

東京大学素粒子物理国際研究センター

講演内容

- 与太話と物理
- MEG実験のコンセプト
- MEG実験の現状と展望
- MEG II 実験の準備状況

■ 将来のミューオンを使ったcLFV探索実験

History of MEG

- ~1990: LEPでSUSY GUTのヒント
 陽子崩壊では難しいかも?
- ~1995: SUSY GUTだとµ→eγ起こる
 PSIへ行って研究会始める
- 1998: LolをPSIに提出 ニュートリノ振動でもµ→eγ
- ・1999: ProposalをPSIに提出、承認
- 2002: 「MEG」Collaboration 発足
- 2008: MEG実験データ取得開始
- ・ 2013: MEG II 実験 Proposal 承認; MEGデータ取得終了

Lepton Flavor Violation

i.e. mixings between generations

- Lepton flavor is severely violated in neutrino oscillations
- It must be violated in charged leptons !! (cLFV)

Charged leptons should also mix flavors !

neutrinos are too light

...but practically no mixing

muon's anomalous magnetic moment

muon's anomalous magnetic moment

muon's anomalous magnetic moment

G.Isidori et al. PRD75, 115019

There is a generic relation with $BR(\mu \rightarrow e\gamma)$:

$$\mathcal{B}(\mu \to e\gamma) \approx 10^{-4} \left(\frac{\Delta a_{\mu}}{200 \times 10^{-11}}\right)^2 |\delta_{LL}^{12}|^2$$

unknown cLFV constant | $\delta_{LL}^{12} \models 10^{-4}$ assumed here

There is a generic relation with $BR(\mu \rightarrow e\gamma)$:

$$\mathcal{B}(\mu \to e\gamma) \approx 10^{-4} \left(\frac{\Delta a_{\mu}}{200 \times 10^{-11}}\right)^2 |\delta_{LL}^{12}|^2$$

unknown cLFV constant | $\delta_{LL}^{12} \models 10^{-4}$ assumed here

Recent Progress in Particle Physics

 $M_H = \lambda v$

Н

 $\lambda^2/2$

Н

- Discovery of "Higgs"
 - Higgs is light (125GeV)
 Higgs is likely to be elementary
 Good prospects for GUT/seesaw
- Discovery of the third neutrino oscillation
 - Mixing is large (mixing angle ~9deg) Large BR($\mu \rightarrow e\gamma$) expected

Expectations rising high for cLFV searches

TeV scale physics strongly constrained by LHC

- But :
- Particles not strongly interacting are NOT strongly constrained
- Dark matter may relate to unknown TeV scale physics! not necessarily SUSY

cLFV Search is Complementary to LHC

Muon cLFV Sensitivity comparisons

1/390 : 1/170

$BR = 4 \times 10^{-14} : 1 \times 10^{-16} : 2 \times 10^{-16}$

~MEG II goal

for AI target

Some models have "four-fermion" tree terms which could strongly enhance $\mu N
ightarrow e N \qquad \mu
ightarrow 3e$

Muon cLFV History before MEG

Muon cLFV History before MEG

The $\mu^+ \rightarrow e^+ \gamma$ process

- clear 2-body kinematics
- need positive muons to avoid formation of muonic atoms
- high rate $\sim 10^8$ /sec muon beam necessary to reach BR $\sim 10^{13}$
- accidental background limits the experiment
 - DC beam, rather than pulsed beam, gives lowest instantaneous rate and thus lowest background

The MEG Experiment

LXe Gamma-ray Detector

COBRA SC Magnet

DC Muon Beam

Drift Chamber

~60 collaborators

Timing Counter

L

1.4MW Proton Cyclotron at PSI

The Unique Place for $\mu \rightarrow e\gamma$ Search

Provides world's most powerful DC muon beam $> 10^8$ /sec

Production of World's Highest Intensity Muon Beam

COBRA Positron Spectrometer

Gradient B field helps to manage high rate e⁺

 thin-walled SC solenoid with a gradient magnetic field: 1.27 - 0.49 Tesla

COBRA

compensation coils

uniform B-field

gradient B-field

Low energy positrons quickly swept out

Constant bending radius independent of emission angles

Drift Chambers

- 16 radially aligned modules, each consists of two staggered layers of wire planes
- 12.5um thick cathode foils with a Vernier pattern structure
- He:ethane = 50:50
 differential pressure
 control to COBRA He
 environment
- ~2.0 x 10⁻³ X₀ along the positron trajectory

filled with He inside COBRA

2.7t Liquid Xenon Photon Detector

High resolution detector

- Scintillation light from 900 liter liquid xenon is detected by 846 PMTs mounted on all surfaces and submerged in the xenon
- fast response & high light yield provide good resolutions of E, time, position
- kept at 165K by 200W pulsetube refrigerator
- gas/liquid circulation system to purify xenon to remove contaminants

Energy = total light yield Position = light peak

Pile-up Photon Removal

• Good position/timing resolutions enable to remove pile-up photons

• All the PMTs are read out by waveform digitizers (DRS)

• Events are not thrown away

Improved pileup elimination algorithms implemented for this analysis 7% better efficiency

Absolute γ Energy Calibration

$$\pi^- p \to \pi^0 n \to \gamma \gamma n$$

charge exchange reaction (CEX)

- negative pions stopped in liquid hydrogen target
- Tagging the other photon at 180° provides monochromatic photons
- Dalitz decays were used to study positron-photon synchronization and time resolution

New higher resolution BGO array introduced to tag the other photon

 LH_2 target

BGO crystal array on a movable stand to tag the other photon

• Gamma ray energy

- Signal PDF from the CEX calibration data
- Accidental PDF from the side bands

- Scale & resolutions verified by radiative decay spectrum
- systematic uncertainty on energy scale: 0.3%

Monitor E_v during Run

8000

6000

10000 12000

250

200

150

100

50

• sub-MeV proton beam from a dedicated Cockcroft-Walton accelerator are bombarded on $Li_2B_4O_7$ target.

• 17.67 MeV from ⁷Li

 2 coincident photons (4.4, 11.6) MeV from ¹¹B: synchronization of LXe and TC

• Short runs two-three times a week

remotely extendable beam pipe of CW proton beam (downstream of muon beam line)

Stability of E_{γ} Scale

rms~0.2%

Positron - Photon Timing

- Positron time measured by TC and corrected by ToF (DC trajectory)
- LXe time corrected by ToF to the conversion point
- RMD peak in a normal physics run corrected by small energy dependence; stable < 20ps
Blind & Likelihood Analysis

(Ey, Ee, Tey, θey , ϕey) \rightarrow signal, acc BG, RD BG

- Blind analysis
 - Optimization of analysis and BG study are done in sidebands

PDFs mostly from data

accidental BG: side bands signal: measured resolution radiative BG: theory + resolution

Maximum Likelihood Fit

 fully frequentist approach (Feldman & Cousins) with profile likelihood ratio ordering

$$\mathcal{L}\left(N_{\mathrm{sig}}, N_{\mathrm{RMD}}, N_{\mathrm{BG}}\right) = \frac{e^{-N}}{N_{\mathrm{obs}}!} e^{-\frac{1}{2} \frac{\left(N_{\mathrm{BG}} - \langle N_{\mathrm{BG}} \rangle\right)^{2}}{\sigma_{\mathrm{BG}}^{2}}} e^{-\frac{1}{2} \frac{\left(N_{\mathrm{RMD}} - \langle N_{\mathrm{RMD}} \rangle\right)^{2}}{\sigma_{\mathrm{RMD}}^{2}}} \times \prod_{i=1}^{N_{\mathrm{obs}}} \left(N_{\mathrm{sig}}S(\vec{x}_{i}) + N_{\mathrm{RMD}}R(\vec{x}_{i}) + N_{\mathrm{BG}}B(\vec{x}_{i})\right),$$

 $LR_p(N_{\text{sig}}) = \frac{\max_{N_{\text{BG}}, N_{\text{RMD}}} \mathcal{L}(N_{\text{sig}}, N_{\text{BG}}, N_{\text{RMD}})}{\max_{N_{\text{sig}}, N_{\text{BG}}, N_{\text{RMD}}} \mathcal{L}(N_{\text{sig}}, N_{\text{BG}}, N_{\text{RMD}})}$

New: per-event PDFs introduced also for positrons → sensitivity improvement by 10%

2009-2011 Side band data

side band BG rates are consistent with the expected sensitivity for 2009-11 data = 7.7×10⁻¹³ @90% C.L.

a few examples of events

2009-2011 Combined MEG Data

1, **1**.64, 2σ contours

2009-2011 Combined MEG Data

1, **1**.64, 2σ contours

muon (g-2) anomaly

G.Isidori et al. PRD75, 115019

muon's anomalous magnetic moment

muon (g-2) anomaly

G.Isidori et al. PRD75, 115019

assumed

muon's anomalous magnetic moment

muon (g-2) anomaly

G.Isidori et al. PRD75, 115019

muon's anomalous magnetic moment

Where we stand now

Other physics results

Radiative Muon Decays

Important check of $\mu \rightarrow e\gamma$ analysis

• BG, calibration, normalization

Close to kinematical edge w/ polarization ~89%

- sensitive to BSM
- determine Michel parameters: η, κ

to be published soon

Comparisons

Exotics

μ→eφ, φ→γγ

- light, long-lived pseudo scalar
- first search
- expected 90% UL 10⁻¹¹-10⁻¹⁰ for
 2009+2010 data
- µ→eJ (Majoron)
 - TWIST result (not published) $< 6.7 \times 10^{-5}$

MEG II Experiment

MEG II

Major upgrade of the experiment for 10 times higher sensitivity.

Upgrade concept

- Solution Double beam intensity $\rightarrow full intensity of available \mu beam$
- Double detector efficiency
- Factor ~30 background suppression
 - Improved detector resolutions

Possibility to add a new detector to identify background events

Start the new experiment from 2016

higher uniformity → higher resolutions

Ma

LXe Photon Detector

Assembled detector will move to πE5 area at the end of this year

Liquefaction, tests, purification, & calibration will continue at πΕ5 area until it gets ready by summer 2016

 VUV-sensitive 12x12mm² SiPM (MPPC) to test at low temperature inside "large prototype" cryostat

New e⁺ Tracker

Single-volume drift chamber

2-m long, stereo wire, low mass chamber

- ◆ 1200 sense wires, 8° stereo angle
- $1.7 \times 10^{-3} X_0$ per track

Higher transparency to timing counter

- Double the detection efficiency
- Precise reconstruction of path length (higher timing resolution)

Thinner μ-stop target 200 → 140 μm □ Or, make it active with scintillator fibers (option)

Helium-base gas

Pixelated timing counter

 Array many fast plastic scintillator counters
High resolution with multiple counters hit

New e⁺ Tracker

Single-volume drift chamber

2-m long, stereo wire, low mass chamber

- ◆ 1200 sense wires, 8° stereo angle
- $1.7 \times 10^{-3} X_0$ per track

Higher transparency to timing counter

- Double the detection efficiency
- Precise reconstruction of path length (higher timing resolution)

e⁺ are scattered by

counter

frame or preamp, and

then not reach timing

Track up to just before the timing counter. No massive material on the way.

Helium-base gas

counters hit

Drift Chamber

- Successful studies (ageing OK w/ 3 yr operation, single cell 106um resolution, etc) & detailed designs finished
- Construction started: wiring machine, assembly machine, FE electronics, etc
- Partially wired "Mock-up Chamber" w/ HV & gas system delivered to PSI in July for mechanical integration & operational tests

Timing Counter

New TC = pixelated TC

256×2 small counters
Readout by SiPMs
σ ~ 30 ps with multi-hits

Timing Counter

- ~30psec resolution demonstrated under ~MEG II conditions
- Michel & laser calibration developed very promising
- Downstream TC should be ready @πE5 this autumn
 - various tests (mechanics, electronics, calibration) foreseen
 - Michel decay measurements at end 2015 indispensable

 Mechanical integrity & functionality of MEG II design will be thoroughly checked this year

Indispensable step for successful start-up in 2016

target system

DC insertion

downstream insertion system

upstream connection to BTS

TC insertion

Trigger, DAQ & Computing

- Innovative solution for Trigger+DAQ
 - WaveDREAM Board + Trigger Concentrator Board
 - can handle expected trigger rate of ~30 Hz
 - e track based second level trigger to reduce rate by 2
- "Software Trigger" consisting of multiple PCs under consideration to reduce data volume.
- A single full crate (256 channels) available in Sep-Oct for pre-engineering run
- Complete system will be ready at the beginning of 2016

WaveDREAM board prototype

	MEG	MEG II
beam rate	3×10^7	7x10^7
# channels	~3500	~10000
DAQ rate	I0 Hz	30 Hz*
DAQ eff	>95%	>95%

MEGII goal

Optional Detectors

Active Target (ATAR)

- single-layer 250um fibers
- successful R&D
- risks for higher background
- mechanical issues
- useful for beam tuning
- technology for upstream RDC

Optional Detectors

Active Target (ATAR)

- single-layer 250um fibers
- successful R&D
- risks for higher background
- mechanical issues
- useful for beam tuning
- technology for upstream RDC

Schedule towards MEG II Run

- Pre-Engineering Run in 2015 & Engineering Run followed by ~120 day Data Taking Run in 2016
 - Pre-Engineering Run in 2015 will allow to test mechanical integrity, fully optimize beam with new target + degrader, and test particularly downstream TC w/ Michel e⁺s

Pre-Engineering Run

Expected performance and sensitivity

EG II performance

Resolution (Gaussian σ) and efficiencies for MEG upgrad			
PDF parameters	Present MEG	Upgrade scenario	
$\sigma_{E_{e^+}}$ (keV)	380	110	
$e^+ \sigma_{\theta}$ (mrad)	9	5	
$e^+ \sigma_{\phi} \text{ (mrad)}$	11	5	
$e^+ \sigma_Z / \sigma_Y$ (core) (mm)	2.0/1.0	1.2/0.7	
$\frac{\sigma_{E_{\gamma}}}{E_{\gamma}}$ (%) w>2 cm	1.6	1.0	
γ position at LXe $\sigma_{(u,v)}$ - σ_w (mm)	4	2	
γ - e^+ timing (ps)	120	80	
Efficiency (%)			
trigger	≈ 99	≈ 99	
γ reconstruction	60	60	
e^+ reconstruction	40	95	
event selection	80	85	

Sensitivity prospect

21–26 July, Manchester, England

wada

21-26 July Manchester England

SUS

SUSV2014

where MEG II will reach

Mu3e - Enabling Technology

 No experiment since ~a quarter century

- Precision reconstruction of 3-body decay µ→3e in high rate environment of 2x10⁹ muons/sec sounds daunting.
- Scattering & E loss dominate — Minimum material required for O(10 MeV) tracking.

 HV-MAPS: < 50µm possible, Advanced R&D underway

PiE5 Layout Scheme for MEG & Mu3e

- Both Experiments "MEG II" & "Mu3e Phase I" need to share PiE5
- Mu3e has similar beam requirements to MEG II $O(10^8) \mu^+/s$, 28 MeV/c ONLY π E5 possible!!!
- Solution → Mu3e "Compact Muon Beam Line" Ultra-compact beam line Allowing both experiments to CO-EXIST with minimal switch-over & without compromising the physics goals

PiE5 Layout Scheme for MEG & Mu3e

- Both Experiments "MEG II" & "Mu3e Phase I" need to share PiE5
- Mu3e has similar beam requirements to MEG II $O(10^8) \mu^+/s$, 28 MeV/c ONLY π E5 possible!!!
- Solution → Mu3e "Compact Muon Beam Line" Ultra-compact beam line Allowing both experiments to CO-EXIST with minimal switch-over & without compromising the physics goals

PiE5 Layout Scheme for MEG & Mu3e

- Both Experiments "MEG II" & "Mu3e Phase I" need to share PiE5
- Mu3e has similar beam requirements to MEG II $O(10^8) \mu^+/s$, 28 MeV/c ONLY π E5 possible!!!
- Solution → Mu3e "Compact Muon Beam Line" Ultra-compact beam line Allowing both experiments to CO-EXIST with minimal switch-over & without compromising the physics goals

PiE5 Layout Scheme for MEG & Mu3e

- Both Experiments "MEG II" & "Mu3e Phase I" need to share PiE5
- Mu3e has similar beam requirements to MEG II $O(10^8) \mu^+/s$, 28 MeV/c ONLY π E5 possible!!!
- Solution → Mu3e "Compact Muon Beam Line" Ultra-compact beam line Allowing both experiments to CO-EXIST with minimal switch-over & without compromising the physics goals

PiE5 Layout Scheme for MEG & Mu3e

- Both Experiments "MEG II" & "Mu3e Phase I" need to share PiE5
- Mu3e has similar beam requirements to MEG II $O(10^8) \mu^+/s$, 28 MeV/c ONLY π E5 possible!!!
- Solution → Mu3e "Compact Muon Beam Line" Ultra-compact beam line Allowing both experiments to CO-EXIST with minimal switch-over & without compromising the physics goals

PiE5 Layout Scheme for MEG & Mu3e

- Both Experiments "MEG II" & "Mu3e Phase I" need to share PiE5
- Mu3e has similar beam requirements to MEG II $O(10^8) \mu^+/s$, 28 MeV/c ONLY π E5 possible!!!
- Solution → Mu3e "Compact Muon Beam Line" Ultra-compact beam line Allowing both experiments to CO-EXIST with minimal switch-over & without compromising the physics goals

HiMB – midterm conclusions:

- Source Characteristics
 - Detailed study shows muon 50% survival length $\lambda_{50} \approx 80$ mm
 - Requires front-end capture element just below target
- SINQ Beam Line Constraints
 - SINQ Beam-pipe diameter constrained by moderator tank dia. = 220 mm
 - ➔ Front-end Toroidal/Solenoidal capture efficiency not sufficient to meet baseline intensity ~ 10¹⁰ Muons/s if restricted to beam-pipe dia.

Factor 2 in dia. needed

would require redesign of moderator tank NOT FEASIBLE!

PAUL SCHERRER INSTITUT

Mu3e follows up MEG II

COMET Phase I and II

Schedule

COMET: Ben Krikler

Mu2e Schedule

...and COMET & Mu2e

...and COMET & Mu2e

Beyond Mu2e/COMET

- $\mu \rightarrow e\gamma$ experiment for O(10⁻¹⁵) at HiMB (PSI) ?
 - Needs a clever experimental design based on new technology
- $\mu \rightarrow 3e$ needs a higher intensity source than HiMB
 - Mu3e-type experiment still feasible?
- µ→e conversion experiments have a potential for a higher sensitivity if a higher intensity muon source becomes available.
 - Perhaps better to think after looking at what will happen at Mu2e/COMET

<u>μ→eγ Statistics & BG</u>

$$N_{BG} \propto \left(\frac{R_{\mu}}{R_{\mu}}\right)^{2} \cdot \epsilon \cdot \delta E_{e} \cdot \left(\delta E_{\gamma}\right)^{2} \cdot \left(\delta \vartheta_{e\gamma}\right)^{2} \cdot \left(\delta t_{e\gamma}\right)$$

S: Increase factor of the statistics ($\propto R_{\mu} \cdot \epsilon$) **B**: Increase factor of number of BG events ($\propto N_{BG}$)

	ε x 1		ε x 3		ε x 5		ε x 10	
	S	B	S	B	S	B	S	B
Rµ x 1	MEG	1	3	3	5	5	10	10
Rµ x 3	3	9	9	27	15	45	30	90
Rµ x 5	5	25	15	75	25	125	50	250
Rµ x 10	10	100	30	300	50	500	100	1000
Rµ x 100	100	10000	300	30000	500	50000	1000	10 ⁵
*Assuming same running time as MEG II								

Possible configuration

- In 1.5 T <u>uniform</u> B-field
- 10 super layers
 - first layer from r=26 cm
 - at 5 cm radial distance
- A super layer consists of
 - two 100 um Pb converters
 - two Si pixel layers put both outside the conversion double layer
- Target
 - 100 um plastic sheet
 - slant angle of 10° to spread vertex distribution
- □~15% conversion eff. assuming 50% rec. eff. \Rightarrow 7–8% eff.
- Need active area of 160 m²
 CMS level!
 - ⇒ Increase B-field, increase sub-layers

Possible configuration

- In 1.5 T <u>uniform</u> B-field
- 10 super layers
 - first layer from r=26 cm
 - at 5 cm radial distance
- A super layer consists of
 - two 100 um Pb converters
 - two Si pixel layers put both outside the conversion double layer
- Target
 - 100 um plastic sheet
 - slant angle of 10° to spread vertex distribution
- $\square \sim 15\%$ conversion eff.
 - assuming 50% rec. eff. \Rightarrow 7–8% eff.
- Need active area of 160 m² CMS level!
 - ⇒ Increase B-field, increase sub-layers

Detector requirement

Si pixel tracker with

- Large area
- High time resolution (O(100 ps))
- Ultra thin (~50 um)
 - If build e⁺ side as well, <50 um important
- No available device today

Need device development

Yusuke UCHIYAMA/ The University of Tokyo

In times larger statistics achievable by

- 5 times higher intensity beam
- twice higher signal acceptance

(compared to MEG II)

Toward $\mu \rightarrow e\gamma$

- with multi-layer converting photon spectrometer
 - multi layers to gain efficiency
 - sub layers for good resolution retaining efficiency
- Suppress increased BG by
 - Vertex matching (compensate increased beam rate)
 - Better γ energy resolution (3 times better)
- However, realization seems really challenging
 - Need further detailed studies
 - Need technological development
 - Need more or completely different idea

- No $\mu \rightarrow e\gamma$ event has been found.
- 20× more stringent constraint than the previous experiment on possible new physics: BR(μ→eγ) < 5.7×10⁻¹³ @90% C.L.
- Final MEG result (x2 statistics) should be ready this year; So stay tuned!
- Upgrade to MEG II underway: expected to start in 2016 with 10× higher sensitivity (4-5)×10⁻¹⁴
- A full lineup of cLFV experiments in the next decade lead by MEG II