Physics of right-handed neutrinos -- tests of the seesaw mechanism --

淺賀 岳彦 (新潟大学)

基研研究会 素粒子物理学の進展2015@YITP

TA, Tsuyuki arXiv:1508.04937 TA, Tsuyuki arXiv:1509.02678

Plan of this talk

- Introduction
 - the seesaw mechanism for neutrino masses
- Limits on heavy neutral leptons in the seesaw mechanism
 - neutrino masses, cosmology, direct/indirect searches
- Lepton number violation in the seesaw mechanism
 - neutrinoless double beta decay
 - $\blacksquare e^-e^- \rightarrow W^-W^-$ ("inverse neutrinoless double beta decay")
- Perturbativity in the seesaw mechanism
- Summary

Introduction

Origin of neutrino masses

- Neutrino mass scales
 - Atmospheric: $\Delta m_{\rm atm}^2 \simeq 2.4 \times 10^{-3} \, \rm eV^2$
 - Solar : $\Delta m_{\rm sol}^2 \simeq 7.5 \times 10^{-5} \text{eV}^2$
 - ⇒ Clear signal for new physics beyond the SM!
- Important questions:
 - What is the origin of neutrino masses?
 - What are the implications to other physics?
 - How do we test it experimentally?

RH Neutrinos ν_R and Seesaw Mechanism

$$\delta L = i \overline{v_R} \partial_{\mu} \gamma^{\mu} v_R - F \overline{L} v_R \Phi - \frac{M_M}{2} \overline{v_R} v_R^c + \text{h.c.}$$

Minkowski '77 Yanagida '79 Gell-Mann, Ramond, Slansky '79 Glashow '79

• Seesaw mechanism $(M_D = F \langle \Phi \rangle \ll M_M)$

$$-L = \frac{1}{2} (\overline{v_L}, \overline{v_R^c}) \begin{pmatrix} 0 & M_D \\ M_D^T & M_M \end{pmatrix} \begin{pmatrix} v_L^c \\ v_R \end{pmatrix} + h.c = \frac{1}{2} (\overline{v_L}, \overline{N^c}) \begin{pmatrix} M_v & 0 \\ 0 & M_M \end{pmatrix} \begin{pmatrix} v^c \\ N \end{pmatrix} + h.c.$$

$$M_v = -M_D^T \frac{1}{M_M} M_D$$

$$\square \text{ Light active neutrinos } \mathbf{V}$$

$$U^T M_v U = diag(m_1, m_2, m_3)$$

- - → explain neutrino oscillations
- Heavy neutral leptons N

$$(N \simeq \nu_R)$$

- Mass M_M
- Mixing $\Theta = M_D/M_M$

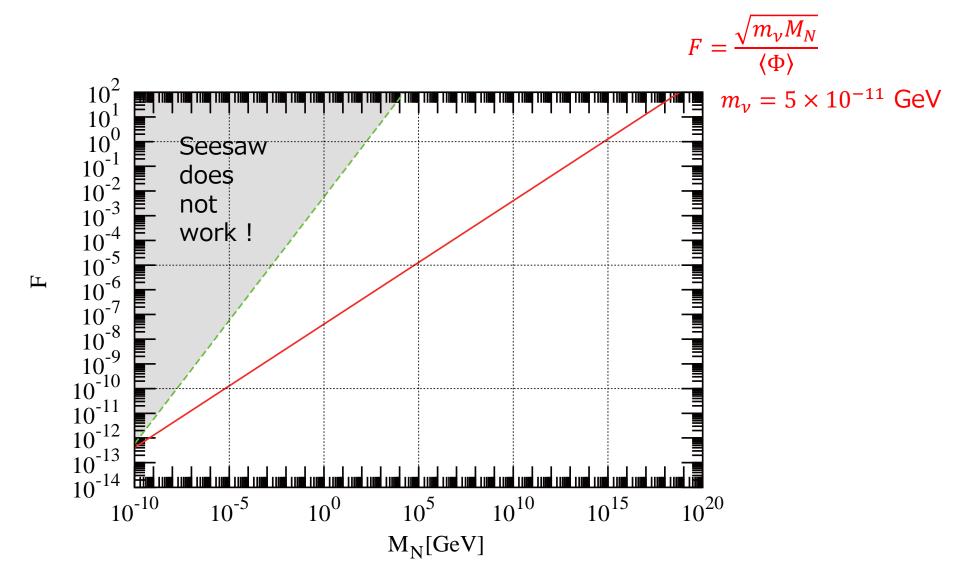
mixing in CC current $v_L = U v + \Theta N^c$

Review of Particle Physics

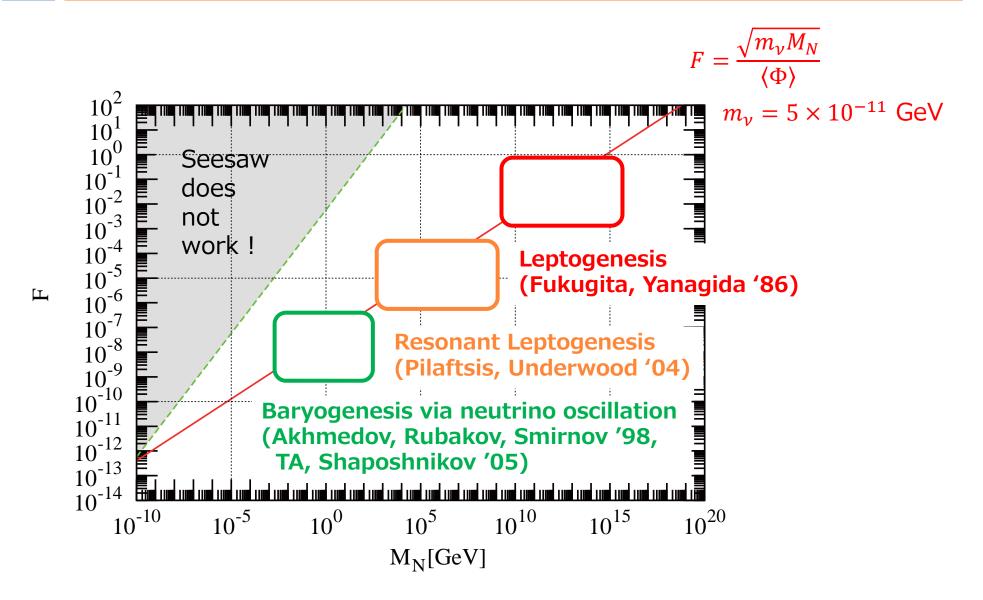
Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

Heavy Neutral Leptons, Searches for

(A) Heavy Neutral Leptons

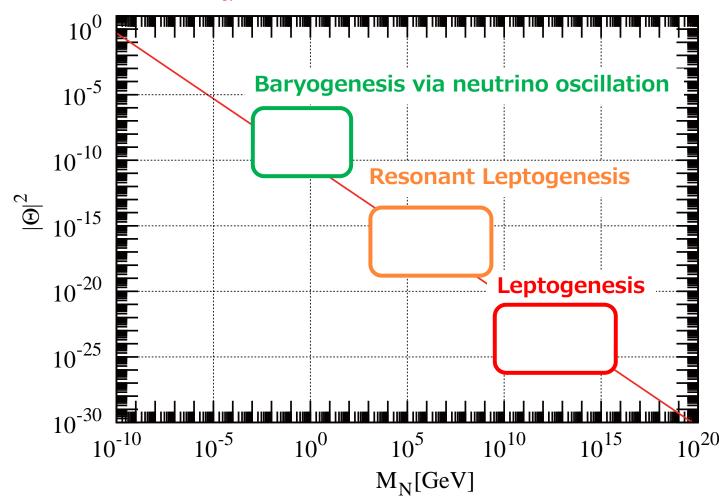

- Stable Neutral Heavy Lepton MASS LIMITS

Note that LEP results in combination with REUSSER 91 exclude a fourth stable neutrino with m< 2400 GeV.

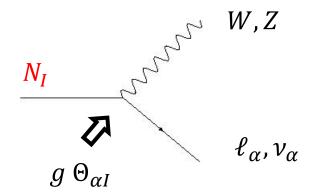

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>45.0	95	ABREU	92B	DLPH	Dirac
>39.5	95	ABREU	92B	DLPH	Majorana
>44.1	95	ALEXANDER	91F	OPAL	Dirac
>37.2	95	ALEXANDER	91F	OPAL	Majorana
none 3-100	90	SATO	91	KAM2	Kamiokande II
>42.8	95	¹ ADEVA	90s	L3	Dirac
>34.8	95	¹ ADEVA	90s	L3	Majorana
>42.7	95	DECAMP	90F	ALEP	Dirac

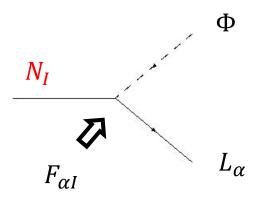
 $^{^1}$ ADEVA 90s limits for the heavy neutrino apply if the mixing with the charged leptons satisfies $|U_{1\,i}|^2+|U_{2\,i}|^2+|U_{3\,i}|^2>6.2\times 10^{-8}$ at $m_{I\,0}=$ 20 GeV and $>5.1\times 10^{-10}$

Yukawa Coupling and Mass of HNL



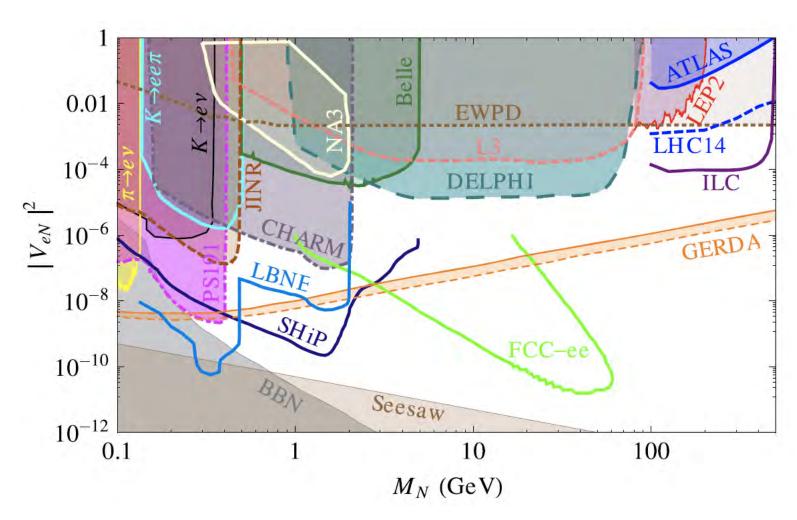
Yukawa Coupling and Mass of HNL

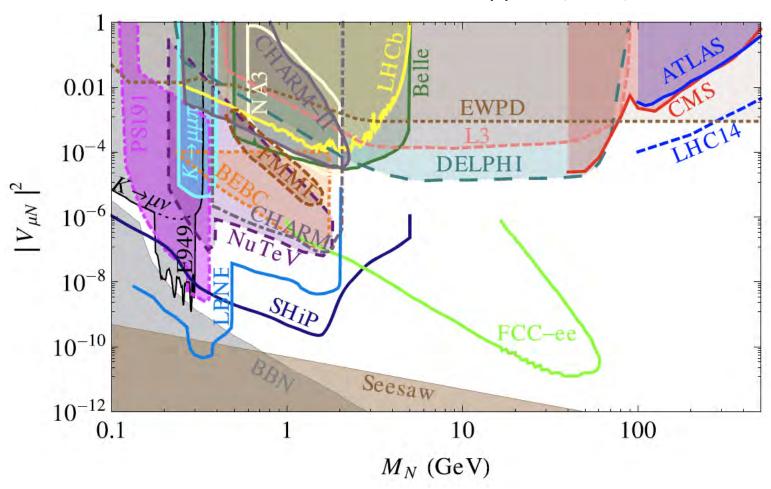

Mixing and Mass of HNL


Important parameters of HNL

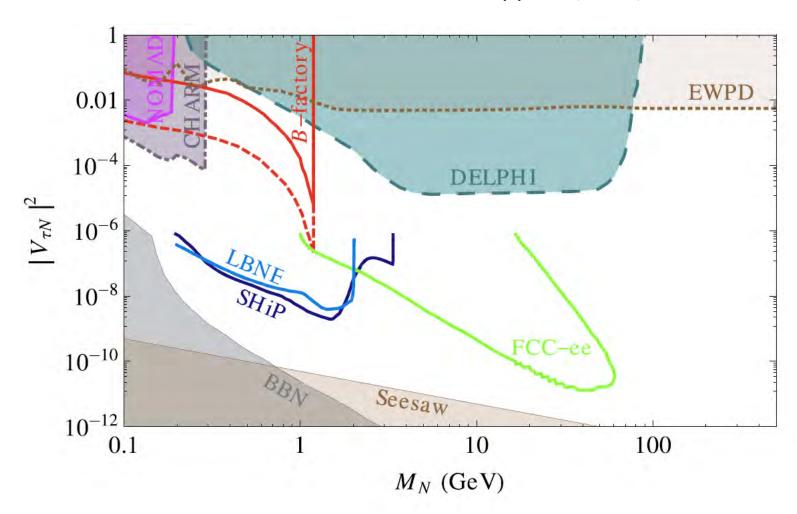
Interactions of HNL gauge interaction through mixing

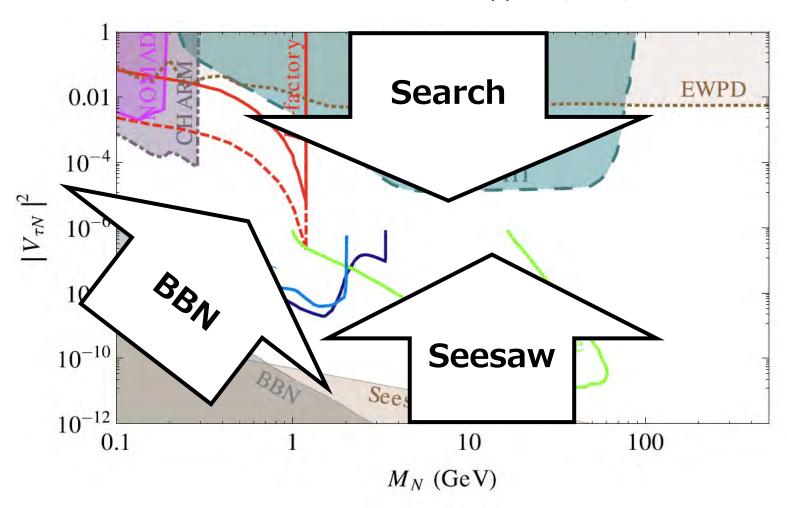
- → relevant for search experiments
- Two key parameters of HNL
 - lacktriangledown mass M_I
 - lacksquare mixing $\Theta_{\alpha I}$


Yukawa interaction


Limits on HNLs in the seesaw mechanism

See, for example, the recent analysis Deppisch, DeV, Pilaftsis (arXiv:1502.06541) and references therein.


lacksquare Limits on mixing Θ_{eI}


lacksquare Limits on mixing $\Theta_{\mu I}$

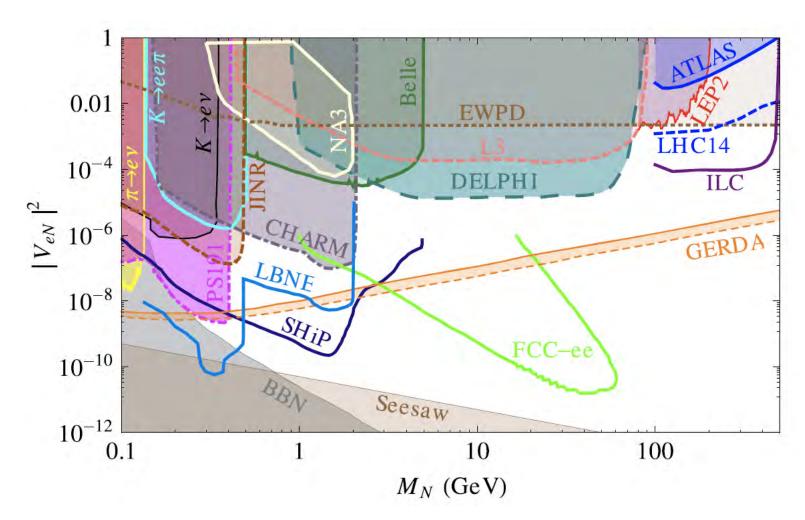
lacksquare Limits on mixing $\Theta_{ au I}$

lacksquare Limits on mixing $\Theta_{ au I}$

Bound from seesaw mechanism

- Mixings of HNL must be sufficiently large to explain masses of active neutrinos!
- Bound on the mixing of the lightest HNL N_1

TA, Tsuyuki '15


$$|\Theta_1|^2 \ge \frac{m_l}{M_1} \qquad |\Theta_1|^2 \equiv \sum_{\alpha=e,\mu,\tau} |\Theta_{\alpha 1}|^2$$

$$|\Theta_1|^2 \equiv \sum_{\alpha=e,\mu,\tau} |\Theta_{\alpha 1}|^2$$

$$m_l = \begin{cases} m_1 \ (m_3) \ \text{in the NH (IH) for 3RHN } (\mathcal{N}=3) \\ m_2 \ (m_1) \ \text{in the NH (IH) for 2RHN } (\mathcal{N}=2) \end{cases}$$

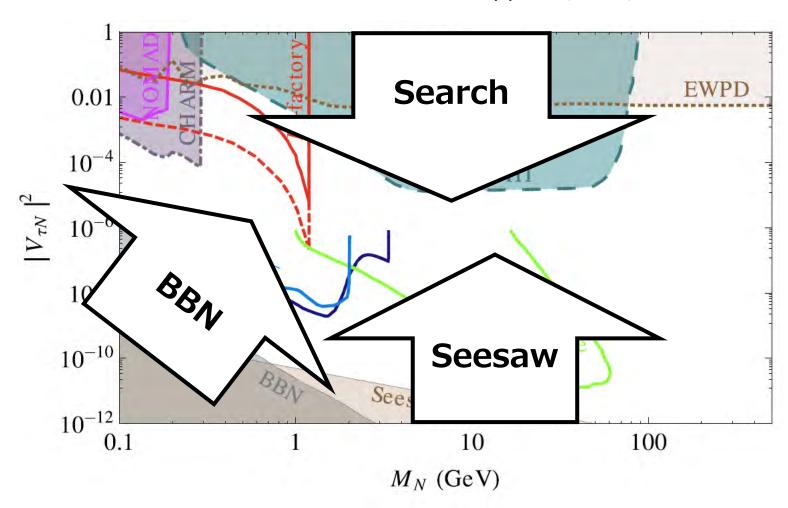
NOTE: $|\Theta_1|^2$ can be zero for $\mathcal{N}=3$

lacksquare Limits on mixing Θ_{eI}

Seesaw relation between mixings

Neutrino mass matrix

$$\widehat{M_{
u}} = egin{pmatrix} \mathbf{0} & M_D \ M_D^T & M_M \end{pmatrix}$$


$$\widehat{M_{\nu}} = \begin{pmatrix} \mathbf{0} & M_D \\ M_D^T & M_M \end{pmatrix} \qquad \mathbf{0} = \left[\widehat{M_{\nu}} \right]_{\alpha\beta} = \left[\widehat{U} \widehat{M_{\nu}}^{diag} \widehat{U}^T \right]_{\alpha\beta}$$

Seesaw relation

$$0 = \sum_{i=1,2,3} m_i U_{\alpha i} U_{\beta i} + \sum_{I} M_I \Theta_{\alpha I} \Theta_{\beta I}$$

- When $|\Theta_1|^2 \gg m_{\nu}/M_1$,
 - Cancellation between HNLs is required ← fine tuning
 - Stability of this relation can be ensured by some symmetry Kersten, Sumirnov '07, ...
 - This relation is crucial in physics of right-handed neutrinos in the seesaw mechanism

lacksquare Limits on mixing $\Theta_{ au I}$

BBN constraint on lifetime

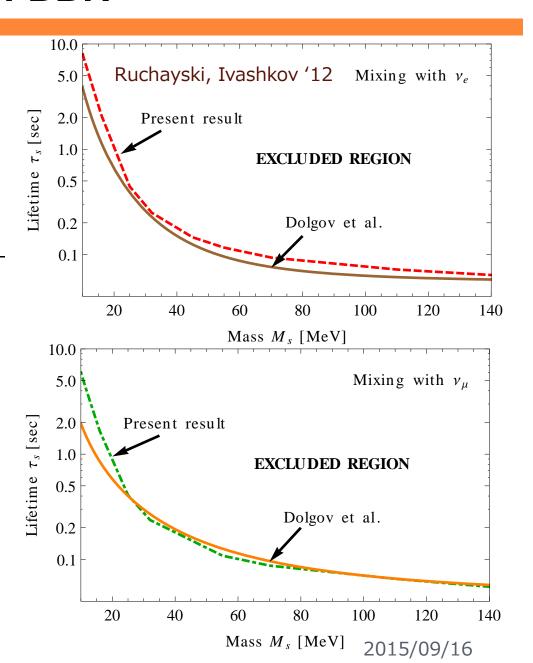
- Long-lived HNLs may spoil the success of BBN
 - Speed up the expansion of the universe

•
$$\rho_{\text{tot}} = \rho_{\text{SM}} + \rho_N \implies H^2 = \frac{\rho_{\text{tot}}}{3 M_P^2}$$

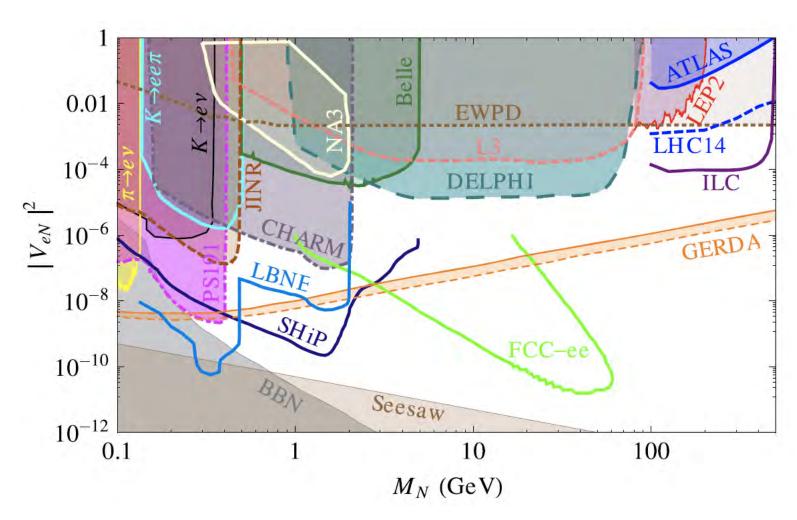
- p-n conv. decouples earlier \Rightarrow overproduction of ${}^4{\rm He}$ $n+\nu\leftrightarrow p+e^-,...$
- Distortion of spectrum of active neutrinos
 - $N \rightarrow \nu \bar{\nu} \nu$, $e^+ e^- \nu$, ...
 - Additional neutrinos may not be thermalized
- ⇒ Upper bound on lifetime
- ⇒ Lower bound on mixing

Lifetime bound from BBN

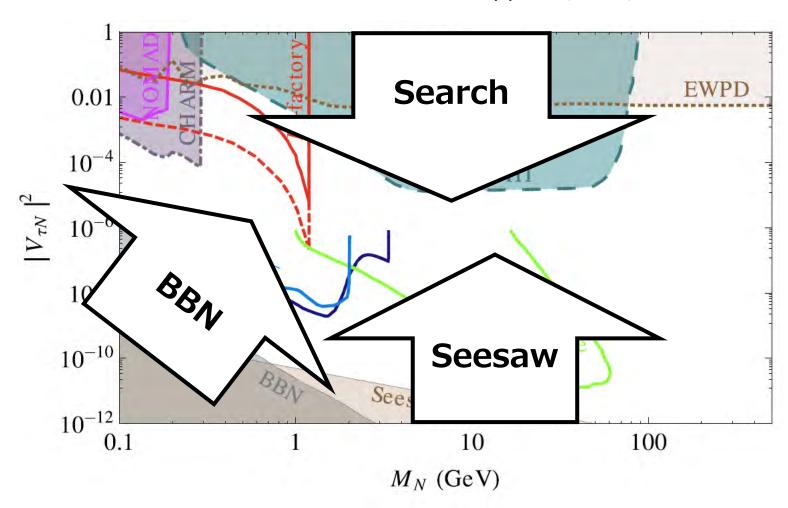
Dolgov, Hansen, Raffelt, Semikoz '00


$$M_N < m_{\pi}$$

$$\tau_N < t_1 (M_N/\text{MeV})^{\beta} + t_2$$


	$t_1(sec)$	$t_2(sec)$	β
e	128.7	0.04179	-1.828
μ,τ	1699	0.0544	-2.652

$$M_N > m_{\pi}$$

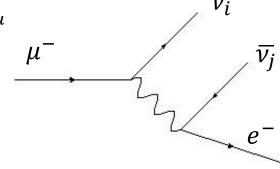

$$\tau_N < 0.1 \, \mathrm{sec}$$

lacksquare Limits on mixing Θ_{eI}

lacksquare Limits on mixing $\Theta_{ au I}$

Indirect search (EWPD)

PMNS mixing matrix *U* of active neutrinos is not "UNITARY"


$$UU^{\dagger} + \Theta\Theta^{\dagger} = 1 \qquad \qquad \nu_{L\alpha} = U_{\alpha i} \, \nu_i + \, \Theta_{\alpha I} \, N_I^c$$

$$\nu_{L\alpha} = U_{\alpha i} \, \nu_i + \, \Theta_{\alpha I} \, N_I^c$$

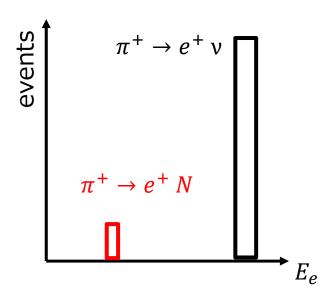
■ Impact of non-unitarity on μ decay: $\mu \rightarrow e \bar{\nu}_e \nu_\mu$

$$\Gamma = \Gamma^{SM} \times (UU^{\dagger})_{ee} \times (UU^{\dagger})_{\mu\mu}$$
$$G_F^{SM} = \sqrt{2}g^2/(8m_W^2)$$

$$G_F \Big|_{OBS} = G_F^{SM} \times (UU^{\dagger})_{ee} \times (UU^{\dagger})_{\mu\mu}$$

Antusch, Fischer '14 Upper bound from EW precision data (EWPD) $(s_W^2, \Gamma(Z \to f\bar{f}), \Gamma_{inv}, \Gamma(W \to \ell \nu), m_W, \text{ lepton universality, CKM elements,})$

$$|\Theta_e|^2 < 2.1 \times 10^{-3}$$
 , $|\Theta_\mu|^2 < 4 \times 10^{-4}$, $|\Theta_\tau|^2 < 5.3 \times 10^{-3}$

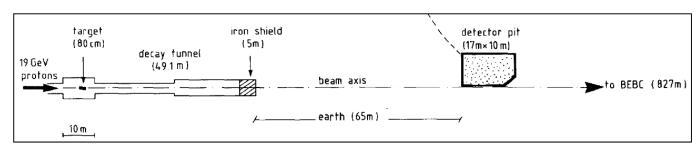

@90% CL

Direct searches

- Peak search in meson decays $(M^+ \to \ell^+ N)$
- [Shrock '80]

■ Measure E_e in $\pi^+ \to e^+ N$

$$E_e = \frac{m_{\pi}^2 - m_e^2 - M_N^2}{2 \, m_{\pi}}$$

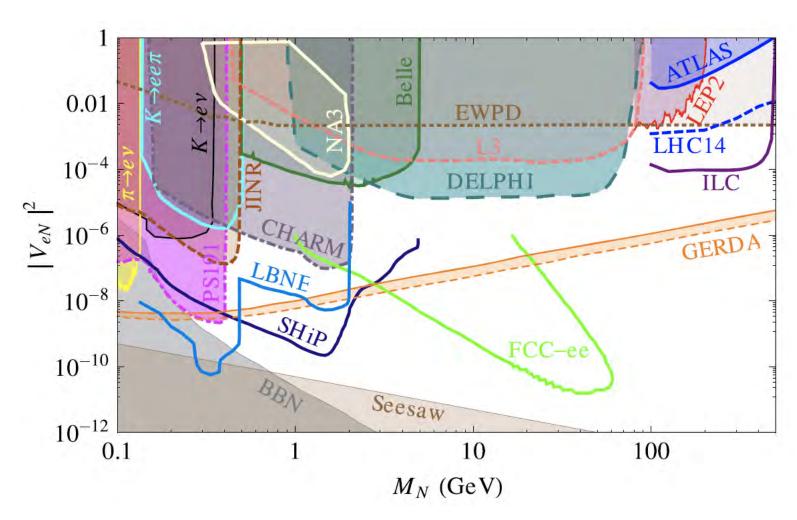


Beam dump experiments

$$K^+ \rightarrow e^+ N$$

$$N \longrightarrow \ell^+ \ell^- \nu + c.c.$$

CERN PS191



→ SHiP, LBNE (now DUNE)

Direct searches

- Search @LEP
 - □ $Z \rightarrow \nu N$ (3.3 × 10⁶ Z) → FCC-ee (10¹² Z)
- Search @LEPII
 - $e^+e^- \rightarrow \nu N \ (N \rightarrow e \ W \ \text{with} \ W \rightarrow jets)$ → ILC $(\sqrt{s} = 500 \ \text{GeV}, 500 \ \text{fb}^{-1})$
- Search @LHC
 - $pp \to \ell^+ N \to \ell^+ \ \ell^+ j j$
- Search @LHCb
 - $\blacksquare B^- \to N \mu^- \to \pi^+ \mu^- \mu^-$
- Search @Belle
 - $lacksquare B^- o X\ell N$, $N o e^{\pm}\pi^{\mp}$, $\mu^{\pm}\pi^{\mp}$

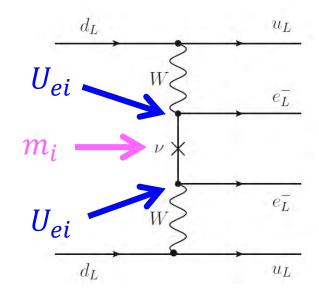
lacksquare Limits on mixing Θ_{eI}

Lepton number violation in the seesaw mechanism

- 1) Neutrinoless double beta decay
- 2) Inverse neutrinoless double beta decay

Neutrinoless double beta $(0\nu\beta\beta)$ decay

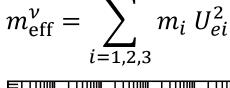
■ Neutrinoless double beta $(0\nu\beta\beta)$ decay

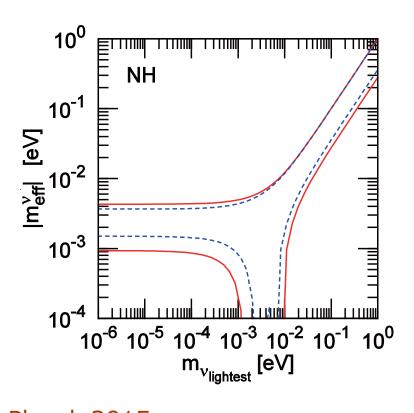

$$(Z,A) \to (Z+2,A) + 2e^{-}$$

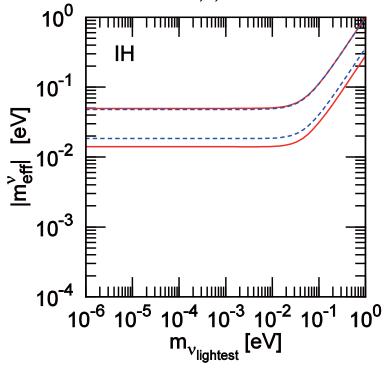
- LNV ($\Delta L = +2$) process mediated by Majorana massive neutrinos
- Half-life of $0\nu\beta\beta$ decay

$$T_{1/2}^{-1} = A \frac{m_p^2}{\langle p^2 \rangle^2} |m_{\text{eff}}|^2$$

$$m_{\rm eff} = \sum_{i=1,2,3} m_i U_{ei}^2 + \dots$$


W.H. Furry 1939




Faessler, Gonzalez, Kovalenko, Simkovic '14

$0\nu\beta\beta$ decay

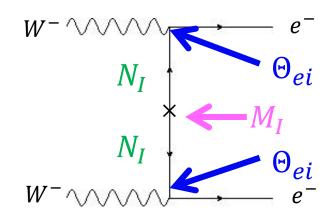
Contribution from active neutrinos

Planck 2015 $\Sigma m_i < 0.23 \text{ eV}$ $m_{\nu \text{lighest}} < 0.07 (0.06) \text{ eV}$

 $m_{\rm eff} \lesssim (0.185-0.276) \, {\rm eV}$ KamLAND-Zen 1211.3863 136 Xe $m_{\rm eff} \lesssim (0.213-0.308) \, {\rm eV}$ GERDA 1307.4720 76 Ge $^{2015/03/21}$

Takehiko Asaka (Niigata Univ.)

0νββ decay in the seesaw

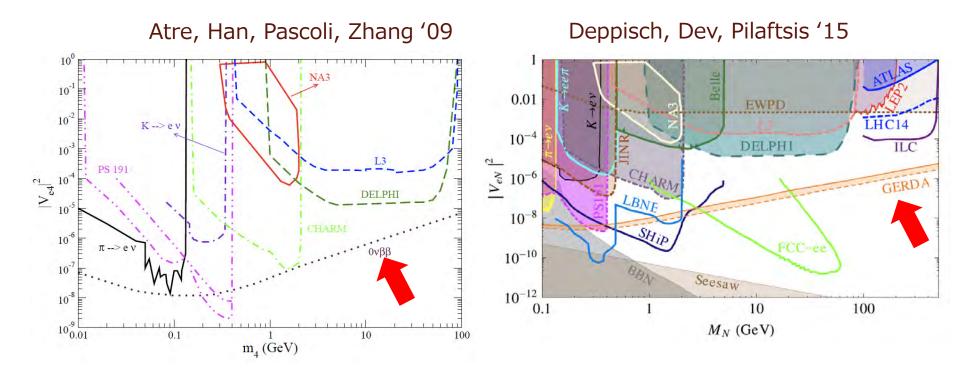

$$m_{\text{eff}} = \sum_{i=1,2,3} m_i U_{ei}^2 + \sum_{I} f_{\beta}(M_I) M_I \Theta_{eI}^2$$

active neutrinos

heavy neutral leptons

■ HNLs may give a significant contribution to $m_{\rm eff}$!

$$m_{eff}^{N} = - \begin{bmatrix} M_{I} \Theta_{eI}^{2} & (M_{I}^{2} \ll \langle p \rangle^{2}) \\ \\ \frac{\langle p \rangle^{2}}{M_{I}} \Theta_{eI}^{2} & (M_{I}^{2} \gg \langle p \rangle^{2}) \end{bmatrix}$$


$$f_{\beta}(M_I) = \frac{\langle p \rangle^2}{\langle p \rangle^2 + M_I^2}$$

$$\sqrt{\langle p^2 \rangle} \sim 200 \text{ MeV}$$

Faessler, Gonzalez, Kovalenko, Simkovic '14

$0\nu\beta\beta$ decay in the seesaw

Stringent constraint on the mixing:

This bound cannot be applied to some cases in the seesaw mechanism!

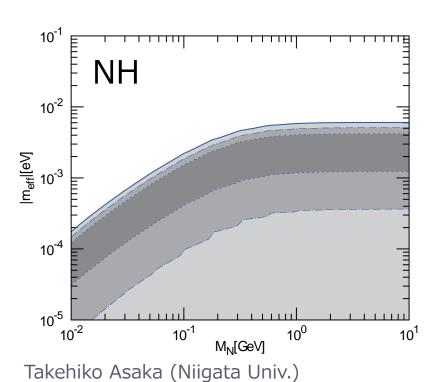
0νββ decay in the seesaw

Seesaw relation plays an important role!

$$0 = \sum_{i} m_i U_{ei}^2 + \sum_{I} M_I \ \Theta_{eI}^2$$

■ When all HNLs are light $M_I \ll \sqrt{\langle p^2 \rangle} \sim 0.1$ GeV (i.e. $f_\beta = 1$),

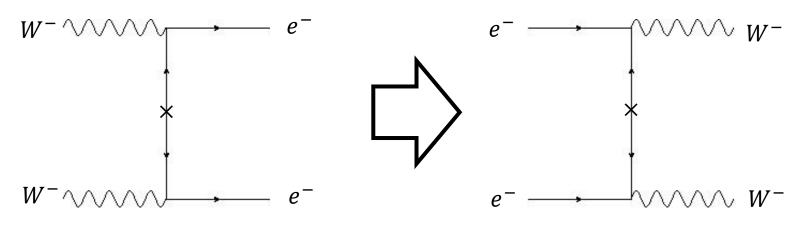
$$m_{\text{eff}} = \sum_{i} m_{i} U_{ei}^{2} + \sum_{I} f_{\beta}(M_{I}) M_{I} \Theta_{eI}^{2} = 0$$


- **This shows** 0νββ decay does not occur even if neutrinos are Majorana fermions.
- In this case, there is no bound on the mixing from $0\nu\beta\beta$ decay

$0\nu\beta\beta$ decay in the seesaw

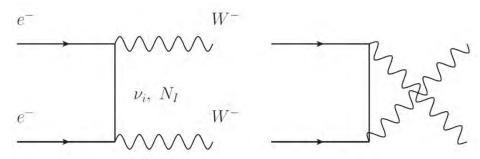
• When all HNLs are degenerate $M_I = M_N$,

$$m_{\text{eff}} = \sum_{i} m_{i} U_{ei}^{2} + \sum_{I} f_{\beta}(M_{I}) M_{I} \Theta_{eI}^{2} = m_{\text{eff}}^{\nu} [1 - f_{\beta}(M_{N})]$$


- This shows $0\nu\beta\beta$ decay does not depend on the mixing of HNL
- In this case, there is no bound on the mixing from $0\nu\beta\beta$ decay

Another example of LNV:

$$e^-e^- \rightarrow W^-W^-$$

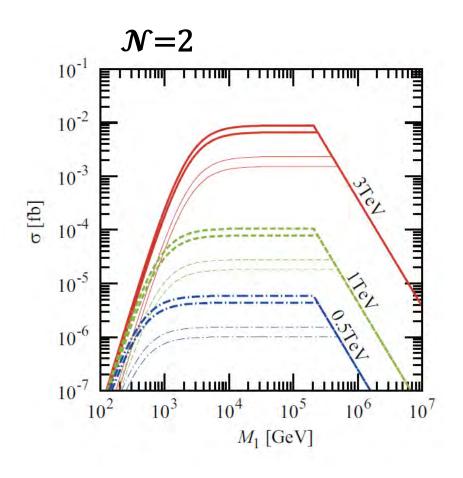

 $0\nu\beta\beta$ decay

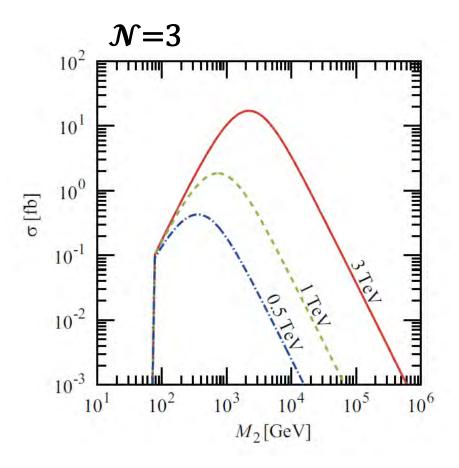
Inverse $0\nu\beta\beta$ decay

Inverse neutrinoless double beta ($i0\nu\beta\beta$) decay

• $e^-e^- \rightarrow W^-W^-$ offers test for LNV

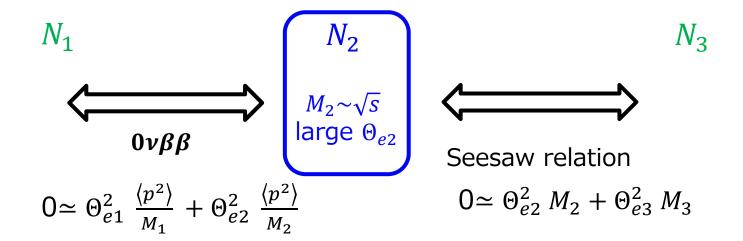
[T. G. Rizzo 1982]




- \bullet e^-e^- collision is option of ILC, CLIC
- Advantages over $0\nu\beta\beta$ decay
 - Signal is clean
 - Free from uncertainty in nuclear matrix elements
 - Can occur even if $0\nu\beta\beta$ decay is absent
- \rightarrow Inverse $0\nu\beta\beta$ decay and $0\nu\beta\beta$ decay are complementary tests for LNV in the seesaw mechanism

Inverse $0\nu\beta\beta$ decay in the seesaw

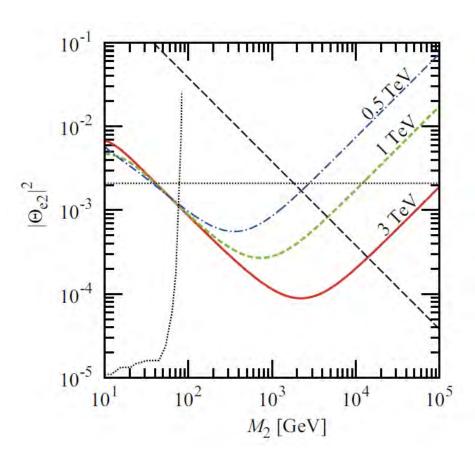
■ Maximal cross section of $e^-e^- \rightarrow W^-W^-$

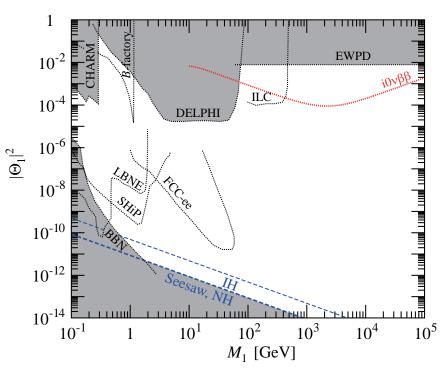

TA, Tsuyuki '15

Inverse $0\nu\beta\beta$ decay in the seesaw

■ How obtain large cross section ? --- idea

of right-handed neutrinos ≥ 3


■ Even with the seesaw relation and the $0\nu\beta\beta$ bound, the mixing of N_2 can be large as

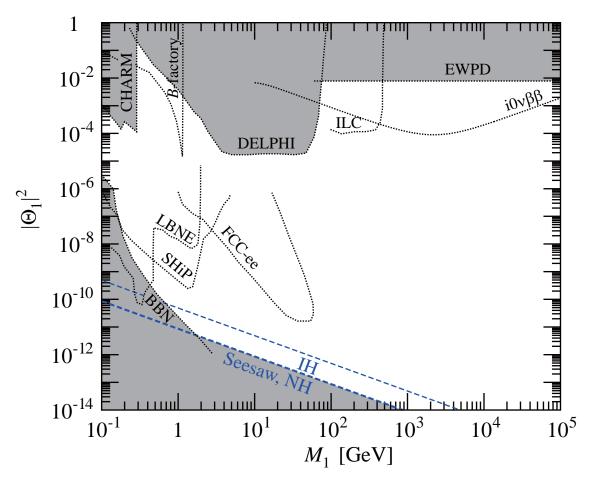

$$|\Theta_{e2}|^2 < |\Theta_e|_{EWPD}^2 = 2.1 \times 10^{-3}$$
 \rightarrow Large $\sigma(e^-e^- \to W^-W^-)$

Inverse $0\nu\beta\beta$ decay in the seesaw

■ Sensitivity of mixing $(@100 \text{ fb}^{-1})$

TA, Tsuyuki '15

LNV in the seesaw


- Comments on inverse $0\nu\beta\beta$ decay
 - Polarized beams
 - cross section becomes four times larger
 - turned on/off by flipping beam polarization
 - To avoid the 0νββ bound, HNL with $M_1 < M_2$ and $\Theta_{e1} = -\frac{M_1}{M_2} \Theta_{e2}$ is required
 - good target for experimental searches
 - Inverse $0\nu\beta\beta$ is severely restricted from perturbativity
- Other LNV processes in the seesaw mechanism
 - $pp \rightarrow \ell^+ N \rightarrow \ell^+ \ \ell^+ j j$ @LHC
 - $□ B^+ → \ell^+ N → \ell^+ \ell^+ \pi^-$ @SuperKEKB
 - $\blacksquare K^+ \to \ell^+ N \to \ell^+ \ell^+ \pi^-$ @J-PARC
 - **-** · · ·

Perturbativity in the seesaw mechanism

TA, Tsuyuki arXiv:1509.02678

Testability of HNL

■ HNL N_1 can be observed if it has sufficiently small mass and large mixing $|\Theta_1|^2 \gg m_{\nu}/M_1$

What is implication of N_1 with large mixing?

Implication of N_1 with large mixing

Seesaw relation:

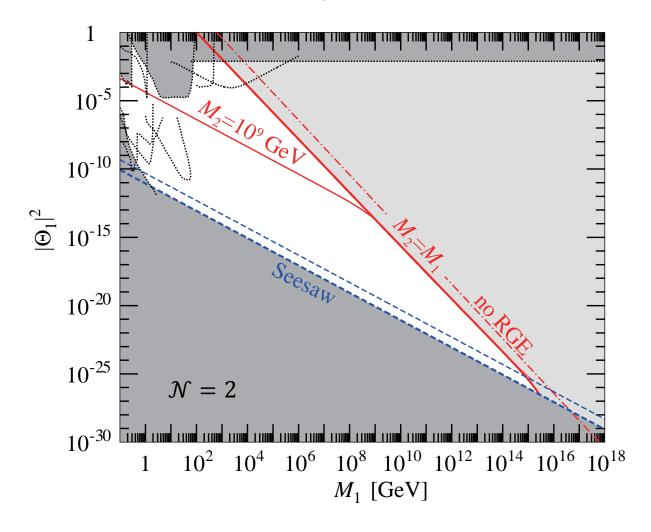
$$0 = \sum_{i} U_{\alpha i}^{2} m_{i} + \Theta_{\alpha 1}^{2} M_{1} + \sum_{I=2}^{\mathcal{N}} \Theta_{\alpha I}^{2} M_{I}$$
 \mathcal{N} : # of RHNs

There exists at least one HNL N_2 to cancel the N_1 contribution!

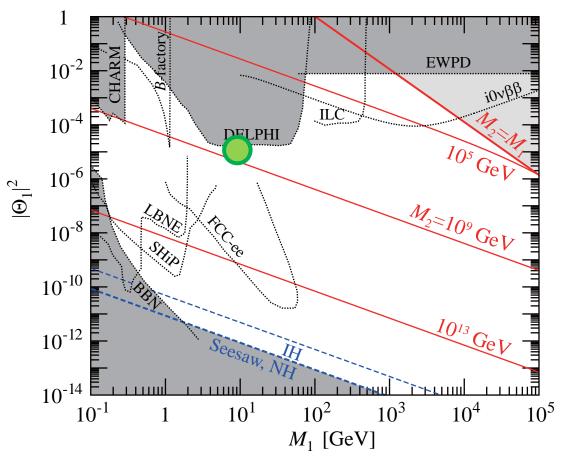
$$\Theta_{\alpha 2}^2 M_2 = -\Theta_{\alpha 1}^2 M_1$$

$$|\Theta_{\alpha 2}|^2 = \frac{M_1}{M_2} |\Theta_{\alpha 1}|^2$$

■ Mixings:
$$|\Theta_{\alpha 2}|^2 = \frac{M_1}{M_2} |\Theta_{\alpha 1}|^2$$
■ Yukawa couplings:
$$|F_{\alpha 2}|^2 = \frac{M_2}{M_1} |F_{\alpha 1}|^2$$


$$|F_{\alpha 2}|^2 = \frac{M_2^2}{\langle \Phi \rangle^2} |\Theta_{\alpha 2}|^2$$

Perturbativity gives the upper bound on the mixing


$$|\Theta_{\alpha 1}|^2 \le \sum_{I=2}^{\mathcal{N}} |\Theta_{\alpha I}|^2 \frac{M_I}{M_1} = \sum_{I=2}^{\mathcal{N}} \frac{|F_{\alpha I}|^2 \langle \Phi \rangle^2}{M_1 M_I} \le \frac{4\pi (\mathcal{N} - 1) \langle \Phi \rangle^2}{M_1 M_2}$$

Perturbativity in the seesaw mechanism

Upper bound on mixing

Implication to high energy phenomena

If HNL N_1 with $M_1 \sim 10$ GeV and $|\Theta_1|^2 \sim 10^{-5}$ is discovered, perturbativity requires $M_2 < 10^9$ GeV!

Leptogenesis is disfavored!

HNL searches at low energy can probe high energy phenomena such as leptognesis!

Summary

Summary

- Right-handed neutrinos are well-motivated physics beyond the Standard Model
- They can explain neutrino masses through the seesaw mechanism and baryon asymmetry of the universe (BAU) (via leptogenesis, neutrino oscillation, …) at the same time.
- Experimental tests of such right-handed neutrinos are important to understand the origin of neutrino masses and BAU