EXOTIC QCD ON COMPACTIFIED SPACETIME

JHEP 06 (2014)181 [arxiv:1405.3113]

T. KANAZAWA (RIKEN) IN COLLABORATION WITH T. MISUMI (KEIO) PPP 2014, JULY 31@YITP, KYOTO

OUTLINE

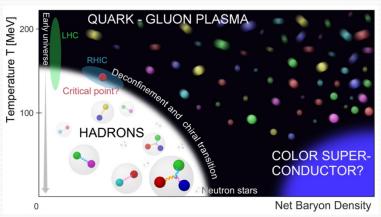
- 1. Motivation
- 2. Center symmetry realization at small S^1
- 3. Monopoles and semiclassical treatment
- 4. Phase diagram of adjoint QCD
- 5. Conclusion

JICFuS

MOTIVATION (1)

Hard problems in QCD:

- Chiral symmetry breaking
- Quark confinement
- Nuclear force etc.



♦Why difficult? \rightarrow Strongly coupled in IR: $g(\mu)$ grows!

Similar phenomena also occur in a weakly-coupled regime

- High-density QCD · · · BCS mechanism → ChSB
- SUSY QCD · · · · Semiclassical confinement via topological objects
- Toroidal QCD (with <u>adjoint quarks</u>) · · · Semiclassics without SUSY

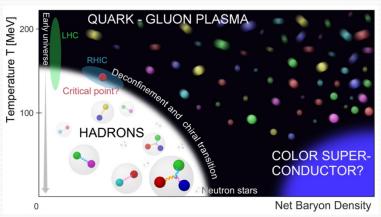
They (may) provide insights into real-world QCD!

JICFuS

MOTIVATION (1)

Hard problems in QCD:

- Chiral symmetry breaking
- Quark confinement
- Nuclear force etc.



♦Why difficult? \rightarrow Strongly coupled in IR: $g(\mu)$ grows!

Similar phenomena also occur in a weakly-coupled regime

- High-density QCD · · · BCS mechanism → ChSB
- SUSY QCD ···· Semiclassical confinement via topological objects

 Toroidal QCD (with <u>adjoint quarks</u>) · · · Semiclassics without SUSY

They (may) provide insights into real-world QCD!

MOTIVATION (2)

Adjoint QCD has received attention because:

✓ Distinct chiral and deconfinement transitions

with $T_c \sim 8 T_d$ for SU(3)

Karsch-Lutgemeier '99

✓ Large-N reduction possible?

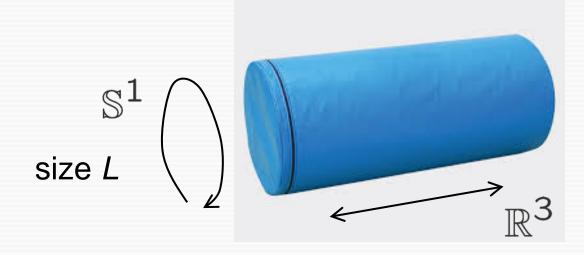
Kovtun-Unsal-Yaffe '07

✓ The (µ, T) phase diagram
 Kogut et al. '00, Hands et al. '01
 ✓ Conformal/walking behavior?
 Catterall '08, Hietanen '09,
 Del Debbio '09, De Grand '11, ...



Engels et al. '05

QCD ON A CYLINDER (1)



- Boundary condition for bosons: periodic
- B. C. for fermions:

anti-periodic (thermal compactification) $\cdots T > 0$

or periodic (spatial compactification) $\cdots T = 0$

• Wilson line (holonomy) $\Omega \equiv \mathcal{P} \exp\left(i \oint dx \ A_4(x)\right)$

QCD ON A CYLINDER (2)

Pure Yang-Mills: GPY '81 (Tr Ω) = 0 at low *T*, (Tr Ω) ≠ 0 at high *T*Gauge theories w/ not too many flavors (thermal b.c.): (Tr Ω) ≃ 0 at low *T*, (Tr Ω) ≠ 0 at high *T*

QCD ON A CYLINDER (2)

- Pure Yang-Mills: GPY '81 (Tr Ω) = 0 at low *T*, (Tr Ω) ≠ 0 at high *T* Gauge theories w/ not too many flavors (thermal b.c.):
 - $\langle \operatorname{Tr} \Omega \rangle \simeq 0$ at low *T*, $\langle \operatorname{Tr} \Omega \rangle \neq 0$ at high *T*

Boundary condition makes a difference!

- Super Yang-Mills on $\mathbb{R}^3 \times S^1$ Davies et al. '99, '03
 - ✓ SUSY is respected by periodic b.c. of gluinos
 - $\checkmark V_{eff}(\Omega) = 0$ to all orders in pert. theory
 - ✓ At small S^1 , the flat direction of Ω is lifted by topological objects (monopoles) → $\langle Tr \Omega \rangle = 0$
 - \checkmark Center symmetry is unbroken for any S^1 radius!
 - ✓ Semiclassics lead to mass gap for gauge fields and area law of the Wilson loop

QCD ON A CYLINDER (3)

Generalization: *N_f*-flavor adjoint QCD with periodic boundary condition

•
$$N_f = \frac{1}{2}$$
: SYM

•
$$N_f > \frac{1}{2}$$
: No supersymmetry.

- → The gauge symmetry breaking occurs already at one loop (Hosotani mechanism).
 - & Spontaneous ChSB occurs (in the chiral limit).

Anyway, center symmetry (\mathbb{Z}_N) of SU(N) is stabilized at sufficiently small S^1 .

QCD ON A CYLINDER (4)

More generally, ...

QCD ON A CYLINDER (4)

More generally, ...

Argyres-Unsal '12

	G	\rightarrow	Н	
$SU(N+1) \simeq$	A_N	\rightarrow	$U(1)^N$	for $N \ge 1$
$SO(2N+1) \simeq$	B_N	\rightarrow	$U(1)^{N-1} \times SO(3)$	for $N = 2, 3$
		\rightarrow	$SO(4) \times U(1)^{N-3} \times SO(3)$	for $N \ge 4$
$Sp(2N) \simeq$	C_N	\rightarrow	$U(1)^N$	for $N \geq 3$
$SO(2N) \simeq$	D_N	\rightarrow	$SO(4) \times U(1)^{N-4} \times SO(4)$	for $N \ge 4$
	E_6	\rightarrow	SU(3) imes SU(3) imes SU(3)	
	E_7	\rightarrow	$SU(2) \times SU(4) \times SU(4)$	
	E_8	\rightarrow	$SU(2) \times SU(3) \times SU(6)$	
	F_4	\rightarrow	$SU(3) \times SU(2) \times U(1)$	
	G_2	\rightarrow	SU(2) imes U(1)	

Table 1. Perturbative patterns of Higgsing of the gauge group G to an unbroken group H for $n_f > 1$ adjoint fermions with periodic boundary conditions on $\mathbb{R}^3 \times S^1$.

QCD ON A CYLINDER (4)

More generally, ...

Argyres-Unsal '12

	G	\rightarrow	Н	
$SU(N+1) \simeq$	A_N	\rightarrow	$U(1)^N$	for $N \ge 1$
$SO(2N+1) \simeq$	B_N	\rightarrow	$U(1)^{N-1} \times SO(3)$	for $N = 2, 3$
		\rightarrow	$SO(4) \times U(1)^{N-3} \times SO(3)$	for $N \ge 4$
$Sp(2N) \simeq$	C_N	\rightarrow	$U(1)^N$	for $N \geq 3$
$SO(2N) \simeq$	D_N	\rightarrow	$SO(4) \times U(1)^{N-4} \times SO(4)$	for $N \ge 4$
	E_6	\rightarrow	$SU(3) \times SU(3) \times SU(3)$	
	E_7	\rightarrow	$SU(2) \times SU(4) \times SU(4)$	
	E_8	\rightarrow	$SU(2) \times SU(3) \times SU(6)$	
•	F_4	\rightarrow	$SU(3) \times SU(2) \times U(1)$	
	G_2	\rightarrow	SU(2) imes U(1)	

Table 1. Perturbative patterns of Higgsing of the gauge group G to an unbroken group H for $n_f > 1$ adjoint fermions with periodic boundary conditions on $\mathbb{R}^3 \times S^1$.

Complete abelianization

necessary condition for semiclassics

GOAL OF THIS WORK

 $\psi(x_4 + L) = e^{i\phi}\psi(x_4)$

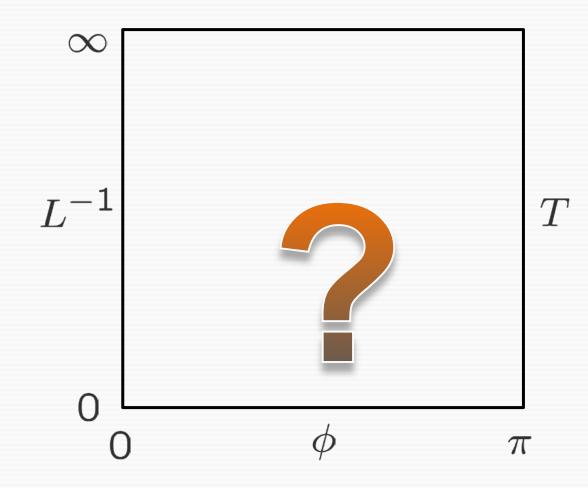
Adjoint QCD for $\phi = 0$ and $\phi = \pi$ show drastically different phase structures.

We study SU(2) and SU(3) adjoint QCD with generic $0 \le \phi \le \pi$ for fermions.

Perturbative and semiclassical analysis at small S¹

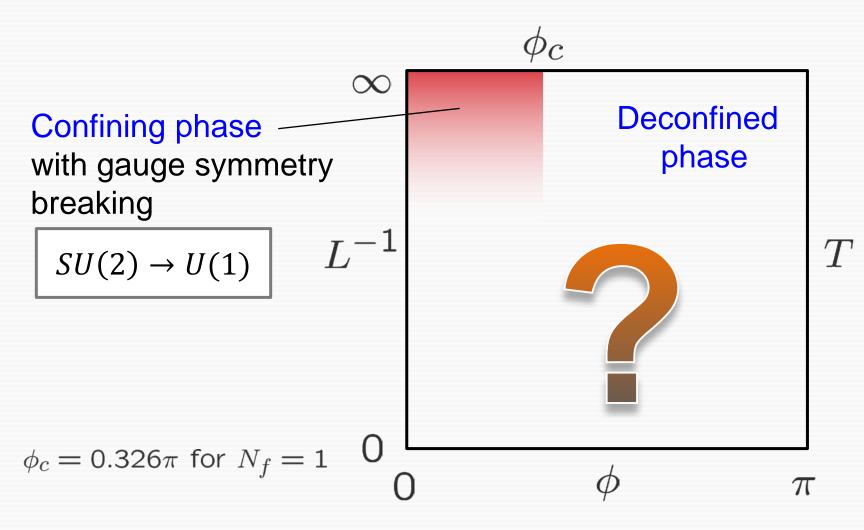
> Non-perturbative model analysis at all S^1

PHASES AT SMALL S^1



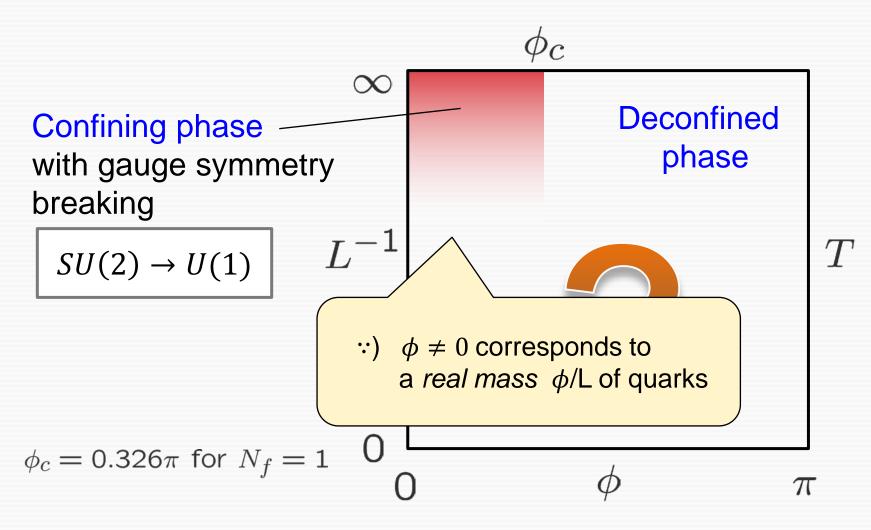
PHASES AT SMALL S¹

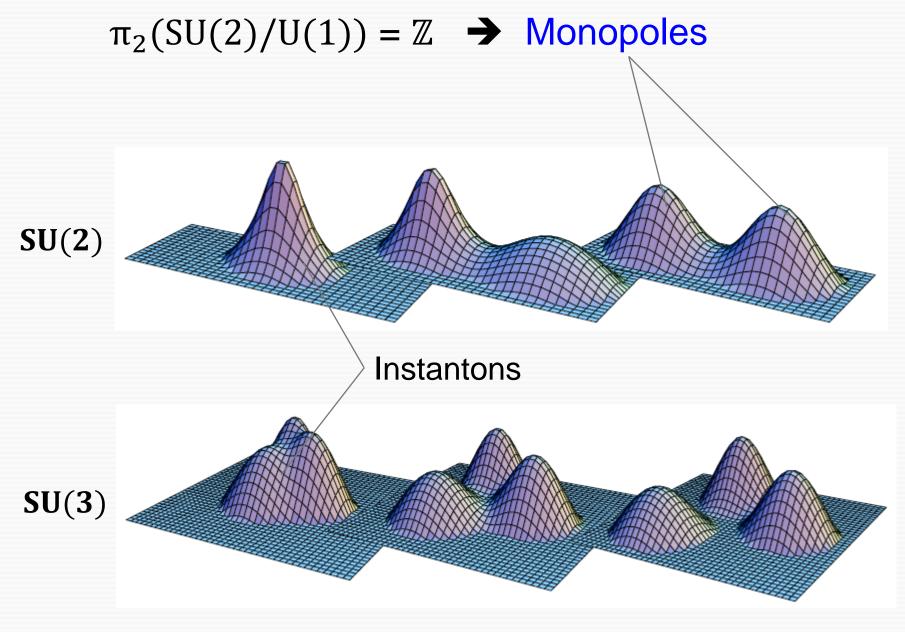
Perturbative GPY potential predicts a 1st-order transition



PHASES AT SMALL S^1

Perturbative GPY potential predicts a 1st-order transition





from: Bruckmann et al., hep-th/0309008

INDEX THEOREM (1)

- <u>APS Index theorem on \mathbb{R}^4 </u>: 2 N_c adjoint zero modes for each BPST instanton.
- Callias Index theorem on ℝ³:
 2 adjoint zero modes for each PS monopole.
- <u>Nye-Singer Index theorem on ℝ³ × S¹</u>: Index for PBC. Dependent on the holonomy at spatial infinity.

cf. Poppitz-Unsal '09

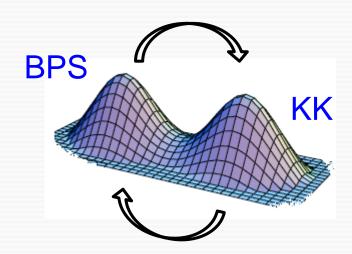
→ This can be extended to twisted boundary conditions $(\phi \neq 0)$.

INDEX THEOREM (2)

• For SU(2) adjoint Dirac operator with $A_4|_{\infty} = \frac{1}{L} \begin{pmatrix} -q & 0 \\ 0 & q \end{pmatrix}$, the index in the background of a BPS monopole reads

$$I_{\rm adj}^{(\phi)}[1,0] = 2\left(\left\lfloor\frac{2q+\phi}{2\pi}\right\rfloor - \left\lfloor\frac{-2q+\phi}{2\pi}\right\rfloor\right)$$

• Zero modes jump !



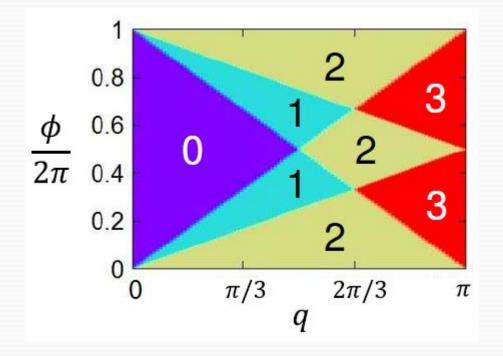
$$\begin{pmatrix} 1 \\ 0.8 \\ 0.6 \\ \pi \\ 0.4 \\ 0.2 \\ 0 \\ 0 \\ \pi/2 \\ q \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ 2 \\ \pi \\ q \end{pmatrix}$$

$$(\phi = 0 \rightarrow \text{Callias})$$

INDEX THEOREM (3)

• For SU(3) with e.g., $A_4\Big|_{\infty} = \frac{1}{L} \begin{pmatrix} -q & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & q \end{pmatrix}$,

$$I_{\rm adj}^{(\phi)}[1,0,0] = I_{\rm adj}^{(\phi)}[0,1,0] = \left\lfloor \frac{q+\phi}{2\pi} \right\rfloor - \left\lfloor \frac{-q+\phi}{2\pi} \right\rfloor + \left\lfloor \frac{2q+\phi}{2\pi} \right\rfloor - \left\lfloor \frac{-2q+\phi}{2\pi} \right\rfloor$$



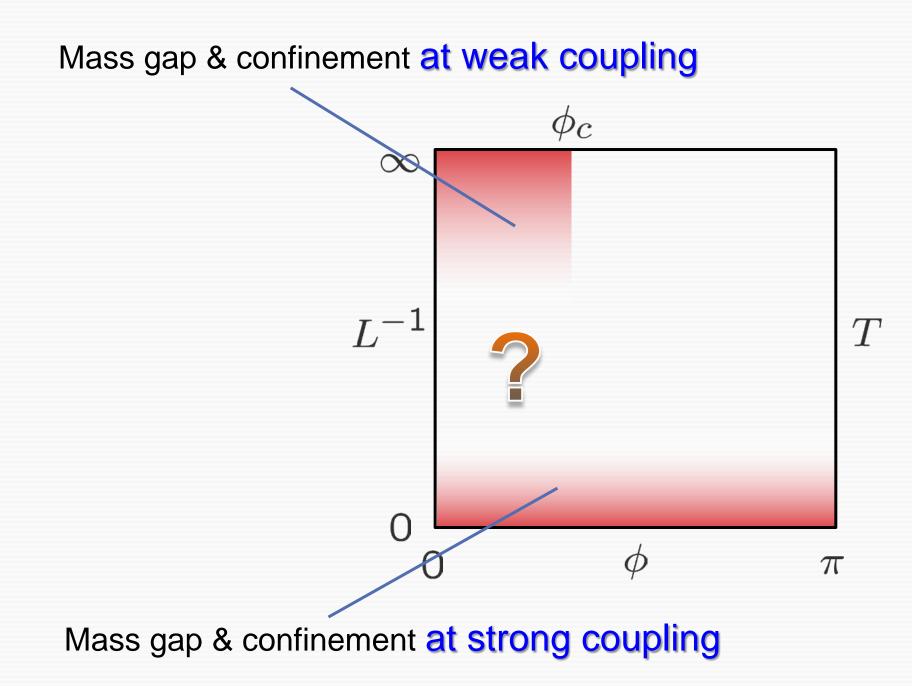
Zero-mode exchange interaction between monopole and anti-monopole leads to mass gap for the U(1) photon: e.g. for $N_c = N_f = 2$,

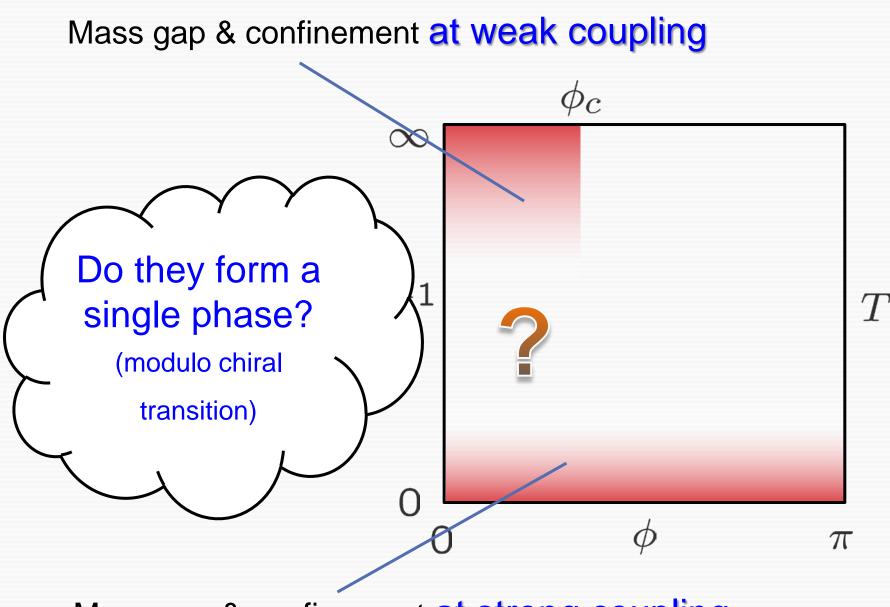
$$\mathcal{M} \sim \left(\log \frac{1}{L\Lambda}\right)^{\frac{65}{8}} \exp\left(-\left(2\pi + \sqrt{\frac{8\phi}{\pi}}\right)\sqrt{\log \frac{1}{L\Lambda}}\right)$$

and area law of the Wilson loop with the string tension $\gamma \sim \frac{g^2}{L} \mathcal{M}$.

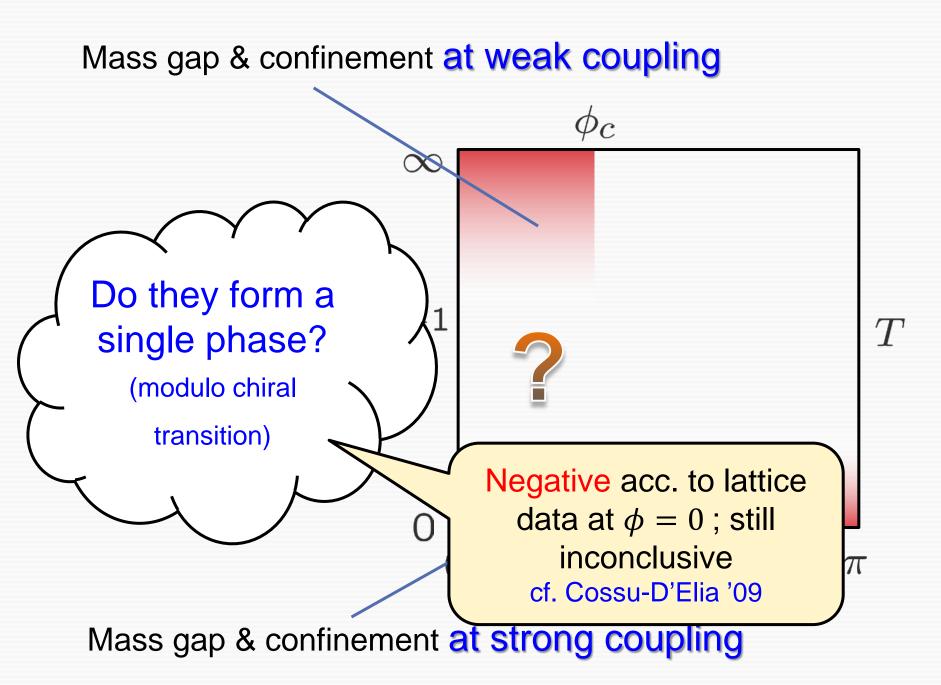
••• Direct extension of Unsal '07 ($\phi = 0$) and Polyakov '77 (2+1 dim.)

Valid only for $0 \le \phi \le \phi_c$ (confining phase)





Mass gap & confinement at strong coupling



CHIRAL SYMMETRY

- Dynamical ChSB strongly affects center symmetry Nishimura-Ogilvie '10
- 4-d NJL model

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi + G\left\{(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\vec{\tau}\psi)^2\right\}$$

• What happens for quarks with PBC ($\phi = 0$)?

 $L \to 0$: Dimensional reduction $\mathbb{R}^3 \times S^1 \to \mathbb{R}^3$

4-d NJL \longrightarrow 3-d NJL with $G \rightarrow G_{3d} = \frac{G}{L}$

The 3-d coupling gets large as $L \rightarrow 0$

→ NO Delayed chiral restoration for PBC? (qualitatively consistent with lattice QCD; Cossu et al. '09)

PHASE STRUCTURE (1)

• Gauge field sector: Use a phenomenological model of Ogilvie et al. '02

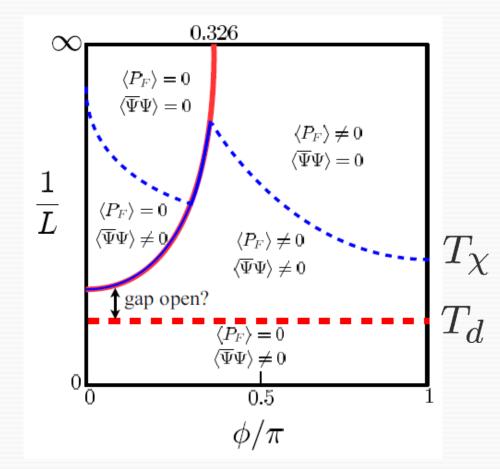
$$V_g(\Omega) = -\frac{2}{\pi^2 L^4} \sum_{n=1}^{\infty} \frac{\text{Tr}_A \Omega^n}{n^4} + \frac{M^2}{2\pi^2 L^2} \sum_{n=1}^{\infty} \frac{\text{Tr}_A \Omega^n}{n^2}$$

- Quark sector:
 Use the NJL model coupled to *holonomy* Ω;
 Solved in the mean-field approximation
- NJL is a cutoff theory;

Predictions for $L^{-1} > \Lambda_{UV}$ are meaningless!

PHASE STRUCTURE (2)

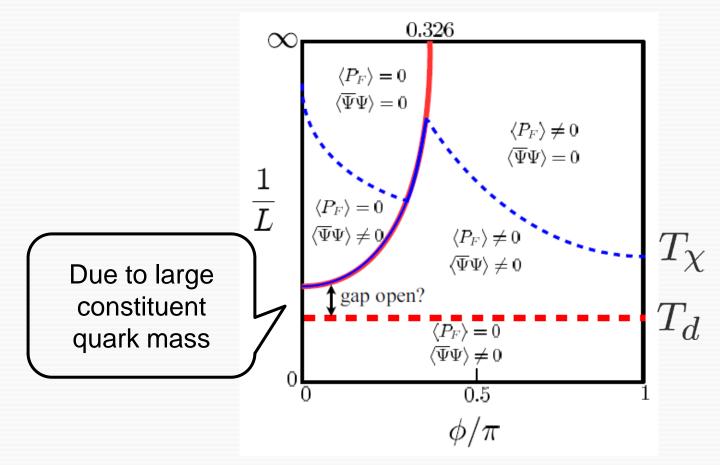
A **conjecture** for the phase diagram of (massless) SU(2) adjoint QCD, motivated by models and lattice data at $\phi = \pi$



(cf. No Roberge-Weiss periodicity for adjoint quarks)

PHASE STRUCTURE (2)

A **conjecture** for the phase diagram of (massless) SU(2) adjoint QCD, motivated by models and lattice data at $\phi = \pi$



(cf. No Roberge-Weiss periodicity for adjoint quarks)

CONCLUSION

- Adjoint quarks with PBC induces gauge symmetry breaking: $SU(N) \rightarrow U(1)^{N-1}$ Hosotani '89~
- Dilute monopole gas

 \rightarrow Area law & mass gap at small S^1

- Index theorem with general $\phi \in [0, \pi]$
- Complex phase structure on (L^{-1}, ϕ) plane
 - Weak-strong continuity may not hold
 - Chiral & deconf. transitions coalesce into a single 1st-order phase transition line !
- Awaits check by future lattice simulations

CONCLUSION

• Adjoint quarks with PBC induces gauge symmetry breaking: $SU(N) \rightarrow U(1)^{N-1}$ Hostoni '90

Quantitative

(rigorous)

• Dilute monopole gas

 \rightarrow Area law & mass gap at small S^1

- Index theorem with general $\phi \in [0, \pi]$
- Complex phase structure on (L^{-1}, ϕ) plane
 - Weak-strong continuity may not hold
 - Chiral & deconf. transitions coalesce into a single

1st-order phase transition line !

• Awaits check by future lattice simulations

CONCLUSION

- Adjoint quarks with PBC induces gauge symmetry breaking: $SU(N) \rightarrow U(1)^{N-1}$ Hosotani '89~
- Dilute monopole gas

 \rightarrow Area law & mass gap at small S^1

- Index theorem with general $\phi \in [0, \pi]$
- Complex phase structure on (L^{-1}, ϕ) plar Qualitative
 - Weak-strong continuity may not hold
 - Chiral & deconf. transitions coalesce into a single

1st-order phase transition line !

• Awaits check by future lattice simulations

QUESTIONS

- What occurs at large N_c ?
- Relevant for beyond-SM physics?
- Physics at small S^1 with incomplete Abelianization?
- Multiple compact directions?

. . .

- Relation to the dual-super picture of confinement on \mathbb{R}^4 ?
- Instanton-liquid model vs. monopole-liquid model?
- Representations other than adjoint (e.g., fundamental)?
- Implication for resurgence and Borel flow?

More questions than answers!