Global analysis of Higgs couplings with dimension-six operators

Satoshi Mishima Univ. of Rome "La Sapienza" & SISSA

PPP2014, YITP, Jul. 30, 2014

European Research Council

Established by the European Commission

Outline

I. Introduction

Effective dimension-six Lagrangian

- 2. EW precision fit in the SM
- 3. Constraints on the coefficients of dim-6 operators

EW precision observables + Higgs signal strengths

4. Summary

M. Ciuchini, E. Franco, S.M. & L. Silvestrini, JHEP 08, 106 (2013);
+ M. Pierini and L. Reina, in preparation;
+ J. de Blas and D. Ghosh, in preparation

1. Introduction

- We have found only a Higgs and no other new particle so far at the LHC.
- Experimental data suggest that the NP scale is well above the EW scale.
- We consider an effective theory built exclusively from the SM fields with the SM gauge symmetries. $SU(3)_c \times SU(2)_L \times U(1)_Y$
- Contributions from higher-dimensional operators are suppressed by powers of the NP scale.

$$\mathcal{L} = \mathcal{L}_{ ext{SM}}^{(4)} + rac{1}{\Lambda} \sum_{i} C_{i}^{(5)} O_{i}^{(5)} + rac{1}{\Lambda^{2}} \sum_{j} C_{j}^{(6)} O_{j}^{(6)} + Oigg(rac{1}{\Lambda^{3}}igg)$$

Effective field theory approach

- Model-independent
- Correlations among observables are induced by gaugeinvariant operators.
 - Useful guide to look for NP effects
- Constraints on the Wilson coefficients will give us clues for constructing the UV theory.

Dim-6 operators

$$\mathcal{L} = \mathcal{L}_{ ext{SM}}^{(4)} + rac{1}{\Lambda} \sum_{i} C_{i}^{(5)} O_{i}^{(5)} + rac{1}{\Lambda^{2}} \sum_{j} C_{j}^{(6)} O_{j}^{(6)} + Oigg(rac{1}{\Lambda^{3}}igg)$$

Dim-5 operators violate B and/or L.

Dim-6 operators contribute to EW/Higgs physics.

Buchmuller & Wyler, NPB268, 621 (1986)

A list of the dim-6 operators was presented.

80 op's (for one generation) that respect B/L.

Grzadkowski, Iskrzynski, Misiak & Rosiek, JHEP10, 085 (2010)

Redundant operators have been removed with the equations of motion. 59 independent op's

Complete list of the dim-6 operators

	X ³	1	H^6 and H^4D^2	$\psi^2 H^3$				
\mathcal{O}_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{\mu}G^{C\mu}_{\mu}$	\mathcal{O}_H	$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^{\dagger}H)(ar{L}eH)$			
$\mathcal{O}_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{\mu} G^{C\mu}_{\mu}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)_{\square}(H^{\dagger}H)$	${\cal O}_{uH}$	$(H^{\dagger}H)(ar{Q}u\widetilde{H})$			
\mathcal{O}_W	$\left[\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\nu} \right]$	\mathcal{O}_{HD}	$(H^{\dagger}D^{\mu}H)^{\star}(H^{\dagger}D_{\mu}H)$	\mathcal{O}_{dH}	$(H^\dagger H)(ar Q dH)$			
$\mathcal{O}_{\widetilde{W}}$	$arepsilon^{\mu} \widetilde{W}^{I u}_{\mu} W^{J ho}_{ u} W^{K\mu}_{ ho}$							
	X ² H ²	I	$\psi^2 X H$	$\psi^2 H^2 D$				
\mathcal{O}_{HG}	$(H^{\dagger}H)G^{A}_{\mu u}G^{A\mu u}$	\mathcal{O}_{eW}	$(ar{L}\sigma^{\mu u}e) au^{I}HW^{I}_{\mu u}$	$\mathcal{O}_{HL}^{(1)}$	$(H^\dagger i \stackrel{\leftrightarrow}{D_\mu} H) (ar{L} \gamma^\mu L)$			
$\mathcal{O}_{H\widetilde{G}}$	$(H^\dagger H)\widetilde{G}^A_{\mu u}G^{A\mu u}$	\mathcal{O}_{eB}	$(ar{L}\sigma^{\mu u}e)HB_{\mu u}$	${\cal O}_{HL}^{(3)}$	$(H^\dagger i \overset{\leftrightarrow}{D}{}^I_\mu H) (ar{L} au^I \gamma^\mu L)$			
\mathcal{O}_{HW}	$(H^\dagger H)W^I_{\mu u}W^{I\mu u}$	\mathcal{O}_{uG}	$(ar{Q}\sigma^{\mu u}T^Au)\widetilde{H}G^A_{\mu u}$	\mathcal{O}_{He}	$(H^\dagger i \stackrel{\leftrightarrow}{D}_\mu H) (ar{e} \gamma^\mu e)$			
$\mathcal{O}_{H\widetilde{W}}$	$(H^\dagger H) \widetilde{W}^I_{\mu u} W^{I\mu u}$	\mathcal{O}_{uW}	$(ar{Q}\sigma^{\mu u}u) au^{I}\widetilde{H}W^{I}_{\mu u}$	$\mathcal{O}_{HQ}^{(1)}$	$(H^\dagger i \stackrel{\leftrightarrow}{D}_\mu H) (ar{Q} \gamma^\mu Q)$			
\mathcal{O}_{HB}	$(H^\dagger H)B_{\mu u}B^{\mu u}$	\mathcal{O}_{uB}	$(ar{Q}\sigma^{\mu u}u)\widetilde{H}B_{\mu u}$	${\cal O}_{HQ}^{(3)}$	$(H^\dagger i \overset{\leftrightarrow}{D^I_\mu} H) (ar{Q} au^I \gamma^\mu Q)$			
${\cal O}_{H\widetilde{B}}$	$(H^\dagger H)\widetilde{B}_{\mu u}B^{\mu u}$	\mathcal{O}_{dG}	$(ar{Q}\sigma^{\mu u}T^Ad)HG^A_{\mu u}$	\mathcal{O}_{Hu}	$(H^\dagger i \stackrel{\leftrightarrow}{D}_\mu H) (ar{u} \gamma^\mu u)$			
\mathcal{O}_{HWB}	$(H^\dagger au^I H) W^I_{\mu u} B^{\mu u}$	\mathcal{O}_{dW}	$(ar{Q}\sigma^{\mu u}d) au^{I}HW^{I}_{\mu u}$	\mathcal{O}_{Hd}	$(H^\dagger i \stackrel{\leftrightarrow}{D}_\mu H) (ar{d} \gamma^\mu d)$			
$\mathcal{O}_{H\widetilde{W}B}$	$(H^\dagger au^I H) \widetilde{W}^I_{\mu u} B^{\mu u}$	\mathcal{O}_{dB}	$(ar{Q}\sigma^{\mu u}d)HB_{\mu u}$	\mathcal{O}_{Hud}	$i(\widetilde{H}^{\dagger}D_{\mu}H)(ar{u}\gamma^{\mu}d)$			
	EDMs. g-2.etc.							
	$(ar{L}L)(ar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(ar{L}L)(ar{R}R)$			
\mathcal{O}_{LL}	$(ar{L}\gamma_{\mu}L)(ar{L}\gamma^{\mu}L)$	\mathcal{O}_{ee}	$(ar e \gamma_\mu e) (ar e \gamma^\mu e)$	\mathcal{O}_{Le}	$(ar{L}\gamma_{\mu}L)(ar{e}\gamma^{\mu}e)$			
$\mathcal{O}_{QQ}^{(1)}$	$(ar Q\gamma_\mu Q)(ar Q\gamma^\mu Q)$	\mathcal{O}_{uu}	$(ar u\gamma_\mu u)(ar u\gamma^\mu u)$	\mathcal{O}_{Lu}	$(ar{L}\gamma_{\mu}L)(ar{u}\gamma^{\mu}u)$			
${\cal O}^{(3)}_{QQ}$	$(ar{Q}\gamma_{\mu} au^{I}Q)(ar{Q}\gamma^{\mu} au^{I}Q)$	\mathcal{O}_{dd}	$(ar{d}\gamma_\mu d)(ar{d}\gamma^\mu d)$	\mathcal{O}_{Ld}	$(ar{L}\gamma_{\mu}L)(ar{d}\gamma^{\mu}d)$			
$\mathcal{O}_{LQ}^{(1)}$	$(ar{L}\gamma_{\mu}L)(ar{Q}\gamma^{\mu}Q)$	\mathcal{O}_{eu}	$(ar e\gamma_\mu e)(ar u\gamma^\mu u)$	\mathcal{O}_{Qe}	$(ar{Q}\gamma_\mu Q)(ar{e}\gamma^\mu e)$			
${\cal O}_{LQ}^{(3)}$	$(ar{L}\gamma_\mu au^I L)(ar{Q}\gamma^\mu au^I Q)$	\mathcal{O}_{ed}	$(ar e \gamma_\mu e) (ar d \gamma^\mu d)$	$\left egin{array}{c} \mathcal{O}_{Qu}^{(1)} ight $	$(ar Q\gamma_\mu Q)(ar u\gamma^\mu u)$			
		$\mathcal{O}_{ud}^{(1)}$	$(ar u\gamma_\mu u)(ar d\gamma^\mu d)$	$\left\ ~~ \mathcal{O}_{Qu}^{(8)} ight.$	$(ar{Q}\gamma_{\mu}T^{A}Q)(ar{u}\gamma^{\mu}T^{A}u)$			
		$\mathcal{O}_{ud}^{(8)}$	$(ar u\gamma_\mu T^A u)(ar d\gamma^\mu T^A d)$	$\left\ ~~ \mathcal{O}_{Qd}^{(1)} ight.$	$(ar{Q}\gamma_\mu Q)(ar{d}\gamma^\mu d)$			
				$\mathcal{O}_{Qd}^{(8)}$	$(ar{Q}\gamma_{\mu}T^{A}Q)(ar{d}\gamma^{\mu}T^{A}d)$			
$(\bar{L}R)$	$(ar{R}L)$ and $(ar{L}R)(ar{L}R)$		<i>B</i> -violating					
\mathcal{O}_{LedQ}	$(ar{L}^j e) (ar{d} Q^j)$	\mathcal{O}_{duG}	$arepsilon_{2} = arepsilon^{lphaeta\gamma}arepsilon_{jk} \left[(d^{lpha} arepsilon_{jk} areps$	$(a)^T C u^{\beta}$	$\left[(Q^{\gamma j})^T C L^k ight]$			
$\mathcal{O}^{(1)}_{QuQd}$	$(ar{Q}^j u)arepsilon_{jk}(ar{Q}^k d)$	\mathcal{O}_{QQ}	$_{u} = \varepsilon^{lphaeta\gamma} \varepsilon_{jk} \left[(Q^{a})^{\prime} \left[(Q$	$(\alpha j)^T C Q$	$\left[(u^{\gamma})^T C e \right]$			
$\mathcal{O}^{(8)}_{QuQd}$	$\left \ (ar{Q}^j T^A u) arepsilon_{jk} (ar{Q}^k T^A d) ight.$	$\mathcal{O}_{QOO}^{(1)}$	$_{Q} \left[\begin{array}{c} arepsilon^{lphaeta\gamma}arepsilon_{jk}arepsilon_{mn} \left[(Q ight] ight] ight]$	$\left \begin{array}{c} \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn} \left[(Q^{\alpha j})^T C Q^{\beta k} \right] \left[(Q^{\gamma m})^T C L^n \right] \end{array} \right $				
$\mathcal{O}_{LeQu}^{(1)}$	$(ar{L}^j e) arepsilon_{jk} (ar{Q}^k u)$	$\mathcal{O}_{QQQ}^{(3)}$	$Q \left[\left[e^{lphaeta\gamma}(au^{I}arepsilon)_{jk}(au^{I}arepsilon)_{mn} ight] ight]$	$\left \begin{array}{c} \varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{jk}(\tau^{I}\varepsilon)_{mn} \left[(Q^{\alpha j})^{T}Cq^{\beta k} \right] \left[(Q^{\gamma m})^{T}CL^{n} \right] \end{array} \right $				
$\mathcal{O}_{LeQu}^{(3)}$	$\left \ (\bar{L}^{j}\sigma_{\mu u}e)arepsilon_{jk}(ar{Q}^{k}\sigma^{\mu u}u) ight.$	\mathcal{O}_{dui}	$\left[arepsilon^{lphaeta\gamma} \left[(d^lpha)^T C u^eta ight] \left[(u^\gamma)^T C e ight] ight] ight]$					

Grzadkowski, Iskrzynski, Misiak & Rosiek (10)

- Consider 18 CP-even op's for EW and Higgs physics.
- To avoid dangerous FCNP, we assume *flavor universality*.

(Alternatively, MFV will also be considered in the paper.)

Other choices of the basis are possible.

direct connections to observables operator mixing in the RG running See, e.g., Giudice et al. (07); Contino et al. (13)

Global fitting tool

- We have been developing a computational framework to calculate various observables in the SM or in its extensions, and to constrain their parameter space.
- The codes are written in C++, supporting MPI.
- One can use our tool as a stand-alone program to perform a Bayesian statistical analysis with MCMC based on the Bayesian Analysis Toolkit (BAT).

Caldwell, Kollar & Kroninger

- Alternatively, one can use it as a library to compute observables in a given model.
- One can add his/her favorite models as well as observables to our tool as external modules.

Global fitting tool

- Models (parameters, RGEs, effective couplings, etc):
 - Standard Model (tested)
 - Some NP extensions for model-independent studies of EW and Higgs (tested)
 - general MSSM (under testing)
- Observables:
 - EW precision observables (tested)
 - Higgs signal strengths (tested)
 - Flavor: $\Delta F = 2$, UT, $b \rightarrow s\gamma$, $b \rightarrow s\ell\ell$ (under testing)
 - LEP2 x-sections, LFV obs' (under construction/testing)
- EW+Higgs codes will be released soon.

Statistical approaches

Frequentist:

model parameter: constant true value

data: random variables

68% confidence interval of a parameter:

The interval covers the true value with a probability of 68%.

$$P(ec{ heta} \,|\, ext{Data}) = rac{L(ext{Data} \,|\, ec{ heta}) \, \pi(ec{ heta})}{\int dec{ heta'} \, L(ext{Data} \,|\, ec{ heta'}) \, \pi(ec{ heta'})}$$

model parameter: random variable

68% credible interval:

prior p.d.f. for parameters $ec{ heta}$

The parameter is in the interval with a probability of 68%.

2. EW precision fit in the SM

EW precision physics

- Electroweak precision observables (EWPO) offer a very powerful handle on the mechanism of EWSB and allow us to strongly constrain NP models relevant to solve the hierarchy problem.
- The precise measurements of the Higgs/W/top masses at Tevatron and LHC improve EW fits.

No free SM parameter in the fit

Theoretical calculations have been improved in recent years.

EW precision observables

 $M_W, \ \Gamma_W \ \text{and} \ 13 \ \text{Z-pole observables}$ (LEP2/Tevatron) (LEP/SLD)

Z-pole ob's are given in terms of effective couplings:

$$\mathcal{L} = rac{e}{2s_W c_W} Z_\mu \, ar{f} \left(oldsymbol{g_V}^{f} \gamma_\mu - oldsymbol{g_A}^{f} \gamma_\mu \gamma_5
ight) f$$

$$\Gamma_f = \Gamma(Z o far{f}) \propto |g_A^f|^2 \left[\left| rac{g_V^f}{g_A^f}
ight|^2 R_V^f + R_A^f
ight]$$

 $\downarrow \Gamma_Z, \ \sigma_h^0 = rac{12\pi}{M_Z^2} rac{\Gamma_e \Gamma_h}{\Gamma_Z^2}, \ R_\ell^0 = rac{\Gamma_h}{\Gamma_\ell}, \ R_{c,b}^0 = rac{\Gamma_{c,b}}{\Gamma_h}$

 $\downarrow g_V^f, \ g_A^f$

Theoretical status

- Mw has been calculated with full EW two-loop and leading higher-order contributions.
 Awramik, Czakon, Freitas & Weiglein (04)
- $sin^{2} \theta_{eff}^{f} have been calculated with full EW two-loop$ (bosonic is missing for f=b) and leading higher-ordercontributions.Awramik, Czakon & Freitas (06); Awramik, Czakon, Freitas & Kniehl (09)
- Full fermionic EW two-loop corrections to the Z-boson partial widths have been calculated recently.

Freitas & Huang (12); Freitas (13); Freitas (14)

Satoshi Mishima (Univ. of Rome)

Up-to-date formulae are available in on-shell scheme.

See also Sirlin; Marciano&Sirlin; Bardin et al; Djouadi&Verzegnassi; Djouadi; Kniehl; Halzen&Kniehl; Kniehl&Sirlin; Barbieri et al; Fleischer et al; Djouadi&Gambino; Degrassi et al; Avdeev et al; Chetyrkin et al; Freitas et al; Awramik&Czakon; Onishchenko&Veretin; Van der Bij et al; Faisst et al; Awramik et al, and many other works

13/28

Theoretical status

A. Freitas, 1406.6980

	$M_{ m W}$	Γ_Z	$\sigma_{ m had}^0$	R _b	$\sin^2 heta_{ m eff}^\ell$
Exp. error	15 MeV	2.3 MeV	37 pb	6.6×10^{-4}	1.6×10^{-4}
Theory error	4 MeV	0.5 MeV	6 pb	1.5×10^{-4}	0.5×10^{-4}

Theory errors from missing higher-order corrections are safely below current experimental errors.

EW precision fit

Erler et al. (for PDG)

http://www.fisica.unam.mx/erler/GAPPP.html

GAPP (Global Analysis of Particle Properties) MSbar scheme & frequentist

Gfitter group

Gfitter (Generic fitting package) <u>http://gfitter.desy.de</u> on-shell scheme & frequentist

Many other groups with ZFITTER <u>http://zfitter.com</u> on-shell scheme

Dur group M. Ciuchini, E. Franco, S.M., L. Silvestrini and others ...

on-shell scheme & Bayesian

Measurements of the top pole mass

Tevatron +LHC combination

New Tevatron combination

1407.2682

Ambiguity in the top pole mass

The measurements of the pole mass of the top quark at Tevatron and LHC suffer from ambiguities:

parton shower models, color reconnections, ...

M. Mangano at TOP2013:

"All in all I believe that it is justified to assume that MC mass parameter is interpreted as mpole within the ambiguity intrinsic in the definition of mpole, thus at the level of ~250-500 MeV."

Moch et al., 1405.4781 (report on the 2014 MITP scientific program):

"The uncertainty on the translation from the MC mass definition to a theoretically well defined short-distance mass definition at a low scale is currently estimated to be of the order of I GeV." (There is an additional uncertainty originating from the conversion of the short-distance mass to pole mass.)

We take a naive combination of Tevatron/LHC, and assume the additional uncertainty of I GeV.

SM fit

	Data	E:+	Indiroct	D.111
$\sim (M^2)$	$\frac{Data}{0.1185 \pm 0.0005}$	110	$\frac{11011000}{0.1186 \pm 0.0028}$	
$\alpha_s(M_Z)$	0.1185 ± 0.0005	0.1185 ± 0.0005	0.1180 ± 0.0028	+0.0
$\Delta lpha_{ m had}^{(0)}(M_Z^2)$	0.02750 ± 0.00033	0.02745 ± 0.00026	0.02737 ± 0.00043	-0.2
$M_Z \; [{ m GeV}]$	91.1875 ± 0.0021	91.1878 ± 0.0020	91.195 ± 0.012	+0.7
$m_t \; [{ m GeV}]$	$174.01 \pm 0.53 \pm 1.00$	174.3 ± 0.8	176.6 ± 2.6	+1.2
$m_h \; [{ m GeV}]$	125.14 ± 0.24	125.14 ± 0.24	105.80 ± 28.28	-0.5
$M_W \; [{ m GeV}]$	80.385 ± 0.015	80.371 ± 0.007	80.367 ± 0.007	-1.1
$\Gamma_W \; [{ m GeV}]$	2.085 ± 0.042	2.0894 ± 0.0005	2.0894 ± 0.0005	+0.1
$\Gamma_Z \; [{ m GeV}]$	2.4952 ± 0.0023	2.4946 ± 0.0005	2.4946 ± 0.0005	-0.3
$\sigma_h^0 \; [{ m nb}]$	41.540 ± 0.037	41.488 ± 0.003	41.488 ± 0.003	-1.4
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	0.2324 ± 0.0012	0.23144 ± 0.00009	0.23144 ± 0.00009	-0.8
$P_{ au}^{ m pol}$	0.1465 ± 0.0033	0.1476 ± 0.0007	0.1477 ± 0.0007	+0.4
$\dot{\mathcal{A}_{\ell}}$ (SLD)	0.1513 ± 0.0021	0.1476 ± 0.0007	0.1471 ± 0.0008	-1.9
\mathcal{A}_{c}	0.670 ± 0.027	0.6682 ± 0.0003	0.6682 ± 0.0003	-0.1
\mathcal{A}_b	0.923 ± 0.020	0.93466 ± 0.00006	0.93466 ± 0.00006	+0.6
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.0163 ± 0.0002	0.0163 ± 0.0002	-0.8
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	0.0740 ± 0.0004	0.0740 ± 0.0004	+0.9
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	0.1035 ± 0.0005	0.1039 ± 0.0005	+2.8
R_{ℓ}^{0}	20.767 ± 0.025	20.751 ± 0.003	20.751 ± 0.003	-0.6
R_c^{0}	0.1721 ± 0.0030	0.17225 ± 0.00001	0.17225 ± 0.00001	+0.0
$R_b^{reve{0}}$	0.21629 ± 0.00066	0.21576 ± 0.00003	0.21576 ± 0.00003	-0.8
$\delta M_W ~[{ m GeV}]$	[-0.004,0.004]			
$\delta \sin^2 heta_{ ext{eff}}^{ ext{lept}}$	$[-4.7,4.7]\cdot10^{-5}$			
$\delta \Gamma_Z \; [{ m GeV}]$	$[-5,5]\cdot 10^{-4}$			

Indirect: determined w/o using the corresponding experimental information

 $\Delta\alpha^{(5)}_{\rm had}(M_Z^2) = 0.02757 \pm 0.00010$

Top mass vs. (meta-)stability

The measurement of the top mass is crucial for testing the stability of the SM vacuum. Degrassi et al.(12); Buttazzo et al.(13)

 $m_t^{
m pole} < 171.53 \pm 0.42 ~{
m GeV}$

Tevatron/LHC measurements: $174.34 \pm 0.64 \,\, \mathrm{GeV}$ (Tevatron) $173.29\pm0.95~\mathrm{GeV}$ (LHC) Pole from MSbar: 171.2 ± 2.4 GeV

Caveat: Threshold corrections at the Planck scale alter the phase diagram.

> Branchina & Messina (13); Branchina, Messina & Platania (14) 19/28

180

178

176

174

1405.4781

Instability

180 185 170 175 mt [GeV]

3. Constraints on the coefficients of dim-6 operators

Indirect and direct contributions

$$\begin{split} \mathcal{O}_{HD} &= (H^{\dagger}D^{\mu}H)^{*}(H^{\dagger}D_{\mu}H) \\ &= \frac{v^{2}}{4} \bigg(1 + \frac{2h}{v} + \frac{h^{2}}{v^{2}}\bigg)(\partial^{\mu}h)(\partial_{\mu}h) + \frac{g^{2}v^{4}}{16c_{W}^{2}}Z^{\mu}Z_{\mu}\bigg(1 + \frac{4h}{v} + \frac{6h^{2}}{v^{2}} + \frac{4h^{3}}{v^{3}} + \frac{h^{4}}{v^{4}}\bigg) \end{split}$$

Indirect contribution via input parameters:

$$M_Z^2 = M_{Z,\mathrm{SM}}^2 igg(1+rac{v^2}{2\Lambda^2}C_{HD}igg)$$

contributes to EW/Higgs observables.

Direct contribution:

$$\mathcal{L}_{ ext{eff}} = rac{M_Z^2}{v} \left(1 + rac{v^2}{\Lambda^2} C_{HD}
ight) Z_\mu Z^\mu h$$

Indirect and direct contributions

	Indirect contributions							Direct contributions							
Operator	Kinetic terms					SM param's		Direct contribution to interactions							
	G^A	W^{I}	B	W^3B	H	M_Z	v	Y_f	WWV	$W f ar{f}'$	$Z f ar{f}$	hVV	$hfar{f}$	$hVqar{q}$	4ℓ
\mathcal{O}_{HG}	\checkmark											\checkmark			
\mathcal{O}_{HW}		\checkmark										\checkmark			
\mathcal{O}_{HB}			\checkmark									$ $ \checkmark			
\mathcal{O}_{HWB}				\checkmark								\checkmark			
${\cal O}_{HD}$					\checkmark	\checkmark						\checkmark			
${\mathcal O}_{H\square}$					\checkmark										
$\mathcal{O}_{HL}^{(1)}$											\checkmark				
${\cal O}_{HL}^{(3)}$										\checkmark	\checkmark				
${\cal O}_{HQ}^{(1)}$											\checkmark			\checkmark	
$\mathcal{O}_{HO}^{(3)}$										\checkmark	\checkmark			\checkmark	
\mathcal{O}_{He}			1							-	\checkmark				
${\cal O}_{Hu}$											\checkmark			\checkmark	
${\cal O}_{Hd}$											\checkmark			\checkmark	
${\cal O}_{Hud}$										\checkmark				\checkmark	
${\cal O}_{eH}$								\checkmark					\checkmark		
${\cal O}_{uH}$								\checkmark					\checkmark		
${\cal O}_{dH}$								\checkmark					\checkmark		
${\cal O}_{LL}$															

$$\begin{split} \mathcal{O}_{HG} &= (H^{\dagger}H)G^{A}_{\mu\nu}G^{A\mu\nu}\\ \mathcal{O}_{HW} &= (H^{\dagger}H)W^{I}_{\mu\nu}W^{I\mu\nu}\\ \mathcal{O}_{HB} &= (H^{\dagger}H)B_{\mu\nu}B^{\mu\nu}\\ \mathcal{O}_{HB} &= (H^{\dagger}\tau^{I}H)W^{I}_{\mu\nu}B^{\mu\nu}\\ \mathcal{O}_{HD} &= (H^{\dagger}D^{\mu}H)^{*}(H^{\dagger}D_{\mu}H)\\ \mathcal{O}_{H\Box} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{L}\gamma^{\mu}L)\\ \mathcal{O}_{HL}^{(1)} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{L}\tau^{I}\gamma^{\mu}L)\\ \mathcal{O}_{HL}^{(3)} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{Q}\gamma^{\mu}Q)\\ \mathcal{O}_{HQ}^{(3)} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{Q}\gamma^{\mu}Q)\\ \mathcal{O}_{HQ}^{(3)} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{Q}\tau^{I}\gamma^{\mu}Q)\\ \mathcal{O}_{He} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{e}_{R}\gamma^{\mu}e_{R})\\ \mathcal{O}_{Hu} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{a}_{R}\gamma^{\mu}d_{R})\\ \mathcal{O}_{Hd} &= (H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overline{a}_{R}\gamma^{\mu}d_{R})\\ \mathcal{O}_{Hd} &= (H^{\dagger}H)(\overline{L}e_{R}H)\\ \mathcal{O}_{uH} &= (H^{\dagger}H)(\overline{Q}u_{R}\widetilde{H})\\ \mathcal{O}_{dH} &= (H^{\dagger}H)(\overline{Q}d_{R}H)\\ \mathcal{O}_{LL} &= (\overline{L}\gamma_{\mu}L)(\overline{L}\gamma^{\mu}L) \end{split}$$

Dim-6 contributions to EWPO

$$\begin{array}{l}
\mathcal{O}_{HWB} = (H^{\dagger}\tau^{I}H)W_{\mu\nu}^{I}B^{\mu\nu} \\
\mathcal{O}_{HD} = (H^{\dagger}D^{\mu}H)^{*}(H^{\dagger}D_{\mu}H) \\
\mathcal{O}_{LL} = (\bar{L}\gamma_{\mu}L)(\bar{L}\gamma^{\mu}L) \\
\mathcal{O}_{HL}^{(3)} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{L}\tau^{I}\gamma^{\mu}L) \\
\mathcal{O}_{HL}^{(1)} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{L}\gamma^{\mu}L) \\
\mathcal{O}_{HQ}^{(3)} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{Q}\tau^{I}\gamma^{\mu}Q) \\
\mathcal{O}_{HQ}^{(1)} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{Q}\gamma^{\mu}Q) \\
\mathcal{O}_{He} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{R}\gamma^{\mu}e_{R}) \\
\mathcal{O}_{Hu} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{R}\gamma^{\mu}u_{R}) \\
\mathcal{O}_{Hd} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{R}\gamma^{\mu}d_{R})
\end{array}$$

$$\xrightarrow{} S \text{ parameter (W3-B mixing)} \\
\xrightarrow{} T \text{ parameter (Mz)} \\
\xrightarrow{} Fermi \text{ constant} \\
\xrightarrow{} Left\text{-handed } Zf\overline{f} \\
\xrightarrow{} Right\text{-handed } Zf\overline{f} \\
\xrightarrow{} Right\text{-hande } Z$$

There are flat directions in the fit. See, e.g., Han & Skiba (05)

switch on one operator at a time to avoid the flat directions and accidental cancellations.

Higgs data

We use the ATLAS/CMS (and CDF/D0) data for the Higgs signal strengths relative to the SM expectations.

 $ZZ, W^+W^-, \gamma\gamma, \tau^+\tau^-, b\bar{b}$ channels

divided into different categories to improve sensitivity to each production mechanism

We assume that the efficiency of event selection for a given category is similar to that in the SM. This assumption is valid for small deviations from the SM couplings, which do not modify kinematic distributions significantly.

Fit results at 95% in units of $1/\Lambda^2~{\rm TeV}^{-2}$

Coefficient	$\mathbf{E}\mathbf{W}$	Higgs	EW+Higgs		
C_{HG}		[-0.0077, 0.0066]	[-0.0077, 0.0066]		
C_{HW}		[-0.039, 0.012]	[-0.039,0.012]		
C_{HB}		[-0.011, 0.003]	[-0.011,0.003]		
C_{HWB}	$\left[-0.0094,0.0055 ight]$	[-0.006, 0.020]	$\left[-0.0063,0.0066 ight]$		
C_{HD}	[-0.029,0.009]	[-5.3, 8.5]	[-0.029,0.009]		
$C_{H\square}$		[-1.2,2.0]	[-1.2,2.0]		
$C_{HL}^{(1)}$	[-0.005,0.011]		[-0.005,0.011]		
$C^{(3)}_{HL}$	[-0.011,0.007]	[-1.5,0.5]	[-0.011,0.007]		
$C_{HQ}^{(1)}$	[-0.027,0.041]	[-28,15]	[-0.027,0.041]		
$C_{HQ}^{(3)}$	[-0.011,0.013]	[-0.6,2.2]	[-0.011,0.013]		
C_{He}	[-0.017,0.006]		[-0.017,0.006]		
C_{Hu}	[-0.071,0.076]	[-5,11]	$\left[-0.071,0.077 ight]$		
C_{Hd}	[-0.14,0.06]	[-33,15]	[-0.14,0.06]		
C_{Hud}					
C_{eH}		[-0.071, 0.024]	[-0.071,0.024]		
C_{uH}		[-0.50, 0.59]	[-0.50,0.59]		
C_{dH}		[-0.072,0.078]	[-0.072,0.078]		
C_{LL}	[-0.012,0.021]	[-1.0, 3.0]	[-0.012,0.021]		

 $\mathcal{O}_{HG} = (H^{\dagger}H)G^{A}_{\mu\nu}G^{A\mu\nu}$ $\mathcal{O}_{HW} = (H^{\dagger}H)W^{I}_{\mu
u}W^{I\mu
u}$ $\mathcal{O}_{HB} = (H^{\dagger}H)B_{\mu
u}B^{\mu
u}$ $\mathcal{O}_{HWB} = (H^{\dagger} \tau^{I} H) W^{I}_{\mu
u} B^{\mu
u}$ $\mathcal{O}_{HD} = (H^{\dagger}D^{\mu}H)^*(H^{\dagger}D_{\mu}H)$ ${\mathcal O}_{H\square} = (H^\dagger H) \square (H^\dagger H)$ $\mathcal{O}_{HL}^{(1)} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{L}\gamma^{\mu}L)$ $\mathcal{O}_{HL}^{(3)} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\overline{L}\,\tau^{I}\gamma^{\mu}L)$ $\mathcal{O}_{HQ}^{(1)} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{Q}\gamma^{\mu}Q)$ $\mathcal{O}_{HQ}^{(3)} = (H^{\dagger}i\overleftarrow{D}_{\mu}^{I}H)(\overline{Q}\,\tau^{I}\gamma^{\mu}Q)$ $\mathcal{O}_{He} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{e}_{R}\gamma^{\mu}e_{R})$ $\mathcal{O}_{Hu} = (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\overline{u}_R \gamma^{\mu} u_R)$ $\mathcal{O}_{Hd} = (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\overline{d}_R \gamma^{\mu} d_R)$ ${\cal O}_{Hud} = i (\widetilde{H}^{\dagger} D_{\mu} H) (\overline{u}_R \gamma^{\mu} d_R)$ $\mathcal{O}_{eH} = (H^{\dagger}H)(\bar{L}\,e_RH)$ $\mathcal{O}_{uH} = (H^{\dagger}H)(\bar{Q}\,u_R\widetilde{H})$ $\mathcal{O}_{dH} = (H^{\dagger}H)(\bar{Q}\,d_RH)$ $\mathcal{O}_{LL} = (\overline{L}\gamma_{\mu}L)(\overline{L}\gamma^{\mu}L)$

 $gg
ightarrow h \,$ (one-loop in the SM)

$$\mathcal{L}_{
m NP} = \left(rac{v}{\Lambda^2} C_{HG} + \cdots
ight) G^A_{\mu
u} G^{A\mu
u} h$$

 $h
ightarrow \gamma \gamma \,$ (one-loop in the SM)

 $\mathcal{L}_{
m NP}=rac{v}{\Lambda^2}(s_W^2C_{HW}+c_W^2C_{HB}-s_Wc_WC_{HWB})F_{\mu
u}F^{\mu
u}h$

 $h \to f \bar{f}$ (suppressed by mf for light fermions in the SM) $\mathcal{L}_{NP} = rac{v^2}{\sqrt{2}\Lambda^2} C_{fH} \bar{f}_L f_R h + {
m h.c.}$

EW vs. Higgs

- Except for Снив, the constraints from the Higgs data are much weaker than those from the EW data.
 - Those operators do not yield significant deviations in the Higgs couplings.

Lower bounds on the NP scale in TeV

	EW		Hig	gs	EW+Higgs		
Coefficient	$C_i = -1$	$C_i = 1$	$C_i = -1$	$C_i = 1$	$C_i = -1$	$C_i = 1$	
C_{HG}			11.4	12.3	11.4	12.3	
C_{HW}			5.1	9.1	5.1	9.1	
C_{HB}			9.6	17.2	9.6	17.2	
C_{HWB}	10.3	13.4	12.6	7.1	12.6	12.3	
C_{HD}	5.9	10.8	0.4	0.3	5.9	10.8	
$C_{H\square}$			0.9	0.7	0.9	0.7	
$C_{HL}^{(1)}$	13.9	9.3			13.9	9.3	
$C_{HL}^{(3)}$	9.7	11.9	0.8	1.4	9.6	11.9	
$C_{HQ}^{(1)}$	6.1	4.9	0.2	0.3	6.1	4.9	
$C_{HQ}^{(3)}$	9.4	8.7	1.3	0.7	9.4	8.7	
C_{He}	7.7	13.4			7.7	13.4	
C_{Hu}	3.8	3.6	0.4	0.3	3.8	3.6	
C_{Hd}	2.7	4.0	0.2	0.3	2.7	4.0	
C_{Hud}							
C_{eH}			3.8	6.4	3.8	6.4	
C_{uH}			1.4	1.3	1.4	1.3	
C_{dH}			3.7	3.6	3.7	3.6	
C_{LL}	9.3	7.0	1.0	0.6	9.3	7.0	

Lower bounds are multi-TeV to 17 TeV.

$$\begin{split} \mathcal{O}_{HG} &= (H^{\dagger}H)G_{\mu\nu}^{A}G^{A\mu\nu} \\ \mathcal{O}_{HW} &= (H^{\dagger}H)W_{\mu\nu}^{I}W^{I\mu\nu} \\ \mathcal{O}_{HB} &= (H^{\dagger}H)B_{\mu\nu}B^{\mu\nu} \\ \mathcal{O}_{HWB} &= (H^{\dagger}\tau^{I}H)W_{\mu\nu}^{I}B^{\mu\nu} \\ \mathcal{O}_{HD} &= (H^{\dagger}\tau^{I}H)W_{\mu\nu}^{I}B^{\mu\nu} \\ \mathcal{O}_{HD} &= (H^{\dagger}\tau^{I}D^{\mu}H)^{*}(H^{\dagger}D_{\mu}H) \\ \mathcal{O}_{H\Box} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{L}\gamma^{\mu}L) \\ \mathcal{O}_{HL}^{(1)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{L}\gamma^{\mu}Q) \\ \mathcal{O}_{HL}^{(3)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{Q}\gamma^{\mu}Q) \\ \mathcal{O}_{HQ}^{(3)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{Q}\gamma^{\mu}Q) \\ \mathcal{O}_{He} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{e}_{R}\gamma^{\mu}e_{R}) \\ \mathcal{O}_{Hu} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{e}_{R}\gamma^{\mu}d_{R}) \\ \mathcal{O}_{Hu} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{d}_{R}\gamma^{\mu}d_{R}) \\ \mathcal{O}_{Hud} &= i(\widetilde{H}^{\dagger}D_{\mu}H)(\overline{u}_{R}\gamma^{\mu}d_{R}) \\ \mathcal{O}_{eH} &= (H^{\dagger}H)(\overline{L}e_{R}H) \\ \mathcal{O}_{uH} &= (H^{\dagger}H)(\overline{Q}d_{R}H) \\ \mathcal{O}_{dH} &= (H^{\dagger}H)(\overline{L}\gamma^{\mu}L) \end{split}$$

4. Summary

- We have presented an updated fit to the EW precision data in the SM, and that to the EW precision and Higgs data in the effective theory approach.
- The constraints from EW precision data and Higgs data are complementary to each other.
- Some of the results presented in this talk (especially those with the Higgs data) are still very preliminary.
 - estimates of theoretical uncertainties
 - inclusion of more data in the fit

e.g., measurements of TGCs kinematic distributions in H+V associated production

J. Ellis, V. Sanz & T.You (14)

→ remove flat directions in the fit

Backup

Hadronic corrections to the EM coupling

We adopt a conservative value:

 $\Delta \alpha^{(5)}_{\rm had}(M_Z^2) = 0.02750 \pm 0.00033$

measured with inclusive processes.

Burkhardt & Pietrzyk (11) (see also Davier et al(11); Hagiwara et al(11); Jegerlehner(11))

Note: Smaller uncertainty has been obtained if using exclusive processes with pQCD:

 $\deltaig(\Delta lpha_{
m had}^{(5)}(M_Z^2)ig) \sim \pm 0.00010$

but discrepancy has been observed between inclusive and exclusive in low-energy data.

Parametric uncertainties

($\Delta \alpha_{had}^{(5)}(M_Z^2)$ and m_t are the most important sources of parametric uncertainty.

	Prediction	$lpha_s$	$\Delta lpha_{ m had}^{(5)}$	M_Z	m_t
$M_W \; [{ m GeV}]$	80.368 ± 0.008	± 0.000	± 0.006	± 0.003	± 0.005
$\Gamma_W \; [{ m GeV}]$	2.0892 ± 0.0007	± 0.0002	± 0.0005	± 0.0002	± 0.0004
$\Gamma_Z \; [{ m GeV}]$	2.4945 ± 0.0006	± 0.0002	± 0.0003	± 0.0002	± 0.0002
$\sigma_h^0 \; [{ m nb}]$	41.489 ± 0.003	± 0.002	± 0.000	± 0.002	± 0.001
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	0.23147 ± 0.00012	± 0.00000	± 0.00012	± 0.00001	± 0.00003
$P^{ m pol}_{ au}$	0.1475 ± 0.0010	± 0.0000	± 0.0009	± 0.0001	± 0.0002
\mathcal{A}_{ℓ} (SLD)	0.1475 ± 0.0010	± 0.0000	± 0.0009	± 0.0001	± 0.0002
\mathcal{A}_{c}	0.6681 ± 0.0004	± 0.0000	± 0.0004	± 0.0001	± 0.0001
\mathcal{A}_b	0.93465 ± 0.00008	± 0.00000	± 0.00007	± 0.00001	± 0.00001
$A_{ m FB}^{0,\ell}$	0.0163 ± 0.0002	± 0.0000	± 0.0002	± 0.0000	± 0.0000
$A_{ m FB}^{0,c}$	0.0739 ± 0.0005	± 0.0000	± 0.0005	± 0.0001	± 0.0001
$A_{ m FB}^{0,b}$	0.1034 ± 0.0007	± 0.0000	± 0.0006	± 0.0001	± 0.0001
R^0_ℓ	20.751 ± 0.004	± 0.003	± 0.002	± 0.000	± 0.000
R_c^0	0.17224 ± 0.00001	± 0.00001	± 0.00001	± 0.00000	± 0.00001
$R_b^{ar{0}}$	0.21577 ± 0.00003	± 0.00001	± 0.00000	± 0.00000	± 0.00003

Direct and indirect measurements

Future prospect

Oblique parameters

Suppose that dominant NP effects appear in the vacuum polarizations of the gauge bosons:

$$\begin{split} S &= -16\pi\Pi_{30}'(0) = 16\pi \left[\Pi_{33}^{\rm NP\prime}(0) - \Pi_{3Q}^{\rm NP\prime}(0)\right] \\ T &= \frac{4\pi}{s_W^2 c_W^2 M_Z^2} \left[\Pi_{11}^{\rm NP}(0) - \Pi_{33}^{\rm NP}(0)\right] \\ U &= 16\pi \left[\Pi_{11}^{\rm NP\prime}(0) - \Pi_{33}^{\rm NP\prime}(0)\right] \end{split}$$

Kennedy & Lynn (89); Peskin & Takeuchi (90,92)

EWPO depend on the three combinations:

$$\delta M_W, \, \delta \Gamma_W \propto -S + 2c_W^2 T + rac{(c_W^2 - s_W^2) U}{2s_W^2}$$

 $\delta \Gamma_Z \propto -10(3 - 8s_W^2) S + (63 - 126s_W^2 - 40s_W^4) T$
others $\propto S - 4c_W^2 s_W^2 T$

Fit results for oblique parameters

Epsilon parameters

$$\epsilon_{1} = \Delta \rho'$$

$$\epsilon_{2} = c_{0}^{2} \Delta \rho' + \frac{s_{0}^{2}}{c_{0}^{2} - s_{0}^{2}} \Delta r_{W} - 2s_{0}^{2} \Delta \kappa'$$

$$\epsilon_{3} = c_{0}^{2} \Delta \rho' + (c_{0}^{2} - s_{0}^{2}) \Delta \kappa'$$
and ϵ_{b}

$$\pi \rho (M^{2})$$

$$\epsilon_{3} = c_{0}^{2} \Delta \rho + (c_{0}^{2} - s_{0}^{2}) \Delta \kappa'$$

$$s_W^2 c_W^2 = \frac{\pi \alpha (M_Z^2)}{\sqrt{2} G_\mu M_Z^2 (1 - \Delta r_W)} \qquad \sin^2 \theta_{\text{eff}}^e = (1 + \Delta \kappa') s_0^2$$
$$\sqrt{\operatorname{Re} \rho_Z^e} = 1 + \frac{\Delta \rho'}{2} \qquad \qquad s_0^2 c_0^2 = \frac{\pi \alpha (M_Z^2)}{\sqrt{2} G_\mu M_Z^2}$$

- \bullet_i involve the oblique corrections beyond S,T and U. *i.e.,W,Y,...*
- Unlike STU, ϵ_i involve non-oblique vertex corrections.
- Moreover, ϵ_i also involve SM contributions.

$$\diamond \quad \delta \epsilon_i = \epsilon_i - \epsilon_i^{\rm SM}$$

Epsilon parameters

Zbb couplings

- Four solutions from Z-pole data, while two of them are disfavored by off Z-pole data for AFBb.
 Choudhury et al. (02)
- The solution closer to the SM:

Deviation from the SM due to $A_{\text{FB}}^{0,b}$

See also Batell et al. (13)

EW chiral Lagrangian

No new state below cutoff + custodial symmetry:

$$\mathcal{L} = rac{v^2}{4} \operatorname{Tr}(D_\mu \Sigma^\dagger D^\mu \Sigma) \left(1 + 2\kappa_V rac{h}{v} + \cdots
ight) + \cdots \quad egin{split} \Sigma: \ \mathrm{Goldstone} \ \mathrm{bosons} \ \kappa_V = 1 \ \mathrm{in} \ \mathrm{the} \ \mathrm{SM} \end{split}$$

The HVV coupling contributes to S and T at one-loop.

Barberi, Bellazzini, Rychkov & Varagnolo (07)

$$\begin{split} S &= \frac{1}{12\pi} (1 - \kappa_V^2) \ln \left(\frac{\Lambda^2}{m_h^2}\right) \\ T &= -\frac{3}{16\pi c_W^2} (1 - \kappa_V^2) \ln \left(\frac{\Lambda^2}{m_h^2}\right) \end{split} \qquad \Lambda = 4\pi v / \sqrt{|1 - \kappa_V^2|} \\ G & h \end{split}$$

 $\ln(\Lambda^2/M_Z^2) - \kappa_V^2 \ln(\Lambda^2/m_h^2)$

EW chiral Lagrangian

EWPO constraint on Kv is stronger than Higgs one, but no constraint on Kf.

 \checkmark $\Lambda \gtrsim 15 {
m TeV} @ 95\%$ for $\kappa_V < 1$

EW chiral Lagrangian

Kv is tightly constrained for the scale compatible with direct searches.

Composite Higgs models

Composite Higgs models typically generate $\kappa_V < 1$.

e.g. Minimal Composite Higgs Models (MCHM) based on SO(5)/SO(4)

Agashe, Contino & Pomarol (05)

$$V = \sqrt{1-\xi} \qquad \qquad \xi = \left(rac{v}{f}
ight)^2$$

f: scale of compositeness

Extra contributions to S and T are required to fix the EW fit under $\kappa_V < 1$.

К

IR contribution + UV cont' from heavy vector resonances + Fermionic resonances