31 Jul. 2013

基研研究会 素粒子物理学の進展2014 2014年7月28日 - 8月1日 於京都大学 基礎物理学研究所

ー般化ドメインウォールフェルミオンによる 高温QCDにおけるU(1)アノマリーの解析

富谷 昭夫(大阪大学) akio@het.phys.sci.osaka-u.ac.jp

Guido Cossu, 深谷 英則, 橋本 省二, 野秋 淳一 for JLQCD collaboration

1

研究目的:

有限温度でU(1)Aアノマリーはなくなるのか?

2

QCD (N_f=2, m_{ud}=0) におけるカイラル対称性の破れ

自発的破れ → $SU(2)_{
m V} imes U(1)_{
m V}$ 残る対称性

QCD (N_f=2, m_{ud}=0) におけるカイラル対称性の破れ

 $\underline{SU(2)_{\mathrm{L}} \times SU(2)_{\mathrm{R}}} \times U(1)_{\mathrm{V}} \times \underline{U(1)_{\mathrm{A}}}_{\overline{\mathcal{P}}/\overline{\mathcal{P$ 自発的破れ → $SU(2)_{
m V} imes U(1)_{
m V}$ 残る対称性 $T > T_{c}$ $SU(2)_{\rm V} \longrightarrow SU(2)_{\rm L} \times SU(2)_{\rm R}$ 回復 $U(1)_{A} \longrightarrow ??$ 道具: 格子QCD 観測量:ディラックスペクトル

アノマリーとは対称性を壊す量子効果 O質量クォーク2個のQCD : U(2)_LxU(2)_R カイラル対称性 $Z = \int \mathcal{D}A_{\mu}\mathcal{D}\bar{q}\mathcal{D}q \exp\left[-\int d^{4}x \ \bar{q}(\mathcal{D})q\right] \qquad q = \begin{pmatrix} u \\ d \end{pmatrix}$

アノマリーとは対称性を壊す量子効果 0質量クォーク2個のQCD : U(2)_LxU(2)_R カイラル対称性 $Z = \int \mathcal{D}A_{\mu} \mathcal{D}\bar{q}\mathcal{D}q \exp\left[-\int d^{4}x \;\bar{q}(\mathcal{D})q\right] \qquad q = \begin{pmatrix} u \\ d \end{pmatrix}$ $\begin{cases} q \to q' = e^{i\gamma_5\theta} q \\ \bar{q} \to \bar{q}' = \bar{q}e^{i\gamma_5\theta} \end{cases} \leftarrow U(1) \\ \gamma_5 \not{\!\!\!D} = - \not{\!\!\!\!D}\gamma_5 \end{cases}$

アノマリーとは対称性を壊す量子効果 0質量クォーク2個のQCD : U(2)_LxU(2)_R カイラル対称性 $Z = \int \mathcal{D}A_{\mu} \mathcal{D}\bar{q}\mathcal{D}q \exp\left[-\int d^{4}x \;\bar{q}(\mathcal{D})q\right] \qquad q = \begin{pmatrix} u \\ d \end{pmatrix}$ $\begin{cases} q \to q' = e^{i\gamma_5\theta} q \\ \bar{q} \to \bar{q}' = \bar{q}e^{i\gamma_5\theta} \end{cases} \leftarrow U(1) \neg \neg \neg \psi z \not p \\ \gamma_5 \not p = - \not p \gamma_5 \end{cases}$

作用は不変、経路積分の測度が不変でない! し(1)_Aアノマリー、カイラルアノマリー

アノマリーとは対称性を壊す量子効果 0質量クォーク2個のQCD : U(2)_LxU(2)_R カイラル対称性 $Z = \int \mathcal{D}A_{\mu} \mathcal{D}\bar{q}\mathcal{D}q \exp\left[-\int d^{4}x \;\bar{q}(\mathcal{D})q\right] \qquad q = \begin{pmatrix} u \\ d \end{pmatrix}$ $\begin{cases} q \to q' = e^{i\gamma_5\theta} q \\ \bar{q} \to \bar{q}' = \bar{q}e^{i\gamma_5\theta} \end{cases} \leftarrow U(1) \neg \neg \neg \psi z \not p \\ \gamma_5 \not p = - \not p \gamma_5 \end{cases}$

作用は不変、経路積分の測度が不変でない! し(1)_Aアノマリー、カイラルアノマリー

 $\mathcal{D}\bar{q}\mathcal{D}q = \mathcal{D}\bar{q}'\mathcal{D}q'e^{\Gamma}, \ \Gamma \neq 0$

QCD (N_f=2, m_{ud}=0) におけるカイラル対称性の破れ

 $\underline{SU(2)_{L} \times SU(2)_{R}} \times U(1)_{V} \times \underline{U(1)_{A}}_{\overline{r}/\overline{z}^{\prime}}$ 自発的破れ → $SU(2)_{
m V} imes U(1)_{
m V}$ 残る対称性 明示的やぶれである アノマリーが消えるとは? $(1)_{A} \longrightarrow ??$ 観測量:ディラックスペクトル

U(1)A回復の傍証

 温度Tの場の理論:時空体積=L³x(1/T)の場の理論 T=∞ ←→ 3次元場の理論(アノマリー存在しない) 無限温度では必ず回復する。 (有限温度で回復してもおかしくない?)

JLQCD(G.Cossu 2013,後述) …SU(2)カイラル対称性の回復と同時にU(1)_Aも回復 T~Tc<∞で回復する?

格子QCDでの主な先行研究

グループ	フェルミオン	体積(fm ³)	トポロジー変動	U(1) _A
JLQCD(2013)	オーバーラップ	2 ³	固定	回復
Chiu et al (2013)	Optimized Domain-wall	3 ³	変動	回復
Ohno et al (2011)	HISQ	4 ³	変動	回復しない
LLNL/RBC (2013)	ドメインウォール	2 ³ , 4 ³	変動	回復しない

果たしてどちらが本当なのか? 原因は、フェルミオン、体積?系統的理解が足りない!

^{ところで} U(1)Aが回復すると?

^{ところで} し(1)Aが回復すると?

有限温度相転移の次数:

2次転移→1次転移?(Pisarski&Wilczek1983)

ところで U(1)Aが回復すると?

有限温度相転移の次数:

2次転移→1次転移?(Pisarski&Wilczek1983)

※質量ゼロなので現実世界と
 関係なし(現実はクロスオーバー)

もくじ

- カイラル対称性、ディラックスペクトル
- 格子上のカイラル対称性と
 ドメインウォールフェルミオン
- ドメインウォールフェルミオンでのディラックスペクトル
- ディラックスペクトルの比較
- まとめ

QCD (N_f=2, m_{ud}=0) のカイラル対称性 ラグランジアン

$$SU(2)_{\rm L} \times SU(2)_{\rm R} \times U(1)_{\rm V} \times U(1)_{\rm A}$$
$$\bar{q} = \begin{pmatrix} \bar{u} & \bar{d} \end{pmatrix} \qquad q = \begin{pmatrix} u \\ d \end{pmatrix}$$

QCD (N_f=2, m_{ud}=0) のカイラル対称性

QCD (N_f=2, m_{ud}=0) のカイラル対称性

ディラックスペクトルAkio Tomiya(Osaka Univ.) =共変微分の固有値分布

ゲージ配位[Aμ]を1つ選ぶ →ディラック演算子(共変微分)が定まる

→ディラック演算子(共変微分)が定まる →固有値: *λ* =

ゲージ配位[A_µ]を1つ選ぶ →ディラック演算子(共変微分)が定まる →固有値: λ=0.01,

たくさんのゲージ配位で平均(経路積分)

ρ(λ):入の分布 →ゲージ場存在下でのクォークの性質がわかる

例カイラル対称性が破れる時(QCD)

例カイラル対称性が破れる時(QCD)

例カイラル対称性が破れる時(QCD)

$$\lim_{m \to 0} \lim_{V \to \infty} \langle \bar{q}q \rangle \propto \rho(0)$$

Banks-Casher関係式

例カイラル対称性が破れる時(QCD)

$$\lim_{m \to 0} \lim_{V \to \infty} \langle \bar{q}q \rangle \propto \rho(0)$$

Banks-Casher関係式

例カイラル対称性が破れる時(QCD)

 $\lim_{m \to 0} \lim_{V \to \infty} \langle \bar{q}q \rangle \propto \rho(0)$

Banks-Casher関係式

λが小さいところが重要!
ディラックスペクトルと対称性

~
$$U(1)_A$$
 Atiyah-Singer 指数定理 $n_+ - n_- = \nu$ $n_\pm : カイラル0モードの数$

両方の対称性にとって λが小さいところが重要

Cohen(1996)の議論

カイラルゼロモードが無視でき、 ディラックスペクトルに**ギャップ**が有る場合、

関連研究:青木-深谷-谷口 (2012) 反論:石川-岩崎-中山-吉江 (2014)など

Cohen(1996)の議論

カイラルゼロモードが無視でき、 ディラックスペクトルに**ギャップ**が有る場合、

 $\int d^4x [\langle \pi(x)\pi(0) \rangle - \langle \delta(x)\delta(0) \rangle] = \int_0^\infty d\lambda \frac{4m^2\rho(\lambda)}{(m^2 + \lambda^2)^2}$

関連研究:青木-深谷-谷口 (2012) 反論:石川-岩崎-中山-吉江 (2014)など

λが小さいところが重要!

格子上のカイラル対称性

=Ginsparg-Wilson関係式

格子上のカイラル対称性 =Ginsparg-Wilson関係式

$$S = \int d^4x \, \bar{\psi} D \psi$$
 がカイラル変換で不変<=>

連続理論:
$$D\gamma_5 + \gamma_5 D = 0$$

格子上のカイラル対称性 =Ginsparg-Wilson関係式

$$S = \int d^4x \, \bar{\psi} D \psi \,$$
がカイラル変換で不変<=>

 $D\gamma_5 + \gamma_5 D = 0$

格子理論: $D\gamma_5 + \gamma_5 D = 2aD\gamma_5 D$ Ginsparg-Wilson関係式 a:格子間隔

格子上のカイラル対称性 =Ginsparg-Wilson関係式

$$S = \int d^4x \, \bar{\psi} D \psi \,$$
がカイラル変換で不変<=>

 $D\gamma_5 + \gamma_5 D = 0$

格子理論: $D\gamma_5 + \gamma_5 D = 2aD\gamma_5 D$ Ginsparg-Wilson関係式 a:格子間隔 *cokcasultation kconkcasultation kconkcasulta

Ginsparg-Wilson関係式を満たすフェルミオン =オーバーラップフェルミオン

$$D\gamma_5 + \gamma_5 D = 2aD\gamma_5 D$$

○厳密なカイラル対称性

X符号関数の評価が大変、大きい体積での数値計算できない

JLQCD(2013)による前の結果

オーバーラップフェルミオン(カイラル対称性が厳密なフェルミオン) 体積: L=2fm(小さい)、トポロジー固定 有限温度シミュレーション →U(1)が回復すると結論

> 有限体積効果を見てるんじゃないか? (トポロジーも固定して、厳密な結果なのか?) →フェルミオンを変えてトライ。

ドメインウォールフェルミオン =オーバーラップの有理式近似

オーバーラップ(厳密なカイラル対称性,JLQCD2013で使用): $D_N(m) = \frac{1+m}{2} + \frac{1-m}{2} \gamma_5 \operatorname{sgn}(H_K)$ ドメインウォールフェルミオン (RBC/LLNL先行研究)

 $D^4 = \frac{1+m}{2} + \frac{1-m}{2}\gamma_5 \frac{T^{-L_s} - 1}{T^{-L_s} + 1}$

○符号関数を有理関数近似することで カイラル対称性をコントロール (Ls→∞でオーバーラップ)

XわずかにGinsparg-Wilson関係式を満たさない

<mark>メビウス</mark>ドメインウォールフェルミオン =<mark>より良い</mark>オーバーラップの有理式近似

<mark>メビウス</mark>ドメインウォールフェルミオン =<mark>より良い</mark>オーバーラップの有理式近似

→新しいパラメータを導入→オーバーラップに近い (まだ、Ginsparg-Wilson関係式は破れている)

前のJLQCD 本研究 オーバーラップ (改良型)ドメインウォール 小さい体積(L=2fm) → 大きい体積(L=2fm, 4fm) トポロジー固定 色々なトポロジー \rightarrow 非改良より良い カイラル対称性:厳密 \rightarrow U(1)回復 ???

先行研究

グループ	フェルミオン	体積(fm ³)	スペクトルギャッフ	U(1)A
JLQCD(2013)	オーバーラップ (トポロジー固定)	2 ³	あり	回復
Chiu et al (2013)	Optimized Domain-wall	3 ³	あり? $ ho\sim\lambda^3+\cdots$	回復
Ohno et al (2011)	HISQ	4 ³	なし	回復しない
LLNL/RBC (2013)	ドメインウォール	2, 4	なし	回復しない

果たしてどちらが本当なのか?

原因は、フェルミオン、体積? 系統的理解が足りない! 特にオーバーラップ/ドメインウォールの違いを理解したい

Akio Tomiya(Osaka Univ.) Gauge action:tree level Symanzik Fermion :Mobius DW(b=2, c=1, Scaled Shamir + Tanh) w/ Stout smearing(3) code :IroIro++(G. Cossu et al.) Resource :BG/Q(KEK)

$L^3 \times L_t$	β	m_{ud} (MeV)	L_s	$m_{\rm res}({ m MeV})$	Temp.(MeV)	Note
$16^3 \times 8$	4.07	30	12	2.5	180	488 Conf. every 50 Trj.
$16^3 \times 8$	4.07	3.0	24	1.4	180	319 Conf. every 20 Trj.
$16^3 \times 8$	4.10	32	12	1.2	200	480 Conf. every 50 Trj.
$16^3 \times 8$	4.10	3.2	24	0.8	200	538 Conf. every 50 Trj.
$32^3 \times 8$	4.10	32	12	1.7	200	175 Conf. every 20 Trj.
$32^3 \times 8$	4.10	16	24	1.7	200	294 Conf. every 20 Trj.
$32^3 \times 8$	4.10	3.2	24	_	200	88 Conf. every 10 Trj.

より良いカイラル対称性の配位も生成中…

Akio Tomiya(Osaka Univ.)

3.Domain-wall Dirac spectrum

(ドメインウォール)ディラックスペクトル

 $H_m \psi_i = \lambda_i^m \psi_i$

 $H_m = \gamma_5 [(1 - m_{ud})D^4 + m_{ud}]$ ↑エルミート・ディラック演算子

質量ありのシミュレーション →質量0のスペクトルを作った

Cohen(1996)の議論(再掲) カイラルゼロモードが無視でき、 <u>ディラックスペクトルに**ギャップ**が有る場合</u>、

 $\int d^4x [\langle \pi(x)\pi(0) \rangle - \langle \delta(x)\delta(0) \rangle] = \int_0^\infty \frac{4m^2\rho(\lambda)}{(m^2 + \lambda^2)^2}$ = 0

関連研究:青木-深谷-谷口 (2012) 反論:石川-岩崎-中山-吉江 (2014)など

ギャップが見つかるか?

3. Histogram for DW (above Tc)

T=200MeV>Tc L=4fm 大きい体積

3.Histogram for DW

L=4fm, T=200 MeV mud=3.2MeV ではギャップなし?

U(1)_A は破れて見える

先行研究(LLNL/RBC 2013)と同じ結論... オーバーラップ(JLQCD)と何がちがうのか?

考えられる原因 前JLQCDは有限サイズ効果を見ていた説 トポロジー固定してたのが悪かった説 DWのGinsparg-Wilson 関係式の破れ?

Akio Tomiya(Osaka Univ.)

4.Ginsparg-Wilson 関係式の破れ

各固有モード毎のGinsparg-Wilson 関係式の破れ $S = \int d^4x \, \bar{\psi} D \psi \,$ がカイラル変換で不変<=>格子理論: $D\gamma_5 + \gamma_5 D = 2aD\gamma_5 D$

Dの固有関数↓ $g_i \propto \psi_i^{\dagger} \gamma_5 [D\gamma_5 + \gamma_5 D - 2aD\gamma_5 D] \psi_i$

g_i:カイラル対称性のあるフェルミオンならO ドメインウォールフェルミオンではどうなるのか?

改良したドメインウォールフェルミオンでも Gisparg-Wilson 関係式が破れている

改良したドメインウォールフェルミオンでも Gisparg-Wilson 関係式が破れている

何とかしてオーバーラップフェルミオン に差し替えられないか?

(経路積分にあるディラック演算子) (固有値を与えるディラック演算子(プローブ)

Akio Tomiya(Osaka Univ.)

5.(Reweighted) Overlap Dirac spectrum

経路積分にある

フェルミオンの差し替え=Re-weighting法

$$\begin{split} \langle \mathcal{O} \rangle_{\text{Overlap}} &= \int \mathcal{D}\bar{q}\mathcal{D}q\mathcal{D}A_{\mu} \ \mathcal{O} \ e^{-S_{\text{gauge}}} e^{-\bar{q}[D_{\text{OV}}]q} \\ &= \int \mathcal{D}A_{\mu} \ \mathcal{O} \ e^{-S_{\text{gauge}}} \text{Det}[D_{\text{OV}}^2] \\ &= \int \mathcal{D}A_{\mu} \ \mathcal{O} \ e^{-S_{\text{gauge}}} \text{Det}[D_{\text{OV}}^2] \frac{\text{Det}[D_{\text{DW}}^2]}{\text{Det}[D_{\text{DW}}^2]} \\ &= \int \mathcal{D}\bar{q}\mathcal{D}q\mathcal{D}A_{\mu} \ \mathcal{O}R \ e^{-S_{\text{gauge}}} e^{-\bar{q}[D_{\text{DW}}]q} \\ &= \langle \mathcal{O}R \rangle_{\text{Domain Wall}} \qquad R = \frac{\text{Det}[D_{\text{OV}}^2]}{\text{Det}[D_{\text{DW}}^2]} \end{split}$$

Rをかけて平均を取ればオーバーラップに差し替えられる

Reweighting to OV

※ドメインウォール配位=中間状態にドメインウォールフェルミオンのループ ドメインウォール固有値=プローブがドメインウォールフェルミオン

T=200MeV, m_{ud}=3.2MeV

L=4fm

39

T=200MeV, mud=3.2MeV

L=4fm

T=200MeV, m_{ud}=3.2MeV

Akio Tomiya(Osaka Univ.)

T=200MeV, m_{ud}=3.2MeV

DW配位 OV固有值

OV配位 OV固有值 (差し替え後)

T=200MeV, m_{ud}=3.2MeV

L=4fm

T=200MeV, m_{ud}=3.2MeV(軽い)

観測	
• ドメインウォールフェルミオン: カイラル対称性に関連する低いモードで Ginsparg-Wilson関係式の強い破れ	• (改良型)ドメインウォールとオーバ ーラップでヒストグラムが異なる
• オーバーラップ(ドメインウォール配位)で は、孤立した0モード+ギャップ構造	• カイラル0モードは、体積無限大で 測度0
• ギャップ構造が体積によらない オーバーラップ(ドメインウォール配位)	• ギャップ構造→ U(1) _A 回復?

• L=4fmでオーバーラップ(or 更に対称性を良くした

ドメインウォール)で有限体積効果をチェック!

Akio Tomiya(Osaka Univ.)

6.Summary

まとめ

グループ	フェルミオン	体積(fm ³)	スペクトルギャップ	U(1)A
JLQCD(2013)	オーバーラップ	2^{3}	あり	回復
	(トホロシー固定)			
Chiu et al	Optimized	2^3	ちり	同復
(2013)	Domain-wall	5		凹友
Ohno et al		⊿ ³	# 21.	同復したい
(2011)		4	10	回夜しるい
LLNL/RBC		$\gamma^3 \chi^3$	+>1	
(2013)	トメインウオール	乙, 4	40	凹1反しない

本研究	(改良) ドメインウォール 1	2 ³ , 4 ³	なし	カイラル対称性 が良ければ回復?
	(Reweited,Pq) オーバーラップ	2 ³ , (4 ³)	あり	(有限体積効果の 評価が不十分)

/ 低モード:**Gisparg-Wilson関係式**×