right)\right]|0\rangle
\end{gathered}
$$

Form factor : $\Gamma_{\mu}(q)=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m_{l}} F_{2}\left(q^{2}\right)$

In contrast to the VP case , no experimental input is available.

Hadronic light-by-light : model estimates

Summarized in J. Prades, E. de Rafael and A. Vainshtein, arXiv:0901.0306 [hep-ph]

Conventional approach on the lattice

Calculate 4-point function

$$
\begin{aligned}
\Pi_{\mu \nu \rho \sigma}^{(4)}\left(q, k_{1}, k_{3}, k_{2}\right)= & \int d^{4} x_{1} d^{4} x_{2} d^{4} x_{3} \exp \left[-i\left(k_{1} \cdot x_{1}+k_{2} \cdot x_{2}+k_{3} \cdot x_{3}\right)\right] \\
& \times \underline{\langle 0| T\left[j_{\mu}(0) j_{\nu}\left(x_{1}\right) j_{\rho}\left(x_{2}\right) j_{\sigma}\left(x_{3}\right)\right]|0\rangle}
\end{aligned}
$$

Then, one will obtain a single set of $\left(q, k_{1}, k_{3}, k_{2}\right)$.
Calc. requires integration over k_{1} and k_{2},

$$
\begin{aligned}
\Gamma_{\mu}^{(\mathrm{HIbl})}\left(p_{2}, p_{1}\right)= & i e^{6} \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \frac{\Pi_{\mu \nu \rho \sigma}^{(4)}\left(q, k_{1}, k_{3}, k_{2}\right)}{k_{1}^{2} k_{2}^{2} k_{3}^{2}} \\
& \times \gamma_{\nu} S^{(\mu)}\left(p_{2}+k_{2}\right) \gamma_{\rho} S^{(\mu)}\left(p_{1}+k_{1}\right) \gamma_{\sigma}
\end{aligned}
$$

Need to repeat (Volume) ${ }^{2}$ times $\sim 10^{10-11}$ times.
With this approach, the calculation won't end...

Alternative approach

M. Hayakawa, T. Blum, T. Izubuchi and NY, hep-lat/0509016

Alternative approach

M. Hayakawa, T. Blum, T. Izubuchi and NY, hep-lat/0509016

- Standard method in other form factor calculations
- Need to incorporate QED on the lattice.

Lattice QCD + QED

Motivation (other than light-by-light)

- Ordinary lattice calculations are done in the iso-spin symmetric limit. ($m_{u}=m_{d}$ and no EM interaction).
- Lattice calc. are being precise, and iso-spin breaking effects start to be visible.
- In order to determine the most poorly known quark mass, m_{u} and m_{d}, QED must be taken into account!
- One should be able to exclude $m_{u}=0$ and to reproduce

$$
\begin{aligned}
& m_{N}-m_{P}=1.2933321(4) \mathrm{MeV} \\
& m_{\pi^{ \pm}}-m_{\pi^{0}}=4.5936(5) \mathrm{MeV} \\
& m_{K^{ \pm}}-m_{K^{0}}=-3.937(28) \mathrm{MeV}
\end{aligned}
$$

QCD+QED lattice simulation

- Quenched approximation

Duncan, Eichten, Thacker PRL76(1996) 3894;
Y. Namekawa and Y. Kikukawa, PoS LAT 2005, 090 (2006)

- Two-flavor QCD
T. Blum, T. Doi, M. Hayakawa, T. Izubuchi and NY, PRD76, 114508 (2007)
- Three-flavor QCD
T. Blum, R. Zhou, T. Doi, M. Hayakawa, T. Izubuchi, S. Uno and NY, PRD82, 094508 (2010)
- Three-flavor QCD with charged sea quarks
- T. Ishikawa, T. Blum, M. Hayakawa, T. Izubuchi, C. Jung and R. Zhou, arXiv:1202.6018 [hep-lat];
- S. Aoki, K.-I. Ishikawa, N. Ishizuka, K. Kanaya, Y. Kuramashi, Y. Nakamura, Y. Namekawa and M. Okawa, Y. Taniguchi, A. Ukawa, N. Ukita and T. Yoshi ${ }^{\prime} e$ [PACS-CS Collaboration], arXiv:1205.2961 [hep-lat]

m_{u} and m_{d}

T. Izubuchi@Lat2012

PDG2012

\boldsymbol{m}_{u}

$\boldsymbol{m}_{\boldsymbol{d}}$

Alternative approach

M. Hayakawa, T. Blum, T. Izubuchi and NY, hep-lat/0509016

Calculate

This includes unwanted diagrams, while what we want is lbl only. Easier way to get rid of unwanted one?

Alternative approach

M. Hayakawa, T. Blum, T. Izubuchi and NY, hep-lat/0509016

Calculate

One of photon propagators, whose analytical expression is known, is attached by hand.
This still includes unwanted diagrams.

Alternative approach

M. Hayakawa, T. Blum, T. Izubuchi and NY, hep-lat/0509016

How to subtract unwanted one?

Alternative approach

M. Hayakawa, T. Blum, T. Izubuchi and NY, hep-lat/0509016

Subtract the similar expectation value, but there the configuration average of the quark part and the muon part are taken separately.
\Rightarrow No photon connecting quark and muon in the 2 nd term.
\Rightarrow Only lbl (and higher order terms) survives

Numerical tests

- Tests with only QED
- S. Chowdhury, T. Blum, T. Izubuchi, M. Hayakawa, NY and T. Yamazaki, PoS LATTICE 2008, 251 (2008)
- T. Blum and S. Chowdhury, NP(PS)189, 251 (2009)
- Chowdhury Ph. D. thesis, UConn, 2009

Consistent with PT if the spatial volume is as large as $V=24^{3}$.

- Tests with $(2+1) \mathrm{f}$ QCD+QED
- $V=16^{3} \times 32$
$-m_{\pi} \approx 420 \mathrm{MeV}, m_{\mu} \approx 190,692 \mathrm{MeV}\left(m_{\mu}{ }^{\text {phys }} \sim 105 \mathrm{MeV}\right)$
- Hlbl amplitude behaves as $\sim e^{4}$, while un-subtracted amplitude stays the same.

Numerical tests

- Tests with (2+1)f QCD+QED (preliminary)
- $V=24^{3} \times 48(\sim 2.7 \mathrm{fm})$
- $m_{\pi} \approx 329 \mathrm{MeV}, m_{\mu} \approx 190 \mathrm{MeV}$
- Two lowest values of Q^{2} (0.11 and $0.18 \mathrm{GeV}^{2}$)
- All Mode Averaging (AMA)

$$
\begin{aligned}
& F_{2}\left(0.18 \mathrm{GeV}^{2}\right)=(0.142 \pm 0.067) \times\left(\frac{\alpha}{\pi}\right)^{3} \\
& F_{2}\left(0.11 \mathrm{GeV}^{2}\right)=(0.038 \pm 0.095) \times\left(\frac{\alpha}{\pi}\right)^{3} \\
& -a_{\mu}(\mathrm{HLbL} / \text { model })=(0.084 \pm 0.020) \times\left(\frac{\alpha}{\pi}\right)^{3}
\end{aligned}
$$

Signal may be emerging in the model ballpark. $\mathrm{O}(100 \%)$ stat. error is encouraging!

Sources of systematic uncertainties

Sources of systematic uncertainties

Many improvements remain to be done.

- Disconnected diagrams

Not easy. But several promising methods almost ready to test.
$\bullet q^{2} \rightarrow 0$ [Twisted b.c. applicable?]
$\odot m_{q} \rightarrow m_{q, \text { phys }}, m_{\mu} \rightarrow m_{\mu, \text { phys }}$
\bullet Finite volume. Excited states/"around the world" effects

- $a \rightarrow 0$
-QED renormalization
-...
Personally, even 50% uncertainty is sensible, and such a accuracy will be possible in 5 years.
(10% error may not be too optimistic.)

Summary

Prospect: Experiment on $(g-2)_{\mu}$

$$
a_{\mu}^{\mathrm{EXP}}=(11659208.9 \quad \pm 6.3) \quad \times 10^{-10}
$$

Two independent measurements@J-PARC and FNAL are planned.

- J-PARC: start data taking in 2016.

Exp uncertainty reduced by factor 4 in 5 years (by ~2017).

$$
6.3 \times 10^{-10} \Rightarrow 1.4 \times 10^{-10}
$$

- FNAL: similar

Prospect: Theory

$$
\begin{array}{rlrrl}
a_{\mu}^{\mathrm{EXP}} & =\left(\begin{array}{lllll}
11 & 659 & 208.9 & \pm 1.4
\end{array}\right) & \times 10^{-10} \\
a_{\mu}^{\mathrm{SM}} & =\left(\begin{array}{lllll}
11 & 659 & 182.8 & \pm 4.9 &) \times 10^{-10} \\
\hline
\end{array}\right.
\end{array}
$$

Assuming that improvements occur without changing the central values and model estimate of Hlbl is confirmed by lattice calc. at 40% level.

Prospect: Theory

$$
\begin{array}{rlrrl}
a_{\mu}^{\mathrm{EXP}} & =\left(\begin{array}{lllll}
11 & 659 & 208.9 & \pm 1.4
\end{array}\right) & \times 10^{-10} \\
a_{\mu}^{\mathrm{SM}} & =\left(\begin{array}{lllll}
11 & 659 & 182.8 & \pm 4.9 &) \times 10^{-10} \\
\hline
\end{array}\right.
\end{array}
$$

Assuming that improvements occur without changing the central values and model estimate of Hlbl is confirmed by lattice calc. at 40% level.

Prospect: Theory

$$
\begin{array}{rlrrr}
a_{\mu}^{\mathrm{EXP}} & =\left(\begin{array}{lllll}
11 & 659 & 208.9 & \pm 1.4
\end{array}\right) & \times 10^{-10} \\
a_{\mu}^{\mathrm{SM}} & =\left(\begin{array}{lllll}
11 & 659 & 182.8 & \pm 4.9 &) \times 10^{-10} \\
\hline
\end{array}\right.
\end{array}
$$

Assuming that improvements occur without changing the central values and model estimate of Hlbl is confirmed by lattice calc. at 40% level.

Prospect: Theory

$$
\begin{array}{rlrl}
a_{\mu}^{\mathrm{EXP}} & =\left(\begin{array}{lllll}
11 & 659 & 208.9 & \pm 1.4
\end{array}\right) & \times 10^{-10} \\
a_{\mu}^{\mathrm{SM}} & =\left(\begin{array}{lllll}
11 & 659 & 182.86 & \pm 4.7 &) \times 10^{-10}
\end{array}\right. \\
\hline
\end{array}
$$

$$
\begin{aligned}
& a_{\mu}^{\mathrm{QED}}=\left(\begin{array}{lll}
11 & 658 & 471.885 \\
\mathrm{EW} & \pm .004
\end{array}\right) \times 10^{-10} \\
& a_{\mu}^{\mathrm{EW}}=(\quad 15.4 \quad \pm 0.2) \times 10^{-10} \\
& a_{\mu}^{\text {had,LOVVP }}=(\quad 694.91 \quad \pm 2.1) \times 10^{-10} \\
& \begin{aligned}
a_{\mu}^{\text {had,HOVP }} & =(\\
a_{\mu}^{\text {had,lbl }} & =(
\end{aligned} \\
& -9.84 \pm 0.07) \times 10^{-10} \\
& 10.5 \pm 4.2) \times 10^{-10}
\end{aligned}
$$

$$
3.3 \sigma \Rightarrow 5.3 \sigma
$$

Assuming that improvements occur without changing the central values and model estimate of Hlbl is confirmed by lattice calc. at 40% level.

Summary

- Lattice QCD can play an important role in $(g-2)_{\mu}$, through the determinations of HVP and Hlbl contribution.
- HVP:

Currently $\mathrm{O}(10) \%$ level $\Rightarrow \mathrm{O}($ a few $\%)$ using various techniques simultaneously
Cross check against dispersion $+\mathrm{e}^{+} \mathrm{e}^{-}$cross section.

- Hlbl:

Numerical tests are encouraging.
Many things to do (disconnected diagrams, physical masses, ...) $\mathrm{O}(100 \%) \Rightarrow 40-50 \%$ seems doable.

- After all, clear evidence for BSM might emerge.

Acknowledgement

- US DOE, RIKEN BNL Research Center, USQCD Collaboration
- Machines:QCDOC at BNL, Ds cluster at FNAL, qseries clusters at JLAB

