Wino DM Constraints from γ-ray Obs of dSphs

Koji Ichikawa

with

B. Bhattacherjee (IPMU), M. Ibe (IPMU & ICRR),

S. Matsumoto (IPMU) and K. Nishiyama (IPMU)

(JHEP 07(2014)080 [arXiv: 1405.4914])

PPP2014, Kyoto, Japan, July 2014

Outline

- Introduction
 - Indirect Detection
 - Dwarf Spheroidal Galaxies
 - Case Study: Wino DM
- Analysis
 - Signal Flux
 - Background Flux
 - Detector Capabilities
- Result
 - Future Sensitivity Line
- Summary

Outline

- Introduction
 - Indirect Detection
 - Dwarf Spheroidal Galaxies
 - Case Study: Wino DM
- Analysis
 - Signal Flux
 - Background Flux
 - Detector Capabilities
- Result
 - Future Sensitivity Line
- Summary

Dark Matter Search

Signal Target

Signal Target

Dwarf spheroidal galaxies

dSphs:

- 1. Neighbor galaxies: 10~100kpc
- 2. Large Mass to Luminosity ratio = DM rich
- 3. Fewer gas containment

	Classical	Ultra-faint
#dSphs	8	>20
M/L (M₀/L₀)	10-100	100-1000
Distance (kpc)	60-250	10-60
#Obs Stars	150-2500	20-100
Characteristics	Brighter, farther	Darker, closer

Subject Subject Formax

Dwarf Galaxie (post-2005)

Dwarf Galaxi

Dwarf spheroidal galaxies

dSphs:

- 1. Neighbor galaxies: 10~100kpc
- 2. Large Mass to Luminosity ratio = **DM rich**
- 3. Fewer gas containment

	Classical	Ultra-faint
#dSphs	8	>20
M/L (M₀/L₀)	10-100	100-1000
Distance (kpc)	60-250	10-60
#Obs Stars	150-2500	20-100
Characteristics	Brighter, farther	Darker, closer

See, e.g. Wolf et al (2010)

Case Study: Wino DM

Wino DM: Current observational limit

- Collider: LHC bound
- DM relic abundance
- Astro: γ-ray observation from the milky way satellite galaxies

$$\begin{split} M_{Wino} &\geq 270 \, GeV \quad \text{(ATLAS 95\% C.L)} \\ M_{Wino} &\leq 2.9 \, TeV \quad \text{(M. lbe, et al, PLB709, 2012)} \\ M_{Wino} &\geq 320 \, GeV \quad \text{(Fermi-LAT 95\% C.L)} \end{split}$$

Constraints for Wino LSP mass

Data: Fermi-LAT <u>arXiv:1310.0828</u>

What will the future exclusion region be like?

2.

What should we do to improve the sensitivity line efficiently?

Outline

Introduction

- Indirect Detection
- Dwarf Spheroidal Galaxies
- Case Study: Wino DM
- Analysis
 - Signal Flux
 - Background Flux
 - Detector Capabilities
- Result
 - Future Sensitivity Line
- Summary

Observed Events

Signal Flux

Astrophysical Factor

Astrophysical Factor

Background Flux

1. Galactic Diffuse

CR + ISM, Brems of CRe, IC (CRe + Interstellar radiation field)

→ Simulation (e.g. GALPROP) with ISM, ISRF, Large Scale Structure.

2. Isotropic Diffuse

AGN, Starburst, γ-Ray burst, unknown sources

 \rightarrow Evaluated from |b| > 30^o sky data

3. Point-like Source

AGN, SNR, Pulsars, Unidentified → Mask/Model

Detector Capabilities

Satellite- type Obs

Sensitivity Line Profile Likelihood

P(N:λ): Poisson G(x: μ, σ): Log Gaussian N_{ai}: Observed Events

Test (95% C.L)

$$-2\ln \mathcal{L}(\langle \sigma v \rangle, \{J_{\min}\}) + 2\ln \mathcal{L}(0, \{J_{\min}\}) = 2.71$$

$$10^{-22}$$
Expectively of the second seco

2000 Pseudo Experiments for N_{ai} ({ $N^{(1)}_{ai}$, $N^{(2)}_{ai}$, $N^{(3)}_{ai}$...}) (Poisson with the mean of B_{ai}) Each $N^{(i)}_{ai} \rightarrow \langle \sigma v \rangle^{(i)}$ Right Figure: Mean and 68 (95) % band for the set { $\langle \sigma v \rangle^{(1)}$, $\langle \sigma v \rangle^{(2)}$, $\langle \sigma v \rangle^{(3)}$,... }

Outline

Introduction

- Indirect Detection
- Dwarf Spheroidal Galaxies
- Case Study: Wino DM
- Analysis
 - Signal Flux
 - Background Flux
 - Detector Capabilities
- Result
 - Future Sensitivity Line
- Summary

Current Limit

Future Prospects

Combined (15 dSphs) <- Aggressive 390 GeV \leq m \leq 2.14TeV and 2.53 TeV \leq m

Summary

- Indirect detection is essential for the heavy DM search.
- Gamma-ray observation of dSph can give robust constraints on the DM annihilation cross section.
- Investigation of Ultra-faint's stellar kinematics dramatically affects the sensitivity lines.

Summary

Summary

Thank you!

Koji Ichikawa

with B. Bhattacherjee (IPMU), M. Ibe (IPMU & ICRR), S. Matsumoto (IPMU) and K. Nishiyama (IPMU)

(JHEP 07(2014)080 [arXiv: 1405.4914])

PPP2014, Kyoto, Japan, July²2014