Spin－I particle and the ATLAS Diboson excess

Tomohiro Abe（KEK）
based on the works
1507．01 185：TA，Ryo Nagai，Shohei Okawa，Masaharu Tanabashi
1507．01681：TA，Teppei Kitahara，Mihoko Nojiri

基研研究会 PPP2015
2015．9．15

今日話したいこと

－ATLAS diboson anomaly
－spin1 粒子を導入した模型
＊電弱対称性は $\operatorname{SU}(2) \times S U(2) x U(1)$
＊くりこみ可能
＾ATLAS diboson anomaly を説明可能
－LHC 13 TeV における \mathbf{W}^{\prime} 探索の見通し
$\star \mathrm{pp} \rightarrow \mathrm{W}^{\prime} \rightarrow \mathrm{WZ} \rightarrow$ jets
－まとめ

ATLAS diboson excess

- pp $\rightarrow X \rightarrow \mathbf{W Z / W W / Z Z ~} \rightarrow$ two fat jets
\star mass of $X \sim 2 \mathrm{TeV}$?
* local significance: WZ 3.4の, WW 2.6б, ZZ 2.9б
^ global significance: WZ 2.5б

CMS の同じプロセスには excess 無し

lepton を含む崩壊モードに excess 無し

ATLAS EXOT－2013－001
ATLAS EXOT－2013－006

ATLAS EXOT－2013－007

ATLAS（WZ \rightarrow jets＋leptons）

CMS（WZ \rightarrow Iv＋II）
CMS EXO－12－025

diboson の各崩壊過程のまとめ

final states	ATLAS	CMS
$\mathbf{V} \rightarrow$ jets	excess	no excess
$W Z \rightarrow \ell v$ $W Z \rightarrow j e t s+\ell \ell$ $W Z \rightarrow \ell v+$	no excess	no excess

－Excess は ATLAS の pp \rightarrow VV \rightarrow jets 過程にのみ存在
＊logal：WZ 3．4の，WW 2．6の，ZZ 2．9б
＊global：WZ 2．5б

- Excess は単なる統計の揺らぎ？
- どんな模型でexcessが説明可能か抑えておくことは重要

Excess についてわかっていること

－新粒子 (X) はボソン
＊$W Z / W W / Z Z$ へ崩壊する
－WZ／WW／ZZ の区別はきちんとついていない

$\star\left|m_{j}-m_{v}\right|<13 G e V$
＊ 3 つのチャンネル全てを説明する必要は無い
ATLAS EXOT－2013－008

Works in market (~ 50 papers)

- Spin $0(S \rightarrow W W, S \rightarrow Z Z)$
1507.02483, 1507.03553, 1507.04431, 1507.05028, 1507.05310, 1507.06312, 1508.04814, 1508.05632, 1509.02039
- Spin $\mathbf{1}\left(\mathbf{W}^{\prime} \rightarrow \mathbf{W Z}, \mathbf{Z}^{\prime} \rightarrow \mathbf{W W}\right)$
$1506.03751,1506.03931,1506.04392,1506.05994,1506.06064,1506.06736,1506.06767,1506.07511$, $1506.08688,1507.00013,1507.00268,1507.00900,1507.01185,1507.01638,1507.01681,1507.01914$, $1507.01914,1507.01923,1507.02483,1507.03098,1507.03428,1507.03553,1507.03940,1507.04431$, 1507.05028, 1507.05299, 1507.05310, 1507.06018, 1507.06312, 1507.07102, 1507.07406, 1507.07557, $1507.08273,1508.00174,1508.02277,1508.03544,1508.04129,1508.05940,1509.00441,1509.01606$, 1509.02787
- Spin 2
1507.03553, 1507.06312, 1508.04814

spin 別の特徴

－Spin 0 （S \rightarrow WW，S \rightarrow ZZ）
＊素朴には断面積が足りない
＊適当な模型だとうまくいかない（例えば KO－KObar とかにひつかかる［Omura，Tobe，Tsumura＇15］）
＊うまくいく 1 例は，次の次にトークする福田さんらの仕事［1507．02483］
－Spin 1 （ $\mathbf{W}^{\prime} \rightarrow \mathbf{W Z}, \mathbf{Z}^{\prime} \rightarrow \mathbf{W W}$ ）
＊電弱対称性を拡張すれば簡単にできる（例：SU（2）xSU（2）xU（1））
＊模型はたくさん作れる（choice of Higgs and fermion sectors）
＊背後にダイナミクスがある模型（1 例は松崎さんのトーク）
＊Left－Right 模型
＊その他
－Spin 2
＊複合粒子 ？余剰次元？

spin 別の特徵（私見）

－Spin $0(S \rightarrow W W, S \rightarrow Z Z)$

spinlに着目します

－Spin 1 （ $\left.\mathbf{W}^{\prime} \rightarrow \mathbf{W Z}, Z^{\prime} \rightarrow \mathbf{W W}\right)$
＊電弱対称性を拡張すれば簡単にできる（例：SU（2）xSU（2）xU（1））
＊模型はたくさん作れる（choice of Higgs and fermion sectors）
＊背後にダイナミクスがある模型（1例は松崎さんのトーク）
＊Left－Right 模型
＊その他

$\sigma\left(\mathrm{pp} \rightarrow \mathrm{W}^{\prime} / Z^{\prime} \rightarrow \mathrm{WZ} / \mathrm{WW}\right)$ の見積もり

- excess の説明に必要な断面積は ？
- ATLASからの official な値は無い
- W＇／Z＇を用いた論文は数十本あるが，論文によって excess に必要とされる断面積 の値は違う
＊ 20 fb
$\star 15 \mathrm{fb}$
$\star 10 \mathrm{fb}$
＊ 6 fb
－断面積をどう見積もるかによって答えは大きく変わる σ
＊統計が足りていないのが原因と考えられる
＊とりあえず 3 例あげます

$\sigma\left(p p \rightarrow W^{\prime} / Z^{\prime} \rightarrow W Z / W W\right)$ の見積もり

Fig．from ATLAS EXOT－2013－008

estimate（I） 2 TeV bin だけ

2 TeV の bin だけみると

excess説明に必要な断面積
$3 \mathrm{fb} \times 4.6=\mathbf{1 4} \mathbf{f b}$
ピッタリ合わす必要も無い

あまり合ってないように見える…

estimate（2）全部 error bar に入るようにしてみる

2 TeV bin だけ見た場合：
excess説明に必要な断面積
$3 \mathrm{fb} \times 4.6=\mathbf{1 4} \mathbf{f b}$

error bar に入れた場合：
excess説明に必要な断面積
error bar に入れた場合：
excess説明に必要な断面積

$$
3 \mathrm{fb} \times 2.5=7.5 \mathrm{fb}
$$

だいぶ違う

estimate（3）event 数だけ数える

－WW＋WZ＋ZZ selection
＊ 2 events at 1．9 TeV bin
$\star 5$ events at 2.0 TeV bin
＊ 1 event at 2.1 TeV bin
＊\＃of excess event $=8$
＾\＃$=\sigma \times$ Luminosity \times efficiency
$\star \quad \sigma\left(\mathrm{pp} \rightarrow \mathrm{W}^{\prime} \rightarrow \mathrm{WZ}\right)+\sigma\left(\mathrm{pp} \rightarrow \mathrm{Z}^{\prime} \rightarrow \mathrm{WW}\right) \sim 6 \mathrm{fb}$

Fig．from ATLAS EXOT－2013－008

$\sigma\left(p p \rightarrow W^{\prime} / Z ' \rightarrow W Z / W W\right)$ の見積もり

- ATLASからの official な値は無い
- どう見積もるかによって答えは大きく変わる
＊ 10 fb 程度あればいいだろう
＊最低でも 6 fb は欲しい
－ところで $\boldsymbol{\sigma}\left(\mathbf{p p} \rightarrow \mathbf{V}^{\prime} \rightarrow \mathbf{V h}\right)<\mathbf{7 f b}$［CMS EXO－14－009］
＊揋動論的ユニタリティーを満たす模型では

$$
\sigma\left(\mathrm{pp} \rightarrow \mathrm{~V}^{\prime} \rightarrow \mathrm{VZ}\right) \sim \sigma\left(\mathrm{pp} \rightarrow \mathrm{~V}^{\prime} \rightarrow \mathrm{Vh}\right)
$$

となるので，この制限はきつい
－（私見）6fb を目指して，それ以上は新しい実験結果が出てから考 えれば良い

残りの時間で話したいこと

－spin 1 模型を 1 つとりあげます
＾くりこみ可能で椇動論の範囲内で取り扱える模型のうち最も簡素な模型
＊（非椇動論的な模型は，次のスピーカーの松崎さん）
＊（模型によらない性質は，明日のポスター発表で長井さん）
－pp $\rightarrow W^{\prime} \rightarrow W Z \rightarrow$ jets モードの LHC run－2 での展望
＊7fb－1 くらいで W^{\prime} / Z^{\prime} 模型は排除可能
model
schematic picture（moose notation）
－ $\operatorname{SU}(2)_{0} \times S U(2)_{1} \times U(1)_{2} \rightarrow U(1)_{Q E D}$
－three Higgs doublets
$\star H_{1}: \mathrm{SU}(2)_{0} \times \mathrm{SU}(2)_{1} \rightarrow \mathrm{SU}(2)_{v}$
$\star H_{2}: \mathrm{SU}(2)_{1} \times \mathrm{U}(1)_{2} \rightarrow \mathrm{U}(1)_{\mathrm{v}}$
$\star H_{3}: \mathrm{SU}(2)_{0} \times \mathrm{U}(1)_{2} \rightarrow \mathrm{U}(1)_{\mathrm{v}}$

＊12個の実スカラー（6つはゲージ場に食われる）
＊結果，物理的自由度は6つ（3 CP－even +1 CP－odd +1 pair of charged Higgs）
－フェルミオン
$\star \psi_{L}:\left(\mathrm{SU}(2)_{0}, \mathrm{SU}(2)_{1}, \mathrm{U}(1)_{2}\right)=(2,1,1 / 6)$ or $(2,1,-1 / 2)$
$\star \psi_{R}:\left(\mathrm{SU}(2)_{0}, \mathrm{SU}(2)_{1}, \mathrm{U}(1)_{2}\right)=\left(1,1, \mathrm{Q}_{\mathrm{QED}}\right)$
＊湯川相互作用は H_{3} で与えられる

$$
\left.\mathcal{L}^{\text {Yukawa }}=-\bar{Q}^{i} H_{3}\left(\begin{array}{cc}
y_{u}^{i j} & 0 \\
0 & y_{d}^{i j}
\end{array}\right)\binom{u_{R}^{j}}{d_{R}^{j}}+\text { (h.c. }\right)+ \text { (lepton sector) }
$$

模型のパラメータ

－ 13 パラメータ
＊既知のパラメータ4つ：v, α, m_{Z}, m_{h} ，
＊末知のパラメータ4つ：$m_{Z^{\prime}}, m_{H^{\prime}}, m_{H}, m_{A}$ ，
＊カップリング 3 つ：
$\kappa_{F}, \kappa_{Z}, g_{W W^{\prime} H^{\prime}}$

$$
\left(\kappa_{F}=g_{h f f} / g_{n f f} S M, \kappa_{z}=g_{h z z} / g_{h z z} S M\right)
$$

＊vev関連2つ：
r, v_{3},
$\left(r=v_{2} / v_{1}\right)$
－簡単のため以下では質量とカップリングは固定
$\star \mathrm{m}_{\mathrm{H}}=\mathrm{m}_{\mathrm{H}^{\prime}}=\mathrm{m}_{\mathrm{A}}=2 \mathrm{TeV}$
$\star \mathrm{K}_{\mathrm{F}}=1, \mathrm{~K}_{\mathrm{Z}} \sim 1, \mathrm{~g}_{\mathrm{W} \mathrm{W}^{\prime} \mathrm{H}^{\prime}}=0$
－$\left(r, v_{3}\right)$ の 2 つをパラメータとしてふる

粒子の質量

$H^{ \pm}, \underline{\overline{A^{0} \quad H}}$

We assume

－they are 2 TeV （to avoid e．g $\mathrm{W}^{\prime} \rightarrow \mathrm{WA}^{0}$ ）
－they are degenerated（for simplicity）

2 TeV for the excess

spin 0
spin 1
spin 1／2

W' branching ratio and width

$\star \mathrm{m}_{\mathrm{H}}=\mathrm{m}_{\mathrm{H}^{\prime}}=\mathrm{m}_{\mathrm{A}}=2 \mathrm{TeV}$
\star width is narrow (20 GeV for $\mathrm{m}_{\mathrm{w}^{\prime}}=2 \mathrm{TeV}$)

results

\star colored region is excluded
\star orange lines are σ
$\star \sigma>7 \mathrm{fb}$ is exclude by $\mathrm{V}^{\prime} \rightarrow \mathrm{Vh}$
$\star \sigma=6 \mathrm{fb}$ on bold orange line (possiblly explain the excess)

* dashed lines are with K-factor (K ~ 1.3) $0711.0749,1410.4692$
prospect for LHC run-2

95\% exclusion limit at LHC run-2

* WZ \rightarrow hadrons
$\star \mathrm{W}^{\prime}$ width $=25 \mathrm{GeV}$
* model independent result (as long as width is narrow)

Summary

まとめ

－2TeV 付近に diboson excess があります by the ATLAS
＊CMS には excess 無し
ネ レプトンを含む diboson の崩壊モードには excess 無し
\star nice exercise to consider BSM
－模型を1つ紹介した（ W＇and \mathbf{Z}^{\prime} ）
＊くりこみ可能で摂動論の範囲内で取り扱える模型のうち最も簡素な模型
$\star \sigma\left(\mathrm{pp} \rightarrow \mathrm{V}^{\prime} \rightarrow \mathrm{lv}\right)$ と $\sigma\left(\mathrm{pp} \rightarrow \mathrm{V}^{\prime} \rightarrow \mathrm{Vh}\right)$ が制限
$\star \sigma\left(\mathrm{pp} \rightarrow \mathrm{V}^{\prime} \rightarrow \mathrm{VV}\right)=6 \mathrm{fb}$ は可能
－prospect for LHC run－2
＊ 2 TeV excess を $\mathrm{W}^{\prime} / \mathrm{Z}^{\prime}$ で説明する可能性は， $7 \mathrm{fb}-1$ で 95% 以上で排除 できる

Backup slides

Monte Carlo part

What we did in MC part

- Monte Carlo
\star QCD dijet as BG (1.73 10^6~5fb-1, $\mathrm{E}_{\mathrm{CM}}>1 \mathrm{TeV}, \mathrm{pT}>400 \mathrm{GeV}$, sqrt[s] =13TeV) by PYTHIA8.205
\star signal $\left(\mathrm{pp} \rightarrow \mathrm{W}^{\prime} \rightarrow \mathrm{WZ}\right) \mathrm{m}_{\mathrm{W}^{\prime}}=1.8 \mathrm{TeV}$ to 3.2 TeV , width $=25 \mathrm{GeV}$
\star Tune 4C for fragmentation and hadronization
* detector simulator DeLPHES3 is modified using FastJet3
* cuts: same as the cuts used by ATLAS
- Our MC result
\star we checked signal distributions agree with the ATLAS result (8 TeV)
\star we found \# of back ground is twice of the ATLAS result (8 TeV)
* we scale our BG 1/2 for 13 TeV analysis

More on our model

constraint on (r, v_{3})-plane

$$
m_{Z^{\prime}}=m_{\text {heavy Higgs }}=2 \mathrm{TeV}, \kappa_{F}=1.00
$$

$\sigma\left(\mathrm{pp} \rightarrow \mathrm{W}^{\prime} \rightarrow \mathrm{WZ}\right)+\boldsymbol{\sigma}\left(\mathrm{pp} \rightarrow \mathrm{Z}^{\prime} \rightarrow \mathrm{WW}\right)[\mathrm{fb}]$

$$
m_{Z^{\prime}}=m_{\text {heavy Higgs }}=2 \mathrm{TeV}, \kappa_{F}=1.00
$$

$\star \sigma>5 f b$ for small r region

