## Neutrino absorption below PeV scale at IceCube

Kunio Kaneta (ICRR)



In collaboration with Masahiro Ibe (ICRR & IPMU)

Reference: arXiv:1407.2848

PPP2014, 29-Jul. 2014

## CvB absorption line in the neutrino spectrum at IceCube

Kunio Kaneta (ICRR)



In collaboration with Masahiro Ibe (ICRR & IPMU)

Reference: arXiv:1407.2848

PPP2014, 29-Jul. 2014

## Outline

I. Introduction

2. Neutrino absorption at sub-PeV scale

3. Viable models

4. Summary



### Energy budget of the Universe



### Energy budget of the Universe



```
I. Introduction
```

```
* Cosmic neutrino background (CvB)
```



| 100GeV | I 50MeV | IMeV | 0.1MeV | @ present | I/T |
|--------|---------|------|--------|-----------|-----|
|        |         |      |        |           |     |

```
I. Introduction
```















### \* Cosmic rays

composition: p, He, C, O, ...

































# 2, Neutrino absorption at sub-PeV scale





relevant process:

 $VV_{CVB} \rightarrow VV$ 

![](_page_27_Picture_2.jpeg)

relevant process:

$$VV_{CVB} \rightarrow VV$$

new resonance:

$$VV_{CVB} \rightarrow S \rightarrow VV$$

![](_page_28_Picture_2.jpeg)

relevant process:

$$VV_{CVB} \rightarrow VV$$

new resonance:

$$VV_{CVB} \rightarrow S \rightarrow VV$$

Where is the new resonance if IPeV neutrino is absorbed?  $E \approx \sqrt{2m_v E_v} \sim \sqrt{10^{-10}10^6} GeV$ = 10 MeV

We need MeV scale particle interacting with neutrinos.

 $\mathcal{L}_{s-\nu} = g s \bar{\nu}_i \nu_j$ 

![](_page_29_Figure_4.jpeg)

neutrino-neutrino scattering cross section

![](_page_29_Figure_6.jpeg)

$$\sigma \simeq \frac{g^4}{16\pi} \frac{S}{\left(S - M_s^2\right)^2 + M_s^2 \Gamma_s^2}$$
$$\Gamma_s \simeq \frac{g^2}{16\pi} M_s$$

We need MeV scale particle interacting with neutrinos.

![](_page_30_Figure_3.jpeg)

We need MeV scale particle interacting with neutrinos.

![](_page_31_Figure_3.jpeg)

We need MeV scale particle interacting with neutrinos.

![](_page_32_Figure_3.jpeg)

Where did the cosmic neutrinos come from?

Where did the cosmic neutrinos come from?

current knowledge; high energy neutrino source is unknown

SNRs, GRBs, AGNs, star forming galaxies, ...

Where did the cosmic neutrinos come from?

current knowledge; high energy neutrino source is unknown

SNRs, GRBs, AGNs, star forming galaxies, ... let us consider two candidates.

### Where did the cosmic neutrinos come from?

current knowledge; high energy neutrino source is unknown

![](_page_36_Figure_4.jpeg)

### Where did the cosmic neutrinos come from?

current knowledge; high energy neutrino source is unknown

![](_page_37_Figure_4.jpeg)

http://sci.esa.int/xmm-newton/47990-new-evidence-for-galactic-fountains-in-the-milky-way/

How far can neutrinos go through in space?

How far can neutrinos go through in space?

mean free path:

$$\lambda(E_v) = \left[ \int \frac{d^3 p}{(2\pi)^3} \sigma(E_v, p) f_{CvB}(p) \right]$$

 $\int_{-1}^{-1} f_{CvB}(p) = \left[ Exp\left( \left| \overrightarrow{p} \right| / T_{CvB} \right) + 1 \right]^{-1}$ 

How far can neutrinos go through in space?

mean free path:

$$\lambda(E_{v}) = \left[ \int \frac{d^{3}p}{(2\pi)^{3}} \sigma(E_{v}, p) f_{CvB}(p) \right]$$

 $M_{S}=1.0 \text{ MeV}, m_{v}=0 \text{ eV}$ 12 10 g=0.001 8 Log<sub>10</sub>[λ/Mpc] 6 g=0.01 4 2 g=0.1 0 -2 3 5 8 9 6 4 7  $Log_{10}[Ev/GeV]$ 

Fermi-Dirac distribution:

$$-1 \quad f_{CvB}(p) = \left[ Exp\left( \left| \vec{p} \right| / T_{CvB} \right) + 1 \right]^{-1}$$

 $(I Mpc = I.56 \times I0^{38} GeV^{-1})$ 

How far can neutrinos go through in space?

mean free path:

$$\lambda(E_v) = \left[ \int \frac{d^3 p}{(2\pi)^3} \sigma(E_v, p) f_{CvB}(p) \right]$$

 $f_{C\nu B}(p) = \left[ Exp\left( \left| \vec{p} \right| / T_{C\nu B} \right) + 1 \right]^{-1}$ -1

![](_page_41_Figure_7.jpeg)

How far can neutrinos go through in space?

mean free path:

$$\lambda(E_{v}) = \left[ \int \frac{d^{3}p}{(2\pi)^{3}} \sigma(E_{v}, p) f_{CvB}(p) \right]^{2}$$

 $f_{CvB}(p) = \left[ Exp\left( \left| \vec{p} \right| / T_{CvB} \right) + 1 \right]^{-1}$ 

![](_page_42_Figure_7.jpeg)

How far can neutrinos go through in space?

mean free path:

$$\lambda(E_v) = \left[ \int \frac{d^3 p}{(2\pi)^3} \sigma(E_v, p) f_{CvB}(p) \right]^2$$

$$\int_{-1}^{-1} f_{CvB}(p) = \left[ Exp\left( \left| \vec{p} \right| / T_{CvB} \right) + 1 \right]^{-1}$$

![](_page_43_Figure_7.jpeg)

How far can neutrinos go through in space?

mean free path:

$$\lambda(E_v) = \left[ \int \frac{d^3 p}{(2\pi)^3} \sigma(E_v, p) f_{CvB}(p) \right]^2$$

Fermi-Dirac distribution:

 $f_{CvB}(p) = \left[ Exp\left( \left| \vec{p} \right| / T_{CvB} \right) + 1 \right]^{-1}$ -1

![](_page_44_Figure_7.jpeg)

number of neutrinos:

$$\frac{dN_{v}}{dL}(E_{v},z) \simeq -\frac{N_{v}(E_{v},z)}{\lambda(E_{v})}$$
  
traveling distance  
$$L = (c/H_{0})\int dz \Big[\Omega_{m}(1+z)^{3} + \Omega_{\Lambda}\Big]^{-1/2}$$

How far can neutrinos go through in space?

mean free path:

$$\lambda(E_v) = \left[\int \frac{d^3 p}{(2\pi)^3} \sigma(E_v, p) f_{CvB}(p)\right]^{-1}$$

![](_page_45_Figure_5.jpeg)

number of neutrinos:

Fermi-Dirac distribution:

 $f_{CvB}(p) = \left[ Exp\left( \left| \vec{p} \right| / T_{CvB} \right) + 1 \right]^{-1}$ 

$$\frac{dN_{v}}{dL}(E_{v},z) \simeq -\frac{N_{v}(E_{v},z)}{\lambda(E_{v})}$$
  
traveling distance  
$$L = (c/H_{0})\int dz \Big[\Omega_{m}(1+z)^{3} + \Omega_{\Lambda}\Big]^{-1/2}$$

The absorbed region seems too broad to explain the null-event region ...

![](_page_46_Figure_2.jpeg)

\* Neutrino absorption scenario; neutrino mass dependence

simple kinematics

head-on collision 
$$V$$
  
 $\begin{pmatrix} V_{CvB} \\ \hline \\ (E_v, \sqrt{E_v^2 - m_v^2}) \\ \hline \\ (\sqrt{m_v^2 + |\vec{p}_{CvB}|}, -|\vec{p}_{CvB}|) \end{pmatrix}$ 

How large  $E_v$  can contribute to the resonance region?

On pole condition: 
$$M_s^2 = S$$
 (back-to-back case)  
$$= 2 \left[ m_v^2 + E_v \sqrt{m_v^2 + \left| \vec{p}_{CvB} \right|^2} - \sqrt{E_v^2 - m_v^2} \left| \vec{p}_{CvB} \right| \right]$$

 $\rightarrow$  constraint on (E<sub>V</sub>, p<sub>CVB</sub>) to realize this condition for each m<sub>V</sub>

Fermi-Dirac distribution: 
$$f_{CvB}(p_{CvB}) = \left[ Exp(\left| \vec{p}_{CvB} \right| / T_{CvB}) + 1 \right]^{-1}$$

 $\rightarrow$  gives the information; how large probability the relevant  $p_{CVB}$  has.

![](_page_48_Figure_1.jpeg)

\* Neutrino absorption scenario; massless vs. massive

![](_page_49_Figure_2.jpeg)

#### Absorption line also has a sensitivity to neutrino masses!

![](_page_49_Picture_4.jpeg)

# 3, Viable models

### \*We need MeV scale scalar particle interacting with neutrinos.

\* New interaction should involve left-handed neutrino.

![](_page_51_Figure_3.jpeg)

$$\frac{|l| N_N \bar{N}_R h| h_N}{|L| +1| +1| -1| 0| -2|} \qquad \mathcal{L} \supset gh_N lN_N + yhl\bar{N}_R + M\bar{N}_R N_N + mN_N N_N.$$

potential

$$V = -\mu_h^2 |h|^2 + \lambda (h^{\dagger} h)^2 + \mu_N^2 |h_N|^2 + \lambda_1 (h_N^{\dagger} h_N)^2 \qquad \Longrightarrow \qquad \left\langle h_N \right\rangle = 0$$
  
+  $\lambda_2 |h|^2 |h_N|^2 - \lambda_3 |h^{\dagger} h_N + h.c.|^2 \qquad (different from vHDM)$ 

$$I = \overline{N_R} = N_N$$
neutrino mass matrix: 
$$M_v = \begin{bmatrix} 0 & m_D & 0 \\ m_D & 0 & M \\ 0 & M & m \end{bmatrix} \xrightarrow{(m \ll m_D \ll M)} \begin{bmatrix} m_D^2 \frac{m}{M^2} & 0 & 0 \\ 0 & M - \frac{m_D^2}{2M} + \cdots & 0 \\ 0 & 0 & M + \frac{m_D^2}{2M} + \cdots \end{bmatrix}$$
effective theory: 
$$L_{eff} \simeq \frac{gyv}{M} h_N^0 V_L V_L \equiv g^{eff} h_N^0 V_L V_L$$

$$\overset{("Inverse See-Saw")}{(m_v = 0.1eV(\frac{yv}{100GeV})^2(\frac{m}{10eV})(\frac{M}{1TeV})^2)}$$

$$\frac{|l| N_N \bar{N}_R h h_N}{|L| +1| +1| -1| 0| -2} \qquad \mathcal{L} \supset gh_N lN_N + yhl\bar{N}_R + M\bar{N}_R N_N + mN_N N_N.$$

$$\mathcal{L} \supset gh_N lN_N + yhl\bar{N}_R + M\bar{N}_R N_N + mN_N N_N.$$

potential

$$V = -\mu_h^2 |h|^2 + \lambda (h^{\dagger}h)^2 + \mu_N^2 |h_N|^2 + \lambda_1 (h_N^{\dagger}h_N)^2 \qquad (different from vHDM)$$

$$+\lambda_2 |h|^2 |h_N|^2 - \lambda_3 |h^{\dagger}h_N + h.c.|^2 \qquad (different from vHDM)$$

$$custodial symmetric terms$$

$$\mathcal{E}_{ab} \mathcal{E}_{ij} \Psi_{ia} \Psi_{jb}^N - \Psi_{ia} = \begin{pmatrix} h^0 & h^+ \\ h^- & h^0 \end{pmatrix}_{ia} - \Psi_{jb}^N = \begin{pmatrix} h_N^0 & h_N^* \\ h_N^- & h_N^0 \end{pmatrix}_{jb} \qquad (\lambda_2 - \lambda_3 - O(10^{-6}))$$
mass spectrum
$$h_N = \begin{pmatrix} h_N^0 + iA^0 \\ h_N^- \end{pmatrix} \qquad \begin{cases} m_{h_N^0}^2 \sim \mu_N^2 + (\lambda_2 - \lambda_3)v^2 \\ m_{A^0,h_N^-}^2 \sim \mu_N^2 + \lambda_2 v^2 \end{cases} \xrightarrow{\mu_N^2} \mathcal{E}_{ab} \mathcal{E}_{ib} \mathcal{E}_{ib$$

experimental limits?

$$\mathcal{L} \supset gh_N lN_N + yhl\bar{N}_R + M\bar{N}_R N_N + mN_N N_N.$$

experimental limits

![](_page_54_Figure_5.jpeg)

We take  $g_{11}=10^{-3}$  in mass basis for conservative case.

![](_page_56_Figure_1.jpeg)

Attempt 2. Large neutrino magnetic moment scenario

If neutrino has the large magnetic moment, chirality flip of cosmic-ray neutrino takes place.

![](_page_57_Figure_3.jpeg)

#### Attempt 2. Large neutrino magnetic moment scenario

If neutrino has the large magnetic moment, chirality flip of cosmic-ray neutrino takes place.

Larmor precession

![](_page_58_Figure_4.jpeg)

If new physics can enhance  $\mu_{\nu}$ , it is possible to flip the chirality during the flight.

![](_page_58_Figure_6.jpeg)

\* experimental bound

$$\mu_{\nu} \le 5.4 \times 10^{-11} \mu_B$$

(Borexino, Phys.Rev.Lett.101:091302)

![](_page_58_Picture_10.jpeg)

![](_page_59_Figure_1.jpeg)

If neutrino has the large magnetic moment, chirality flip of cosmic-ray neutrino takes place.

![](_page_59_Figure_3.jpeg)

If new physics can enhance  $\mu_{\nu}$ , it is possible to flip the chirality during the flight.

![](_page_59_Figure_5.jpeg)

\* experimental bound  $\mu_{\nu} \leq 5.4 \times 10^{-11} \mu_B$ 

(Borexino, Phys.Rev.Lett.101:091302)

![](_page_59_Picture_9.jpeg)

# Summary

- \* CvB absorption around sub-PeV scale is discussed.
- \* Such absorption line may indicate MeV scale particle interacting with neutrinos.
- \* The line shape is also sensitive to neutrino masses.
- \* As viable models, "neutrinophilic doublet scalar" and "large neutrino magnetic moment scenario" are discussed.
- \* Those models are testable in future collider experiments.

![](_page_61_Figure_1.jpeg)

$$\mathcal{L} \supset gh_N lN_N + yhl\bar{N}_R + M\bar{N}_R N_N + mN_N N_N.$$

experimental limits

\* Meson decay (  $\pi/K \rightarrow l\nu_{l'}h_N^0$  ) flavor basis:  $g_{ab}^{\text{eff}}h_N^0\bar{\nu}_a\nu_b$  ( $a,b=e,\mu,\tau$ ) flavor basis:  $g_{ab}^{\text{eff}}h_N^0\bar{\nu}_a\nu_b$  ( $a,b=e,\mu,\tau$ )  $\int_{l=e,\mu,\tau} |g_{el}^{\text{eff}}|^2 < 5.5 \times 10^{-6}, \sum_{l=e,\mu,\tau} |g_{\mu f}^{\text{eff}}|^2 < 4.5 \times 10^{-5} \text{ and } \sum_{l=e,\mu,\tau} |g_{\tau l}^{\text{eff}}|^2 < 3.2.$   $\implies \text{only } g_{\tau\tau}^{\text{eff}} = 0.5 \text{ is assumed}$   $g_{ij} = \begin{pmatrix} 0.0966234 \ g^{aft}_{\tau\tau} & -0.202561 \ g^{aft}_{\tau\tau} & 0.215073 \ g^{aft}_{\tau\tau} \\ -0.202561 \ g^{aft}_{\tau\tau} & 0.42667 \ g^{aft}_{\tau\tau} & 0.450878 \ g^{aft}_{\tau\tau} \\ 0.215073 \ g^{aft}_{\tau\tau} & -0.450878 \ g^{aft}_{\tau\tau} \end{pmatrix}$ mass basis:  $g_{ij} = (U_{\text{PMNS}}^{\dagger})_{ia}g_{ab}^{\text{eff}}(U_{\text{PMNS}})_{bj}$  (i, j = 1, 2, 3)

![](_page_64_Figure_1.jpeg)