LHC physics and beyond Mihoko Nojiri KEK & IPMU

success of LHC

discovery of Higgs boson

は genes boson と top quark は標準模型のフロンティア

今後のLHCへの期待

- 統計は圧倒的
- 系統誤差は大きい→QCD
 の高次計算が大事.
- 系統誤差は比率で改善

300 fb^{-1} :

Observable	ATLAS	CMS-1	CMS-2
$\sigma(gg) \cdot BR(\gamma\gamma)$	$12 \oplus 19$	$6 \oplus 12.3$	$3 \oplus 6.2$
$\sigma(WW) \cdot BR(\gamma\gamma)$	$47 \oplus 15$	$20 \oplus 2.4$	$14 \oplus 1.2$
$\sigma(gg) \cdot BR(WW)$	$8 \oplus 18$	$6 \oplus 12.3$	$5 \oplus 6.2$
$\sigma(WW) \cdot BR(WW)$	$20\oplus 8$	$35 \oplus 2.4$	$28 \oplus 1.2$
$\sigma(gg) \cdot BR(ZZ)$	$6 \oplus 11$	$7 \oplus 12.3$	$5 \oplus 6.2$
$\sigma(WW) \cdot BR(ZZ)$	$31 \oplus 13$	$12 \oplus 2.4$	$10 \oplus 1.2$
$\sigma(gg) \cdot BR(\tau\tau)$		$13 \oplus 12.3$	$6 \oplus 6.2$
$\sigma(WW) \cdot BR(\tau\tau)$	$16 \oplus 15$	$16 \oplus 2.4$	$9 \oplus 1.2$
$\sigma(Wh) \cdot BR(b\overline{b})$	—	$17 \oplus 3.8$	$14 \oplus 1.7$
$\sigma(t\bar{t}h)\cdot BR(b\bar{b})$	—	$60 \oplus 11.7$	$50 \oplus 5.9$
$\sigma(t\bar{t}h)\cdot BR(\gamma\gamma)$	$54 \oplus 10$	$40 \oplus 11.7$	$38 \oplus 5.9$
$\sigma(Zh) \cdot BR(invis)$		$16 \oplus 4.3$	$11 \oplus 2.2$

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

ATLAS Preliminary (Simulation)

 \sim

もしILC ができたらどうなるか Higgs Couplings (1/2)

top mass の測定もhiggs sector を決める上で重要

Example: 10TeV RS with higgs radion mixing

- 5dim RS && bulk Fermions &&Raidon-Higgs mixing.
- KK contribution to Higgs decay 1.05 though loop, large KK yukawa
- Radion: direct coupling to gauge bosons.

FIG. 8: Contours of constant $\Delta \chi^2 = 1$ and $\Delta \chi^2 = 4$ in F_{KK}^q and ξ plane at (a) Point I, (b) II

ttZ coupling in MCHM

Kubota in progress

10

SUSY

On going "Dark matter (SUSY) searches"

• "SUSY signature"

- "Models with new colored particles decaying into a stable neutral particle--LSP"
- Some of "New physics" are migrated into SUSY category.
- Signal: High P_T jets hiph P_T leptons and E_{Tmiss}

assume mass difference is large

if there are R parity violation, we have additional jets and leptons instead of E_{Tmiss}

Production of W, Z, and top with additional jets would be significant background

EW SUSY and dark matter

Reach up to 350 GeV for slepton

Note however

Mass difference 50 GeV required due to the overlap with W and Z's

(ILC is more sensitive to those.)

chargino は案外 limit 悪い (M2=2M1と思うと)

- 2018年⁴⁰ ^{MHz} 4TeV L~2x10³⁴ cm⁻²s⁻¹ 25ns (Phse 1)
- 2022年 L~5x10³⁴ cm⁻²s⁻¹ (Phase II)
- strong intention to keep trigger as low as possible for Higgs physics

This is not free!

Muon....

muon new small wheel for 1 mrad resolution

Figure 2.5: The EM granularity available in the current, Phase-II Level-0 and Phase-II Level-1 EM triggers.

Object(s)	Trigger	Estima	Estimated Rate		
		no L1Track	with L1Track		
е	EM20	200 kHz	40 kHz		
γ	EM40	20 kHz	$10\mathrm{kHz}^*$		
μ	MU20	$> 40 \mathrm{kHz}$	10 kHz		
au	TAU50	50 kHz	20 kHz		
ее	2EM10	40 kHz	< 1 kHz		

jet +missing channel

LHC 13TeV

The limit on the mass depends on the assumption of light LSP

Light SUSY confronts real data M(SUSY) > 1.5TeV Mstop~ 650GeV GeV

The bound is model independent

stop 350GeV and LSP 150GeV There are no region with S/N>0.1 in this plot!

The limit relys on understanding of background I am not sure I take this limit but it is still nice to see such efforts

QCD technique for BSM discovery

Matching ISR tag jet structure

background estimation powered by "Matching"

Prediction of ISR:Matching reduce the generator dependence

- gluino production pp-> gg something
- Parton shower sum soft and collinear divergences, emit initial and final state radiation, but it is only approximation.
- from hard process to final state different scales and ordering (mass, angle, PT) and starting scale (in pythia)
- by doing matching, one obtain stable prediction on the PT distribution of the jets

Prediction of ISR:Matching reduce the generator dependence

- gluino production pp-> gg something
- Parton shower sum soft and collinear divergences, emit initial and final state radiation, but it is only approximation.
- from hard process to final state different scales and ordering (mass, angle, PT) and starting scale (in pythia)
- by doing matching, one obtain stable prediction on the PT distribution of the jets

FIG. 3 (color online). Comparison of the uncertainty associated with one jet and two jet MLM matching. The uncertainty is found by

.... but still some disagreement

コライダー物理は走りながら体裁を整えている

ISR jet in Higgs Production Azimuthal angle correlation

A+/- B cos $2\Delta \varphi_{12}$

Figure 5: Normalized azimuthal correlations $\Delta \phi_{12} \pmod{2\pi}$ between the two tagging jets in the $pp \rightarrow jjX$ process at the LHC, where the selection cuts (5.1) and (5.2) with $\Delta \eta_{jj\min} = 4$ are imposed. For the massive-graviton productions, the additional p_{T_j} cut (5.3) is also imposed. The distributions for each subprocess with the full diagrams (solid lines) and with the only VBF diagrams (dashed lines) are shown.

粒子の運動量 ~(E_T, η , ϕ) ϕ 衝突点 $\eta = -\ln\left(\tan\frac{\theta}{2}\right)$ tt + 2 jet process, two jet in the forward direction shows some spin correlation

spin 0 CP odd amplitude shows spin correlation 1 +A $cos(2\Delta \phi)$

ISR jet correlation in SUSY

Figure 2: Normalized $|\Delta \phi_{j_1 j_2}|$ distributions for $\tilde{g}\tilde{g} + \geq 2-j$ ets in signal Point-A (shaded region) and the dominant $Z + \geq 2-j$ ets background (green dashed) for the 13 TeV LHC. The distributions are shown after the jet- p_T , \not{E}_T , $M_{\text{eff}} > 1$ TeV and $|\Delta \eta_{j_1 j_2}| > 3.5$ cuts. **jet selection:** take leading 3jets, and select two forward ones.

Need glgl+3j (matched) and Z+3j(matched) amplitude calculation because parton shower does not remember the spin correlation.

azimuthal correlation of Z+>2jet is observed CMS

Study of gluino gluino production signal and background simulation

- Signal gluino + 3 jets (2 jet for forward correlation, 1 jet for missing PT, Δm=20GeV
- background Z+ 3 jet, top, W
- Z production is most important background

ETmiss 300GeV j	et pt 200GeV
-----------------	--------------

gluino mass

	Ζ	W	tt	SM	800 1000		S/B
Cut-B							
$M_{\rm eff} > 1250~{\rm GeV}$	310.82	202.59	86.26	599.67	42.80	9.84	0.07
$+ \Delta\eta_{j_1j_2} > 3.5$	7.55	2.03	4.01	13.59	2.55	0.51	0.19
$+ \Delta\phi_{j_1j_2} < \pi/2$	2.91	0.68	0	3.59	1.44	0.29	0.40

" Jet structure"

SUSY process のバックグラウンド

について考えてみる

quark and gluon jet substructure

"gluon jet" : more charged tracks and broader than "quark jet"

理論的には

- Number of charged tracks
 - QCD calculations starts some 30 years ago
- "Jet width" broadness of the jet

Girth :

$$g = \sum_{i \in jet} \frac{p_T^i}{p_T^{jet}} r_i \; .$$

More recent quantities

$$C_1^{(\beta)} = \sum_{i < j \in J} p_{Ti} p_{Tj} (\Delta R_{ij})^{\beta}$$

Larkoski et al JHEP 1306.108(2013)

Probability to emit n hadron at scale Q

$$\Phi_i(Q,u) \equiv \sum_{n=0}^{\infty} P_{n,i}(Q)u^n \, ,$$

evolution equation $-> n_g/n_q \sim 2$ $Q \partial \Phi_q(Q, u)/\partial Q = \int_{Q_0/Q}^{1-Q_0/Q} dz (\alpha_s/\pi) P_{qq}(z)$ $\times \{ \Phi_q(zQ, u) \Phi_g((1-z)Q, u) - \Phi_q(Q, u) \}, \quad (4)$ $Q \partial \Phi_g(Q, u)/\partial Q = \int_{Q_0/Q}^{1-Q_0/Q} dz (\alpha_s/\pi)$ $\times \{ P_{gg}(z) [\Phi_g(zQ, u) \Phi_g((1-z)Q, u) - \Phi_g(Q, u)] \}, \quad (5)$

この効果が QCD MC にどのように 実装されているか

Using C1 instead of Jet width

default Herwig ++ predicts less rejection

Even after Pythia turning some difference remains 結果はMC によって違うようだ。 (jet 周りのアクティビティの大小も実は違うので検討中)

14年7月29日火曜日

1.0

quark gluon separation にはMVA 解析をつかう

こが違うか

heavier particle search-> high P_T top, W, Z

jet jet algais a sa baddrebi adyara X (A (Ebelaood ad E **onb asam**= bisci zawiowdz ara sradi tud

ー見jet 的なものの中にある ハードプロセスを狙っていて、 $dR \sim \frac{2m}{p_T}$ 予言は安定

Combined Limits

10

0.5

Limits:

• Narrow Topcolor Z':

m>2.1 (2.1 expected) TeV

1.5

2.5

з

M_{z'} [TeV]

2

- Topcolor Z' with 10% width: m>2.7 (2.6) TeV
- RS Kaluza-Klein gluon: m>2.5 (2.4) TeV
- $S = \sigma(SM + BSM) / \sigma(SM)$

<1.2 at 95% CL for $m_{t\bar{t}}$ >1 TeV

11/24/2013

PASCOS 2013

- Topcolor Z' with 10% width: m>2.7 (2.6) Tever 8: The *tt* invariant mass spectra for the two c show the data/MC ratio. The shaded areas indicate
- RS Kaluza-Klein gluon:
- $S = \sigma(SM + BSM) / \sigma(SM)$

m>2.1 (2.1 expected) $e^{-iets channel, boosted selection.}$

m>2.5 (2.4) TeV

Figure 13. background p 1 TeV are sh multijet backs shown in (b).

11/24/2013

PASCOS 2013

<1.2 at 95% CL for $m_{t\bar{t}}$ >1 TeV

ISR における quark gluon jet separation

Figure 3: Normalized (to unit weight) distribution of the BDTD variable for the $\tilde{a}\tilde{a}$ signal MVA distribution of quark(gluon) from Z+ jets and gluino ISR are essentially the same. It is possible to reject quark keeping gluons after the jet- p_T , \not{E}_T and the $M_{\text{eff}} > 1$ TeV cuts, for 13 TeV LHC. The quark and gluon S/N improved by factor of 2 for BDTD> 0.15 $\sigma(Z):\sigma(gl) = 36.5:7.9$

まとめ

- LHC 14TeV -> Extend new particle search significantly
- HL-LHC (3000fb-1) High Luminosity machine good for lepton channel
- ILC if it is build, good facility to Higgs and top sector. Top sector is important for composite context.
- QCD technology ISR, quark gluon separation,,,