Inflation, leptogenesis, neutrino masses and PeV neutrinos from right-handed neutrino dark matter

Ryosuke Sato (KEK)

"Neutrinoful Universe", Tetsutaro Higaki, Ryuichiro Kitano, RS, [arXiv:1405.0013], JHEP 1407(2014)044

[1/20]

2014. 7. 29 @ PPP2014

Inflati

eutrino masses os from dark matter

"Neutrinoful Universe", Tetsutaro Higaki, Ryuichiro Kitano, RS, [arXiv:1405.0013], JHEP 1407(2014)044

[2/20]

2014. 7. 29 @ PPP2014

"Neutrinoful Universe", Tetsutaro Higaki, Ryuichiro Kitano, RS, [arXiv:1405.0013], JHEP 1407(2014)044

[3/20]

2014. 7. 29 @ PPP2014

Mysteries in our universe

The standard model achieved a big success. But, it might has to be extended to explain mysteries in our universe...

- Neutrino mass
- Inflation
- Baryon asymmetry
- Dark matter
- IceCube??

[IceCube collaborations, arXiv : 1405.5303]

We try to explain all of them!

[4/20]

1. Model

2. Inflation & Reheating

3. PeV neutrino signal

Our model

Standard model

٠

+ 3 right-handed neutrinos w/ Majorana masses + U(1)B-L gauge symmetry & B-L Higgs boson

$$\mathcal{L} = \mathcal{L}_{SM} - y_{\nu,ij} H N_i \ell_j - \frac{\lambda_i}{2} \phi_{B-L} N_i^2 - \kappa \left(|\phi_{B-L}|^2 - \frac{v_{B-L}^2}{2} \right)^2$$

We assume y1i's are extremely small.

• Suppressed by Z₂ parity : $(N_1 \rightarrow -N_1)$ \square N₁ is almost stable!

$$y_{\nu} = \left(\begin{array}{ccc} \sim 0 & \sim 0 & \sim 0 \\ y_{\nu,21} & y_{\nu,22} & y_{\nu,23} \\ y_{\nu,31} & y_{\nu,32} & y_{\nu,33} \end{array}\right)$$

 N_2 and N_3 gives neutrino masses.

[Frampton, Glashow, Yanagida (2002)]

Lightest neutrino becomes massless.

[6/20]

Y1i

We have no reason to assume Z₂ parity $(N_1 \rightarrow -N_1)$ is exact.

e.g., we can write,
$$\mathcal{O} \sim \frac{1}{\Lambda^{14}} (\ell_1 \ell_2) (\ell_2 \ell_3) (\ell_3 \ell_1) e_1^c e_2^c e_3^c N_1^c N_2^c N_3^c$$

(such a operator may be generated by some non-perturbative effect.)

 $y_{\nu}^{1k} \sim \text{(very small number)} \times (\det y_e) \epsilon^{ijk} y_{\nu}^{2i} y_{\nu}^{3j}$

Normal hierarchy $\rightarrow \qquad y_{\nu}^{1k} \propto U_{k1}$ Inverted hierarchy $\rightarrow \qquad y_{\nu}^{1k} \propto U_{k3}$

[7/20]

1. Model

2. Inflation & Reheating

3. PeV neutrino signal

CMB observation suggests $m_{\phi} \sim 10^{13} \text{ GeV}$

Chaotic type initial condition with v_{B-L} / $M_{Pl} > 5$ is consistent with BICEP2 data.

[9/20]

Reheating

Inflaton decays into a pair of RH neutrinos : $\phi \rightarrow N_i N_i$

 $\frac{n_{\phi}}{s} = \frac{\rho_{\phi}/m_{\phi}}{s} = \frac{3}{4} \frac{T_R}{m_{\phi}}$: Number of ϕ per entropy at the time of reheating.

We assume
$$M_1 \ll M_2 < m_{\phi} < M_3$$
 \square $\begin{cases} Br(\phi \rightarrow N_1 N_1) \simeq M_1^2/M_2^2 \\ Br(\phi \rightarrow N_2 N_2) \simeq 1 \end{cases}$

- N1 from inflaton decay \rightarrow dark matter production $\frac{n_{N_1}}{s} \simeq \frac{3}{4} \frac{T_R}{m_{\phi}} \times 2 \times Br(\phi \rightarrow N_1 N_1)$
- N₂ from inflaton decay \rightarrow leptogenesis $\frac{n_{N_2}}{2} \simeq \frac{3}{2} \frac{T_R}{T_R} \times 2$

$$\overline{s} - \overline{4} \overline{m_{\phi}}$$

$$\epsilon = \frac{\Gamma(N_2 \to \ell H) - \Gamma(N_2 \to \bar{\ell} H^{\dagger})}{\Gamma(N_2 \to \ell H) + \Gamma(N_2 \to \bar{\ell} H^{\dagger})}$$
$$\frac{n_B}{s} \simeq \frac{3}{4} \frac{T_R}{m_{\phi}} \times 2 \times \epsilon \times \left(-\frac{28}{79}\right)$$
Spharelon factor

[Asasa, Hamaguchi, Kawasaki, Yanagida (1999)]

[10 / 20]

Viable region

$$\Omega_{N_{1}} \simeq 0.2 \times \left(\frac{M_{1}}{4 \text{ PeV}}\right)^{3} \left(\frac{M_{2}}{10^{12} \text{ GeV}}\right)^{-1} \left(\frac{m_{\phi}}{10^{13} \text{ GeV}}\right)^{-1/2} \left(\frac{v_{B-L}}{5M_{\text{Pl}}}\right)^{-1}$$

$$\frac{n_{B}}{s}\Big|_{\text{max}} \simeq \left(\frac{M_{2}}{10^{12} \text{ GeV}}\right)^{2} \left(\frac{m_{\phi}}{10^{13} \text{ GeV}}\right)^{-1/2} \left(\frac{v_{B-L}}{5M_{\text{Pl}}}\right)^{-1} \times \begin{cases} 1 \times 10^{-10} & \text{(Normal hierarchy)}\\ 2 \times 10^{-12} & \text{(Inverted hierarchy)} \end{cases}$$

(Upper bound on e depends on mass hierarchy)

PeV dark matter is attractive!

1. Model

2. Inflation & Reheating

3. PeV neutrino signal

[12 / 20]

Decay of dark matter

$$\mathcal{L} \ni - y_{\nu,1j} H N_1 \ell_j - \frac{M_1}{2} N_1^2$$

• Lifetime

$$au_{N_1} \sim 10^{28} \text{ s} \left(\frac{M_1}{4 \text{ PeV}}\right)^{-1} \left(\frac{\sqrt{\sum_i |y_{1i}|^2}}{10^{-29}}\right)^{-2}$$

Decay modes and branching fractions

$$\begin{array}{lll} e^{\pm}W^{\mp} & \nu_{e}Z, \bar{\nu}_{e}Z & \nu_{e}h, \bar{\nu}_{e}h \\ \\ \mu^{\pm}W^{\mp} & \nu_{\mu}Z, \bar{\nu}_{\mu}Z & \nu_{\mu}h, \bar{\nu}_{\mu}h \\ \\ \tau^{\pm}W^{\mp} & \nu_{\tau}Z, \bar{\nu}_{\tau}Z & \nu_{\tau}h, \bar{\nu}_{\tau}h \end{array}$$

[13/20]

Decay of dark matter

$$\mathcal{L} \ni - y_{\nu,1j} H N_1 \ell_j - \frac{M_1}{2} N_1^2$$

• Lifetime

$$au_{N_1} \sim 10^{28} \text{ s} \left(\frac{M_1}{4 \text{ PeV}}\right)^{-1} \left(\frac{\sqrt{\sum_i |y_{1i}|^2}}{10^{-29}}\right)^{-2}$$

Decay modes and branching fractions

$$e^{\pm}W^{\mp} \quad \nu_e Z, \bar{\nu}_e Z \quad \nu_e h, \bar{\nu}_e h$$
$$\mu^{\pm}W^{\mp} \quad \nu_\mu Z, \bar{\nu}_\mu Z \quad \nu_\mu h, \bar{\nu}_\mu h$$
$$\tau^{\pm}W^{\mp} \quad \nu_\tau Z, \bar{\nu}_\tau Z \quad \nu_\tau h, \bar{\nu}_\tau h$$
$$0.50 : 0.25 : 0.25$$

c.f.) goldstone boson equivalence theorem 14 / 20]

Decay of dark matter

$$\mathcal{L} \ni - y_{\nu,1j} H N_1 \ell_j - \frac{M_1}{2} N_1^2$$

• Lifetime

[15/20]

Neutrino energy flux at the decay time

 $\nu_e + \bar{\nu}_e$

(simulated by PYTHIA 8.1)

[16 / 20]

Neutrino energy flux at the Earth

$$\frac{d\Phi_{\text{halo}}}{dE_{\nu}} = D_{\text{halo}}\frac{dN_{\nu}}{dE_{\nu}}$$

$$D_{\text{halo}} = \frac{1}{4\pi}\int_{-1}^{1}d\sin\theta\int_{0}^{2\pi}\left(\frac{1}{4\pi M_{1}\tau_{N_{1}}}\int_{0}^{\infty}ds\rho_{\text{halo}}(r(s,\theta,\phi))\right)$$

$$r(s,\theta,\phi) = \sqrt{s^{2} + R_{\odot}^{2} - 2sR_{\odot}\cos\theta\cos\phi}$$

• Extra galactic contribution

$$\frac{d\Phi_{\rm eg}}{dE_{\nu}} = \frac{\Omega_{\rm DM}\rho_c c}{4\pi M_1 \tau_{N_1}} \int_0^\infty \frac{dz}{H(z)} e^{-s(E_{\nu},z)} \frac{dN_{\nu}}{dE_{\nu}} \bigg|_{E=(1+z)E_{\nu}}$$

[17/20]

Number of events

[18 / 20]

Number of events

[19 / 20]

Summary

We consider a simple extension of the SM:

- Three right-handed neutrinos (N₁, N₂, N₃)
- B-L gauge symmetry and B-L Higgs boson (ϕ_{B-L})

 \rightarrow

 \rightarrow

 \rightarrow

• Z_2 parity for N_1 (tiny violation)

Our model explains,

- Inflation
- Dark matter
- Baryon asymmetry
- Neutrino mass
- IceCube excess

Driven by B-L Higgs boson

- N_1 with $M_1 \sim O(PeV)$
- Leptogenesis from N₂ decay
- Seesaw from N_2 and N_3
- Decay of N₁ with $\tau \sim 10^{28}$ s

[20/20]

[21]

Backup slides

Neutrino mass

Neutrino mass is generated by seesaw mechanism. RH neutrino sector in our model is essentially two RH neutrino model.

[Frampton, Glashow, Yanagida (2002)]

$$(H) \quad (H) \quad (H) \quad (Y) \quad (Y)$$

 $m_{\nu} = \begin{pmatrix} m_{1} \\ m_{2} \\ m_{3} \end{pmatrix} = (U^{T} \tilde{y}^{T} \tilde{M}^{-1} \tilde{y} U) \langle H \rangle^{2} \longrightarrow \text{Rank 2 matrix}$ (U : Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix)

 $\Delta m_{21}^2 \simeq 7.5 \times 10^{-5} \text{ eV}^2, \quad \Delta m_{31}^2 \simeq 2.5 \times 10^{-3} \text{ eV}^2 \text{ [Particle Data Group]}$ a) Normal hierarchy $m_1 < m_2 < m_3 \qquad m_1 = 0 \text{ eV}, \quad m_2 \simeq 0.0087 \text{ eV}, \quad m_3 \simeq 0.048 \text{ eV}$ b) Inverted hierarchy $m_3 < m_1 < m_2 \qquad m_1 \simeq 0.048 \text{ eV}, \quad m_2 \simeq 0.049 \text{ eV}, \quad m_3 = 0 \text{ eV}$

Flavor structure of y1i

- Ibarra-Casas parametrization
 - Normal hierarchy

$$\tilde{y} = \frac{1}{\langle H \rangle} \tilde{M}^{1/2} R m_{\nu}^{1/2} U^{\dagger}$$

U : PMNS matrix z : a complex parameter

• Inverted hierarchy

$$R = \begin{pmatrix} \cos z & \sin z & 0 \\ -\sin z & \cos z & 0 \end{pmatrix}$$

$$y_{2i} = \frac{\sqrt{M_2}}{\langle H \rangle} (\sqrt{m_2} U_{i1}^* \cos z - \sqrt{m_3} U_{i2}^* \sin z),$$

$$y_{3i} = \frac{\sqrt{M_3}}{\langle H \rangle} (\sqrt{m_2} U_{i1}^* \sin z + \sqrt{m_3} U_{i2}^* \cos z)$$

[24]

Inflation without BICEP2

CMB observation suggests $m_{\phi} \sim 10^{13} \text{ GeV}$

Hilltop type initial condition with $v_{B-L} / M_{Pl} = 15-30$ is consistent with Planck data.

[25]

Upper bound on
$$\varepsilon$$

$$\epsilon = \frac{\Gamma(N_2 \to \ell H) - \Gamma(N_2 \to \bar{\ell} H^{\dagger})}{\Gamma(N_2 \to \ell H) + \Gamma(N_2 \to \bar{\ell} H^{\dagger})} \simeq -\frac{3}{16\pi} \frac{\mathrm{Im}(y_{\nu} y_{\nu}^{\dagger})_{23}^2}{(y_{\nu} y_{\nu}^{\dagger})_{22}} \frac{M_2}{M_3}$$
[Covi, Roulet, Vissani (1996)]

• Normal hierarchy

$$\epsilon \simeq -\frac{3}{16\pi} \frac{M_2}{v^2} \frac{\text{Im}[m_2^2 \cos^2 z + m_3^2 \sin^2 z]}{m_2 |\cos z|^2 + m_3 |\sin z|^2}$$

 $|\epsilon| < \frac{3M_2}{16\pi v^2}(m_3 - m_2)$

• Inverted hierarchy

$$\epsilon \simeq -\frac{3}{16\pi} \frac{M_2}{v^2} \frac{\text{Im}[m_1^2 \cos^2 z + m_2^2 \sin^2 z]}{m_1 |\cos z|^2 + m_2 |\sin z|^2}$$

$$|\epsilon| < \frac{3M_2}{16\pi v^2}(m_2 - m_1)$$

[Harigaya, Ibe, Yanagida (2012)]

(z : a complex parameter)

Decay time of N₂

For N₂ dominant era,

$$H = \Gamma_{\phi} \left(\frac{a}{a_{\phi}}\right)^{-2} \xrightarrow{a_{\text{nonrela}}/a_{\phi} \sim m_{\phi}/M_2} t_{\text{nonrela}}^{-1} \sim \Gamma_{\phi} \left(\frac{m_{\phi}}{M_2}\right)^{-2}$$

The time when N₂ becomes non-relativistic.

a) $t_{nonrela} > \Gamma_2^{-1}$: N₂ decays when N₂ is relativistic.

$$\frac{n_{N_2}}{s} \sim \frac{T_{\phi}}{m_{\phi}}$$

b) $t_{\text{nonrela}} < \Gamma_2^{-1}$: N₂ decays when N₂ is non-relativistic.

$$\frac{n_{N_2}}{s} \sim \frac{T_2}{M_2} \sim \frac{T_{\phi}}{m_{\phi}} \Delta \qquad \Delta = \Gamma_2 t_{\text{nonrela}} = \frac{\Gamma_2}{\Gamma_{\phi}} \frac{m_{\phi}^2}{M_2^2} < 1$$

Everything is diluted by entropy production!

27]

Effect of neutrino oscillation

Energy spectrum at the decay time (simulated by PYTHIA 8.1)

Normal hierarchy

Inverted hierarchy

Effective area

Number of observed events can be calculated as,

Spectrum of number of events

PeV dark matter with its lifetime to be around 10²⁸ s can explains the event excess at the IceCube experiment.

[30]

Number of events

For Normal hierarchy,

$$N(30 \text{ TeV} \le E_{\nu}) = 9.7 \times \left(\frac{\tau_{N_1}}{10^{28} \text{ s}}\right)^{-1} = 22 \times \left(\frac{\tau_{N_1}}{0.44 \times 10^{28} \text{ s}}\right)^{-1}$$
$$N(1 \text{ PeV} \le E_{\nu}) = 5.0 \times \left(\frac{\tau_{N_1}}{10^{28} \text{ s}}\right)^{-1} = 3.0 \times \left(\frac{\tau_{N_1}}{1.6 \times 10^{28} \text{ s}}\right)^{-1}$$

PeV dark matter with its lifetime to be around 10²⁸ s can explains the event excess at the IceCube experiment.

[31]

_1

Number of events

For Inverted hierarchy,

$$N(30 \text{ TeV} \le E_{\nu}) = 12.4 \times \left(\frac{\tau_{N_1}}{10^{28} \text{ s}}\right)^{-1} = 22 \times \left(\frac{\tau_{N_1}}{0.56 \times 10^{28} \text{ s}}\right)^{-1}$$
$$N(1 \text{ PeV} \le E_{\nu}) = 5.6 \times \left(\frac{\tau_{N_1}}{10^{28} \text{ s}}\right)^{-1} = 3.0 \times \left(\frac{\tau_{N_1}}{1.9 \times 10^{28} \text{ s}}\right)^{-1}$$

PeV dark matter with its lifetime to be around 10²⁸ s can explains the event excess at the IceCube experiment.