LHC physics and beyond
 Mihoko Nojiri KEK \＆IPMU

success of LHC

NY Times

discovery of Higgs boson

Higgs boson と top quark は標準模型のフロンティア

今後のLHC への期待

- 統計は圧倒的
- 系統誤差は大きい \rightarrow QCD の高次計算が大事。
－系統誤差は比率で改善

$\mathbf{3 0 0} \mathbf{~ f b}^{-1}:$			
Observable	ATLAS	CMS－1	CMS－2
$\sigma(g g) \cdot B R(\gamma \gamma)$	$12 \oplus 19$	$6 \oplus 12.3$	$3 \oplus 6.2$
$\sigma(W W) \cdot B R(\gamma \gamma)$	$47 \oplus 15$	$20 \oplus 2.4$	$14 \oplus 1.2$
$\sigma(g g) \cdot B R(W W)$	$8 \oplus 18$	$6 \oplus 12.3$	$5 \oplus 6.2$
$\sigma(W W) \cdot B R(W W)$	$20 \oplus 8$	$35 \oplus 2.4$	$28 \oplus 1.2$
$\sigma(g g) \cdot B R(Z Z)$	$6 \oplus 11$	$7 \oplus 12.3$	$5 \oplus 6.2$
$\sigma(W W) \cdot B R(Z Z)$	$31 \oplus 13$	$12 \oplus 2.4$	$10 \oplus 1.2$
$\sigma(g g) \cdot B R(\tau \tau)$	-	$13 \oplus 12.3$	$6 \oplus 6.2$
$\sigma(W W) \cdot B R(\tau \tau)$	$16 \oplus 15$	$16 \oplus 2.4$	$9 \oplus 1.2$
$\sigma(W h) \cdot B R(b \bar{b})$	-	$17 \oplus 3.8$	$14 \oplus 1.7$
$\sigma(t \bar{t} h) \cdot B R(b \bar{b})$	-	$60 \oplus 11.7$	$50 \oplus 5.9$
$\sigma(t \bar{t} h) \cdot B R(\gamma \gamma)$	$54 \oplus 10$	$40 \oplus 11.7$	$38 \oplus 5.9$
$\sigma(Z h) \cdot B R(i n v i s)$	-	$16 \oplus 4.3$	$11 \oplus 2.2$

$300 \mathrm{fb}^{-1}$ ：

ATLAS Preliminary（Simulation）

$$
\sqrt{\mathrm{S}}=14 \mathrm{TeV}: \int \mathrm{Ldt}=300 \mathrm{fb}^{-1} ; \int \mathrm{Ldt}=3000 \mathrm{fb}^{-1}
$$

最近ちょっと気になった解析

（Higgs のoff shell width）

＂higgs の幅だけ10倍いじったら gg－＞ZZ 断面積が たくさん変わるからHiggs の幅に制限がついた＂

CMS 1405.3455

- model independent も考えもの
- complete theory が必要

amplitude の 盛大な cancellation をてこにしている

最近ちょっと気になった解析

（Higgs のoff shell width）

＂higgs の幅だけ10倍いじったら gg－＞ZZ 断面積が たくさん変わるからHiggs の幅に制限がついだ

CMS 1405.3455

- model independent も考えもの
- complete theory が必要

amplitude の 盛大な cancellation をてこにしている

高次元operator への制限

$\mathcal{L}^{\operatorname{dim}-6}=c_{y} \frac{y_{t}|H|^{2}}{v^{2}} \bar{Q}_{L} \widetilde{H} t_{R}+$ h．c．$+\frac{c_{g} g_{s}^{2}}{48 \pi^{2} v^{2}}|H|^{2} G_{\mu \nu} G^{\mu \nu}+\tilde{c}_{g} \frac{g_{s}^{2}}{32 \pi^{2} v^{2}}|H|^{2} G_{\mu \nu} \tilde{G}^{\mu \nu}$,
Higgs production $\quad \sigma \sim\left|c_{t}+c_{g}\right|^{2}$ 。 ct と g が相関すると制限がつかない
ZZ 生成の高エネルギー挙動

8TeVCMS

もしILC ができたらどうなるか Higgs Couplings（1／2）

t の coupling と W のcoupling の測定には，500GeV が必要 LHC の $\Gamma(\gamma) / \Gamma(Z)$ を使うと $\mathrm{g}(\mathrm{\gamma} \mathrm{H} \mathrm{H})$ がさらに改善。

Higgs sector に関わる模型

－SUSY 2 Higgs doublet 模型

Heavy Higgs Mass Reach

－LHC：Heavy Higgs direct search
－ILC：Indirect search via effect on Higgs couplings $B R(h \rightarrow W W) / B R(h \rightarrow b b)$ and $\mathrm{BR}(\mathrm{h} \rightarrow \mathrm{WW}) / \mathrm{BR}(\mathrm{h} \rightarrow \mathrm{TT})$

tree level の計算

この他に1loop 補正が tanbeta $=50 \mathrm{MA}=500 \mathrm{GeV}$ で5\％ くらいあっても不思議ではない

Example：10TeV RS with higgs radion mixing

－5dim RS \＆\＆bulk Fermions \＆\＆Raidon－Higgs mixing．
－KK contribution to Higgs decay though loop，large KK yukawa
－Radion：direct coupling to gauge bosons．

（a）

（b）

（c）

FIG．8：Contours of constant $\Delta \chi^{2}=1$ and $\Delta \chi^{2}=4$ in $F_{K K}^{q}$ and ξ plane at（a）Point I，（b）II

Minimal Composite Higgs Model （MCHM）

$\mathrm{SO}(5) \mathrm{x} U(1) \mathrm{x} \rightarrow \mathrm{SO}(4) \mathrm{x} \mathrm{U}(1) \mathrm{x}$

$$
\begin{aligned}
\Sigma & =\Sigma_{0} e^{\Pi / f} \\
\Sigma & =\left(0,0,0, \sin \frac{h(x)}{f}, \cos \frac{h(x)}{f}\right)
\end{aligned}
$$

$$
\begin{gathered}
v / f ~ 0.09 \text { くらいまで } \\
\text { リーチがある }
\end{gathered}
$$

top partner of MCHM

MCHM5 arXiv：1110．5646

$$
\Psi=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
B-X \\
i(B+X) \\
T+U \\
i(T-U) \\
\sqrt{2} \tilde{T}
\end{array}\right)
$$

field	T_{L}^{3}	T_{R}^{3}	X	$Y=T_{R}^{3}+X$	$Q_{E M}=T_{L}^{3}+Y$
X	$1 / 2$	$1 / 2$	$2 / 3$	$7 / 6$	
U	$-1 / 2$	$1 / 2$	$2 / 3$	$7 / 3$	$(2,2)$
T	$1 / 2$	$-1 / 2$	$2 / 3$	$1 / 6$	$2 / 3$
B	$-1 / 2$	$-1 / 2$	$2 / 3$	$1 / 6$	$2 / 3$
\tilde{T}	0	0	$2 / 3$	$2 / 3$	$(1,1)$
	$2 / 3$				

$$
\begin{aligned}
& \mathcal{L}_{\text {Yukawa }+ \text { Mass }}=\frac{-Y f\left(\bar{\Psi}_{L} \Sigma^{T}\right)\left(\Sigma \Psi_{R}\right)}{\text { (proto) yukawa }} \frac{-M \bar{\Psi}_{L} \Psi_{R}}{\text { vector mass }}-\frac{\Delta_{L} \bar{q}_{L} Q_{R}-\Delta_{R} \overline{\tilde{T}}_{L} t_{R}}{\text { mixing }} \\
& \text { composite } \underset{\sim}{Q=(T, \underset{T}{B})^{T} \text { C }}
\end{aligned}
$$

bR とmixing をいれるには $10=4+6$ 表現も必要
主たる制限 T，S，Zbb
interesting effect on $\mathrm{Hgg}, \mathrm{H} \mathrm{\gamma} \mathrm{\gamma}$ ， Htt

ttZ coupling in MCHM

Kubota in progress

ILC precision
Left coupling 0．6\％
Right coupling 1．4\％
scan over $\mathrm{Y}, \mathrm{M}, \Delta, \mathrm{g}^{*}, \mathrm{f} .$. fix top mass， mH ．．
top partner mass

SUSY

On going ＂Dark matter（SUSY）searches＂

－＂SUSY signature＂
－＂Models with new colored particles decaying into a stable neutral particle－－ LSP＂
－Some of＂New physics＂are migrated into SUSY category．
－Signal：
High P_{T} jets hiph P_{T} leptons and $\mathrm{E}_{\text {Tmiss }}$
assume mass difference is large
if there are R parity violation，we have additional jets and leptons instead of ETmiss

Production of W，Z，and top with additional jets would be significant background

EW SUSY and dark matter

21

テキスト

EW SUSY at HL－LHC

extension at HL－LHC（up to $3000 \mathrm{fb}^{-1}$ ）because lepton trigger rate will be kept

LHC will be sensitive to Lepton channel ！

Object（s）	Trigger	Estimated Rate	
		no L1Track	with L1Track
e	EM20	200 kHz	40 kHz
γ	EM40	20 kHz	$10 \mathrm{kHz}^{*}$
μ	MU20	$>40 \mathrm{kHz}$	10 kHz
τ	TAU50	50 kHz	20 kHz
$e e$	2EM10	40 kHz	$<1 \mathrm{kHz}$
$\gamma \gamma$	2EM10	as above	$\sim 5 \mathrm{kHz}$
$e \mu$	EM10＿MU6	30 kHz	$<1 \mathrm{kHz}$
$\mu \mu$	2MU10	4 kHz	$<1 \mathrm{kHz}$
$\tau \tau$	$2 \mathrm{TAU15I}$	40 kHz	2 kHz
Other	JET + MET	$\sim 100 \mathrm{kHz}$	$\sim 100 \mathrm{kHz}$
Total		$\sim 500 \mathrm{kHz}$	$\sim 200 \mathrm{kHz}$

HL－LHC（1000－＞3000 fb－1 ）backup

- 2018年 $14 \mathrm{TeV} \mathrm{L} \mathrm{\sim 2} \mathrm{\times 10} 0^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} 25 \mathrm{~ns}$（Phse 1）
- 2022年 $\quad \mathrm{L} \sim 5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$（Phase II）
－strong intention to keep trigger as low as possible for Higgs physics
This is not free！
Ex ATLAS ECal

Muon．．．．
muon new small wheel for 1 mrad resolution

Figure 2．5：The EM granularity available in the current，Phase－II Level－0 and Phase－II Level－1 EM triggers．

Object（s）	Trigger	Estimated Rate	
		no L1Track	with L1Track
e	EM20	200 kHz	40 kHz
γ	EM40	20 kHz	10 kHz
μ	MU20	$>40 \mathrm{kHz}$	10 kHz
τ	TAU50	50 kHz	20 kHz
$e e$	2EM10	40 kHz	$<1 \mathrm{kHz}$

jet＋missing channel

LHC 13TeV

scalar top

Figure 5：The 95\％CL exclusion limits（dashed）and 5σ discovery reach（solid）for 3 $3000 \mathrm{fb}^{-1}$（black）in the $\tilde{t}, \tilde{\chi}_{1}^{0}$ mass plane assuming $\tilde{t} \rightarrow t+\tilde{\chi}_{1}^{0}$ with a branching rati results are shown for the combination of the 1 －lepton and 0 －lepton analyses．The obse the analyses of 8 TeV data are also shown．

The limit on the mass depends on the assumption of light LSP

軽い超対称粒子があっても
みえないとすればここ Meff，ETmiss

Meff＝sum of pT of the jet and missing ET
control

Light SUSY confronts real data M（SUSY ）＞1．5TeV Mstop～650GeV GeV

The bound is model independent

exclude up to the region where mstop $\sim \mathrm{mLSP}+\mathrm{mt}+30 \mathrm{GeV}$

stop 350 GeV and LSP 150 GeV There are no region with $\mathrm{S} / \mathrm{N}>0.1$ in this plot！

The limit relys on understanding of background
I am not sure I take this limit but it is still nice to see such efforts

QCD technique for BSM discovery

Matching
ISR tag
jet structure

background estimation powered by＂Matching＂

The inclusion of additional emission to the SM process is important when we rely on the cut on $\mathrm{P}_{\mathrm{T} 3}, \mathrm{P}_{\mathrm{T} 4}$ and inclusive quantity like H_{T} ，Meff．．．

Prediction of ISR：Matching reduce the generator dependence

－gluino production pp－＞gg something
－Parton shower sum soft and collinear divergences，emit initial and final state radiation，but it is only approximation．
－from hard process to final state different scales and ordering （mass，angle，PT）and starting scale（in pythia）
－by doing matching，one obtain stable prediction on the PT distribution of the jets

Prediction of ISR：Matching reduce the generator dependence

－gluino production pp－＞gg something
－Parton shower sum soft and collinear divergences，emit initial and final state radiation，but it is only approximation．
－from hard process to final state different scales and ordering （mass，angle，PT）and starting scale（in pythia）
－by doing matching，one obtain stable prediction on the PT distribution of the jets

Jet i^{-}

PHYSICAL REVIEW D 87， 035006 （2013）

．．．．but still some disagreement

 コライダー物理は走りながら体裁を整えている

H_{T} is systematically
low yet

NLO
Tree

Tree

ISR jet in Higgs Production Azimuthal angle correlation

（a）

$$
A+/-B \cos 2 \Delta \varphi_{12}
$$

Figure 5：Normalized azimuthal correlations $\Delta \phi_{12}(\bmod 2 \pi)$ between the two tagging jets in the $p p \rightarrow j j X$ process at the LHC，where the selection cuts（5．1）and（5．2）with $\Delta \eta_{j j \min }=4$ are imposed．For the massive－graviton productions，the additional $p_{T_{j}}$ cut（5．3）is also imposed． The distributions for each subprocess with the full diagrams（solid lines）and with the only VBF diagrams（dashed lines）are shown．

ISR with SUSY

Hagiwara Mukhopadhy JHEP 2013

ISR の角分布は実は特徴的

$\mathrm{tt}+2$ jet process，two jet in the forward direction shows some spin correlation
spin 0 CP odd amplitude shows spin correlation $1+\mathrm{A} \cos (2 \Delta \varphi)$

ISR jet correlation in SUSY

Figure 2：Normalized $\left|\Delta \phi_{j_{1} j_{2}}\right|$ distributions for $\tilde{g} \tilde{g}+\geq 2-$ jets in signal Point－A（shaded region）and the dominant $Z+\geq 2$－jets background（green dashed）for the 13 TeV LHC． The distributions are shown after the jet－$p_{T}, \mathbb{E}_{T}, M_{\text {eff }}>1 \mathrm{TeV}$ and $\left|\Delta \eta_{j_{1} j_{2}}\right|>3.5$ cuts． jet selection：take leading 3 jets，and select two forward ones．

Need glgl +3 j （matched）and $\mathrm{Z}+3 \mathrm{j}$（matched）amplitude calculation because parton shower does not remember the spin correlation．

azimuthal correlation of $\mathrm{Z}+>2 \mathrm{jet}$ is observed CMS

Study of gluino gluino production signal and background simulation

－Signal gluino＋3jets（2jet for forward correlation， 1 jet for missing PT，$\Delta \mathrm{m}=20 \mathrm{GeV}$
－background Z＋3jet，top，W
－Z production is most important background

ETmiss 300 GeV jet pt 200 GeV

| | Z | W | tt | SM | 800 | 1000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | S／B

＂Jet structure＂

SUSY process のバックグラウンド について考えてみる

－Main background ：Z＋jets．
highest pT ジェットは殆どク オーク
－gluino productiongg \rightarrow gluino gluino のISRは相当gluon．
－クオークとグルーオンが区別で きるなら，background を減らす方法の一つになるかも

逆に gluino が LSP と縮退していない領域であれば，シグナルは4つ目のジェッ トまでクオーク background はグルオンより

quark and gluon jet substructure

＂gluon jet＂：more charged tracks and broader than＂quark jet＂

Girth：$\quad g=\sum_{i \in \mathrm{jet}} \frac{p_{T}^{i}}{p_{T}^{j e t}} r_{i}$.

$$
g=\sum_{i \in \mathrm{jet}} \frac{p_{T}^{i}}{p_{T}^{j e t}} r_{i} .
$$

Gluon

Using MVA （説明はあとで）
arXive 1211．7038 Gallicchio and Schwartz

理論的には

－Number of charged tracks
－QCD calculations starts some 30 years ago
－＂Jet width＂broadness of the jet

$$
\text { Girth : } \quad g=\sum_{i \in \mathrm{j} \text { et }} \frac{p_{T}^{i}}{p_{T}^{j e t}} r_{i} .
$$

More recent quantities

$$
\mathrm{C}_{1}(\beta)=\sum_{i<j \in J} p_{T i} p_{T j}\left(\Delta R_{i j}\right)^{\beta}
$$

Larkoski et al JHEP 1306．108（2013）

Probability to emit n hadron at scale Q
$Q \partial \Phi_{\mathrm{g}}(Q, u) / \partial Q=\int_{Q_{0} / Q}^{1-Q_{0} / Q} \mathrm{dz}\left(\alpha_{\mathrm{s}} / \pi\right)$

$$
\times\left\{P_{\mathrm{gg}}(z)\left[\Phi_{\mathrm{g}}(z Q, u) \Phi_{\mathrm{g}}((1-z) Q, u)-\Phi_{\mathrm{g}}(Q, u)\right]\right.
$$

$$
\left.+P_{\mathrm{qg}}(z)\left[\Phi_{\mathrm{q}}(z Q, u) \Phi_{\mathrm{q}}((1-z) Q, u)-\Phi_{\mathrm{g}}(Q, u)\right]\right\},
$$

この効果が QCD MC にどのように実装されているか

$$
\begin{align*}
& \Phi_{i}(Q, u) \equiv \sum_{n=0}^{\infty} P_{n, i}(Q) u^{n} . \\
& \text { evolution equation } \\
& ->n_{g} / n_{q} \sim 2 \\
& Q \partial \Phi_{q}(Q, u) \partial Q=\int_{Q_{0} / Q}^{1-e_{0} / Q}{ }_{d z}\left(\alpha_{s} / \pi\right) P_{q q}{ }^{(Z)} \\
& \left.\times\left\{\Phi_{q}(2 Q, u) \Phi_{g}(1-z) Q, u\right)-\Phi_{q}(Q, u)\right\}, \tag{4}
\end{align*}
$$

Using C1 instead of Jet width

default Herwig＋＋predicts less rejection

（b）

（b）

Even after Pythia turning some difference remains結果はMC によって違うようだ。 （jet 周りのアクティビティの大小も実は違うので検討中）

\mathbb{R}^{D} ＂feature space＂
－Each event，if Signal or Background，has＂D＂measured variables．
－Find a mapping from D－dimensional input／observable／＂feature＂space to one dimensional output
\rightarrow class lables

$$
y(x): R^{n} \rightarrow R:
$$

most general form

$$
\mathrm{y}=\mathrm{y}(\mathbf{x}) ; \mathbf{x} \in \mathbb{R}^{\mathrm{D}}
$$

$$
\mathbf{x}=\left\{x_{1}, \ldots, x_{D}\right\} \text { : input variables }
$$

－If one histogramms the resulting $\mathrm{y}(\mathrm{x})$ values：

実験的に決めてみる

quark を残して，どのくらいgluon をreject できるか

quark：γj event gluon：dijet evnet

代表的なMC である Pythia（pt ordering）と Herwig（angular ordering） で予言が相当違う

現実は中間だが， quark efficiency 50% の現実的領域ではHerwig が正しいっぽい

Jet substructure はすでに あちこちで使われている
quark gluon separation は もう少し練習が必要 LIIUIIIIVIJ

Limits：

－Narrow Topcolor $\mathrm{Z}^{\prime}: \quad \mathrm{m}>2.1$（2．1 expected） TeV
－Topcolor Z＇with 10% width： $\mathrm{m}>2.7$（2．6） TeV
－RS Kaluza－Klein gluon：$\quad \mathrm{m}>2.5$（2．4） TeV
－ $\mathrm{S}=\sigma(\mathrm{SM}+\mathrm{BSM}) / \sigma(\mathrm{SM}) \quad<1.2$ at $95 \% \mathrm{CL}$ for $\mathrm{m}_{\mathfrak{t t}}>1 \mathrm{TeV}$

Jet substructure はすでに あちこちで使われている
quark gluon separation は もう少し練習が必要 とIIUIIIIVIO

Limits：

－Narrow Topcolor Z＇：m＞2．1（2．1 expected）TeV
－Topcolor Z＇with 10% width： $\mathrm{m}>2.7$（2．6） TeV
－RS Kaluza－Klein gluon：$\quad \mathrm{m}>2.5$（2．4）TeV
－ $\mathrm{S}=\sigma(\mathrm{SM}+\mathrm{BSM}) / \sigma(\mathrm{SM}) \quad<1.2$ at $95 \% \mathrm{CL}$ for $\mathrm{m}_{\mathfrak{t t}}>1 \mathrm{TeV}$

ISR における quark gluon jet

separation

Fiorure 3．Normalimed（tn unit weioht）dictrihutinn of the RNTN variahle for the $\tilde{n} \tilde{\tilde{c}}$ cional
MVA distribution of quark（gluon）from Z＋jets and gluino ISR are essentially the same．It is possible to reject quark keeping gluons
after the $j e t-p_{T}, \#_{T}$ and the $M_{\text {eff }}>1 \mathrm{TeV}$ cuts，for 13 TeV LHC．The quark and gluon S / N improved by factor of 2 for BDTD >0.15

$$
\sigma(\mathrm{Z}): \sigma(\mathrm{gl})=36.5: 7.9
$$

まとめ

－LHC 14 TeV －＞Extend new particle search significantly
－HL－LHC（3000fb－1）High Luminosity machine good for lepton channel
－ILC if it is build，good facility to Higgs and top sector．Top sector is important for composite context．
－QCD technology ISR，quark gluon separation，，，

