21cm Cosmology

Tomo Takahashi (Saga University)

YITP, Kyoto University September 14, 2015

Plan of this talk

- What is 21 cm?
- Basics of 21cm cosmology

21 cm global signal

Power spectrum

• Some examples:

Dark matter, primordial fluctuations,...

What is 21cm?

$$\nu_0 = 1420.4057517 \text{ MHz}$$

 $\lambda_0 = 21.106114 \text{ cm}$

Frequency observed:
$$u = \frac{
u_0}{1+z}$$

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/h21.html

1/2 ペー

21cm comes from neutral hydrogen

21cm comes from neutral hydrogen

21cm comes from neutral hydrogen

21cm cosmology ...

- 21 cm line can probe dark ages (which cannot be probed with other observations.)
- 21cm can probe 3D directions (can do tomography).
- SKA will operate in 2020s and is expected to give us a lot of information.

(e.g., 21cm can probe fNL better than CMB, ...)

Intensity of absorption/emission

Radiative transfer equation (describes the evolution of the intensity) (Line of sight distance) $I_{\nu}(s)$ ds $-\alpha_{\nu}I_{\nu}+j_{\nu}$ Radiative transfer equation: \overline{ds} mission coefficient Absorption coefficient Source function \rightarrow Rewriting this equation with the optical depth T_{ν} $= -I_{ u} + rac{j_{ u}}{lpha_{ u}} =$ optical depth: $d\tau_{\nu} = \alpha_{\nu} ds$ $-I_{\nu} + J_{\nu}$

Radiative transfer equation

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + \frac{j_{\nu}}{\alpha_{\nu}} = -I_{\nu} + S_{\nu}$$

• When Emission = Absorption $\left(\frac{dI_{\nu}}{d\tau_{\nu}}=0\right)$ $\rightarrow I_{\nu}=S_{\nu}$

• When $S_{
u} \left(= j_{
u} / \alpha_{
u} \right)$ is constant over the line of sight,

$$\rightarrow I_{\nu}(s) = I_{\nu}(0)e^{-\tau_{\nu}(s)} + S_{\nu}\left(1 - e^{-\tau_{\nu}(s)}\right) \quad \text{assuming} \\ \tau_{\nu} \ll 1$$
Compared to
w/ backlight:
$$\rightarrow I_{\nu}(s) - I_{\nu}(0) \simeq \left\{S_{\nu} - I_{\nu}(0)\right\} \tau_{\nu}(s)$$

In $I_{\nu}(s) - I_{\nu}(0) < 0$:Absorption

 $\blacksquare I_{
u}(s) - I_{
u}(0) > 0$:Emission

Brightness temperature

• Intensity is often represented by an "effective" temperature called "brightness temperature" T_b

Definition:
$$I_{\nu} \equiv B_{\rm bb}(\nu, T_b)$$

Black body distribution

• In Rayleigh-Jeans (low frequency) region,

$$B_{\rm BB}(\nu,T) \simeq 2\nu^2 T \rightarrow I_{\nu} \simeq 2\nu^2 T_b \rightarrow \left(T_b = \frac{I_{\nu}}{2\nu^2} \right)$$

Brightness temperature

• With Tb, the radiative transfer equation can be written as:

 $T_b(s) - T_b(0) = (T - T_b(0)) \tau_{\nu}(s)$ Temperature of the medium (from S_{ν}) $T > T_b(0) \longrightarrow \text{Emission}$ $T < T_b(0) \longrightarrow \text{Absorption}$ $T = T_b(0) \longrightarrow \text{No signal}$

The evolution of T is very important.

Spin temperature

 Number densities of the states (intergalactic medium: IGM) can be described by Boltzmann distribution.

$$\frac{n_1}{n_0} \equiv \frac{g_1}{g_0} e^{-E_{10}/k_B} T_s = 3e^{-T_*} T_s$$

$$\frac{1_1S_{1/2}}{1_0S_{1/2}} E_{10}$$

$$T_* = E_{10}/k_B = 68 \text{ mK}$$

$$T = T_s$$

$$T_b|_{obs}$$

$$T = T_s$$

A little wrap up...

• Intensity is often represented by an "effective" temperature called "brightness temperature" T_b

(brightness temperature ~ intensity)

- The temperature of IGM (gas of neutral hydrogen) is called "the spin temperature."
- 21 cm signal (absorption, emission) depends on the spin temperature (relative to the CMB).

$$\Delta T_b = T_b - T_R = (T_s - T_R) \tau_{\nu}$$

Optical depth

- Definition: $d\tau_{\nu} = \alpha_{\nu} ds \quad \leftarrow \frac{dI_{\nu}}{ds} = -\alpha_{\nu} I_{\nu} + j_{\nu}$ Absorption coefficient
- To evaluate the intensity (brightness temperature), we need to know the explicit forms of absorption and emission coefficients.
- The absorption and emission coefficients are determined by microscopic processes.

Einstein coefficients

Microscopic description of radiative transfer equation

$$\alpha_{\nu} = \frac{E_{01}}{4\pi} \phi(\nu) \left(n_0 B_{10} - n_1 B_{10} \right)$$

Optical depth

After some calculations...

$$\tau_{\nu} = \int \alpha_{\nu} ds = \int \frac{E_{01}}{4\pi} \phi(\nu) \left(n_0 B_{10} - n_1 B_{10} \right) ds$$
$$= \int \frac{3A_{10}}{8\pi\nu^2} \left[1 - \exp\left(-\frac{T_*}{T_s}\right) \right] \phi(\nu) n_0 ds$$

 $\tau_{\nu} = \frac{3}{32\pi} \frac{T_*}{T_s} \frac{A_{10}}{\nu_{21}^3} \frac{1}{1+z} \frac{n_{HI}}{\partial v/\partial s}$

[Einstein's relation]

$$(g_0 B_{01} = g_1 B_{10})$$

 $(A_{10} = 4\pi \nu^3 B_{10})$

$$\left(\frac{n_1}{n_0} = 3e^{-T_*/T_s}\right)$$

[Line profile]

$$\left(\phi(\nu) = \frac{1}{\Delta\nu}\right)$$

Differential brightness temperature

(observed quantity)

$$\Delta T_b \equiv \frac{T_b(z) - T_{\gamma}(z)}{1+z}$$

= $\frac{T_s - T_{\gamma}(z)}{1+z} (1 - e^{-\tau_{\nu}}) \simeq \frac{T_s - T_{\gamma}(z)}{1+z} \tau_{\nu}$

$$\Delta T_b \simeq 27 \text{ mK } \left(\frac{T_s - T_R}{T_s}\right) \left(\frac{1 + z}{10}\right)^{1/2} \left(\frac{\Omega_b h^2}{0.023}\right) \left(\frac{0.15}{\Omega_m h^2}\right)^{1/2} x_{HI}$$

 $T_s < T_\gamma$: absorption $T_s > T_\gamma$: emission

• ΔT_b depends on baryon density, neutral fraction and the spin temperature

What determines the spin temperature?

ullet Absorption (and spontaneous emission) of CMB photon A_{10} B_{10} B_{01}

• Collisions (*HH*, *He* and *Hp*) C_{01} (excitation rate by collision) C_{10} (de-excitation rate by collision)

$$T_K$$
: Gas temperature $\frac{C_{01}}{C_{10}} = \frac{g_1}{g_0} e^{-T_\star/T_K} \approx 3\left(1 - \frac{T_\star}{T_K}\right)$

• Scattering of Lyα photons (After first astrophysical sources are switched on.)

 T_c : Color temperature $\frac{P_{01}}{P_{10}} \equiv 3\left(1 - \frac{T_{\star}}{T_c}\right)$ P_{10} (excitation rate by Ly α photon) P_{10} (de-excitation rate by Ly α photon)

Three processes determine the spin temperature

 $n_1(C_{10} + P_{10} + A_{10} + B_{10}I_{\text{CMB}}) = n_0(C_{01} + P_{01} + B_{01}I_{\text{CMB}})$

$$= T_S^{-1} = \frac{T_{\gamma}^{-1} + x_c T_K^{-1} + x_{\alpha} T_c^{-1}}{1 + x_c + x_{\alpha}}$$

• Coupling coefficients: $x_c \equiv \frac{C_{10}}{A_{10}} \frac{T_*}{T_{\gamma}}$ $x_{\alpha} \equiv \frac{P_{10}}{A_{10}} \frac{T_*}{T_{\gamma}}$

(In most cases of interest, $Tk = T\alpha$)

Evolution of ΔT_b (after first astrophysical sources switched on)

[From Pritchard, Loeb 0802.2102]

Evolution of ΔT_b (after first astrophysical sources switched on)

Evolution of ΔT_b (after first astrophysical sources switched on)

[From Pritchard, Loeb 0802.2102]

Evolution of ΔT_b (after first astrophysical sources switched on)

Evolution of ΔT_b (after first astrophysical sources switched on)

[From Pritchard, Loeb 0802.2102]

Dark Matter annihilation effect on 21cm signal [Valdes et al 2013]

• Dark matter annihilation deposits energy into IGM.

Effects of warm DM

[Sitwell et al 2014]

- Non-negligible velocity by WDM suppresses the formation of lowmass halos.
- The star formation is delayed.

• The change in the early sources affects the 21 cm signal.

(f*: fraction of baryon incorporated into star)

Fluctuations of 21 cm

Fluctuations in ΔT_b

• (Differential) brightness temperature can also fluctuate in space: $n_{HI} = x_H n_H$

 $\Delta T_b(z, \vec{x}) = \underbrace{\frac{T_s - T_\gamma(z)}{1 + z}}_{1 + z} \frac{3}{32\pi} \underbrace{\frac{T_*}{T_s}}_{21} \frac{A_{10}}{1 + z} \frac{1}{\frac{n_{HI}}{2}} \underbrace{\frac{n_{HI}}{1 + z}}_{1 + z} \underbrace{\frac{n_{HI}}{\partial v/\partial s}}_{1 + z}$ These parts can fluctuate

• Define fluctuation in ΔT b: $\delta_{T_b} \equiv \frac{\Delta T_b(z, \vec{x}) - \Delta \overline{T}_b(z)}{\Delta \overline{T}_b(z)}$

• Power spectrum

 $\left\langle \delta_{T_b}(\boldsymbol{k},z) \delta^*_{T_b}(\boldsymbol{k}',z) \right\rangle$ \longrightarrow $P_{T_b}(\boldsymbol{k},z)$

21 cm power spectrum can probe in 3D.

[For review, see Furlanetto, Oh, Briggs astro-ph/0608032; Pritchard, Loeb 1109.6012]

• Power spectrum as a function of multipole for a fixed z

• Power spectrum as a function of z for a fixed k

• 21 cm can probe smaller scales than CMB.

Power spectrum: current data

Observations of 21 cm line

On-going observations:

• LOFAR (LOw Frequency ARray) [Netherlands]

v = 115 - 230 MHz, 30-80 MHz

• MWA (Murchison Widefield Array) [western Australia]

v = 80 - 300 MHz

[http://www.lofar.org]

[http://www.mwatelescope.org/science]

• PAPER (Precision Array to Probe the Epoch of Reionization)

[South Africa]

[http://eor.berkeley.edu]

 ν = 100 - 200 MHz

$$\nu = 70 \text{ MHz} \longrightarrow z \sim 20$$
 $\nu = 200 \text{ MHz} \longrightarrow z \sim 6$

Future observation

• SKA (Square Kilometer Array)

[[]South Africa & Australia]

• SKAI (Phase I): 2018 - 2023 construction (2020+early science)

SKAI-mid: 0.95-1.76 GHz, 4.6-14(24) GHz, 0.13-1.1 GHz [South Africa]

SKAI-low: 50-350 MHz [Australia]

• SKA2 (Phase 2): 2023 - 2030 construction

[https://www.skatelescope.org]

• Omniscope (next+l generation) [Tegmark & Zaldarriaga, 2009]

Dark matter

- Dark matter annihilation [Furlanetto, Oh, Pierpaori 2006; Valdes et al., 2007; Natarajan, Dominik, Schwarz 2009;]
- Warm dark matter [Sitwell et al 2013; Sekiguchi, Tashiro 2014; Carucci et al 2015]
- Differentiating CDM and bayron isocurvature modes
 - [Kawasaki, Sekiguchi, TT 2011]
 - •

Neutrino

- Neutrino masses [Pritchard, Pierpaoli 2008; Oyama, Shimizu, Kohri 2012]
- Lepton asymmetry [Kohri, Oyama, Sekiguchi, TT 2014]

Inflation (primordial fluctuations)

• Primordial non-Gaussianity

[Cooray 2006; Pillepich et al 2007; Yokoyama et al 2011; Joudaki et al 2011; Chongchitnan, Silk 2012; Yamauchi et al 2014; Munos et al 2015...]

• Precise measurement of power spectrum

[Barger et al, 2009; Adshead et al 2010, Kohri, Oyama, Sekiguchi TT 2013]

- Initial state for the inflation [Kleban et al, 2007]
- Compensated isocurvature fluctuation [Gordon, Pritchard 2009]

Cosmological parameter estimation

[Mao et al 2008; McQuinn et al 2006,]

Dark energy

[Wyithe et al 2008; Archidiacono et al 2014; Bull et al 2014; Kohri, Oyama, Sekiguchi, TT in prep....]

Cosmic string

[Brandenberger et al 2006; Khatri, Wandelt 2008; Hernandez et al 2011, 2012, ...]

- •
- •
- •
- •
-)

Primordial Non-Gaussianity

 Primordial non-Gaussianity is one of the important observable to check the inflation.

Bispectrum

Non-Gaussianity is usually characterized by fNL

$$\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = (2\pi)^3 B_{\zeta}(k_1, k_2, k_3) \delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3).$$

$$(amplitude) \times (shape dependent function)$$

$$\int NL \qquad F(k_1, k_2, k_3)$$

$$\left(f_{\rm NL} \sim \frac{B_{\zeta}}{P_{\zeta}^2} \right)$$

If fluctuations are Gaussian, $f_{\rm NL} = 0$

Primordial Non-Gaussianity

- Primordial non-Gaussianity is one of the important observable to check the inflation.
- Planck has already obtained a severe constraint on fNL.

(Temperature+polarization)

 $f_{\rm NL}^{\rm (local)} = 0.8 \pm 5.0, \quad f_{\rm NL}^{\rm (equil)} = -4 \pm 43, \quad f_{\rm NL}^{\rm (ortho)} = -26 \pm 21 \tag{68\% CL}$

[Planck collaboration 2015]

- Standard single-field inflation models predict fNL~O(0.01) (Multi-field models can predict fNL~O(1).)
- Future CMB (e.g. CMBpol) can reach fNL~O(I).

Probing primordial Non-Gaussianity w/21cm

- SKA can reach fNL ~ O(0.1)
 (+Euclid)
 - Scale-dependent bias
 - Multi-tracer technique

- In principle, 21cm can reach fNL ~ O(0.01)
 - Cosmic-variance-limited
 - 30 < z < 100

PNG type	$\sigma_{f_{\rm NL}}$ (1 MHz)	$\sigma_{f_{\rm NL}}$ (0.1 MHz)
Local	0.12	0.03
Equilateral	0.39	0.04
Orthogonal	0.29	0.03
J = 1	1.1	0.1
J = 2	0.33	0.05
J = 3	0.85	0.09

[Munos et al 2015]

Constraints on inflationary models

Spectral index: $n_s = 0.968 \pm 0.006$ (68 % CL)

Tensor-to-scalar ratio: r < 0.12 (95 % CL) (Planck/BICEP2/Keck)

Precise measurement of power spectrum

- Inflation models can be probed with spectral index ns and the tensor-to-scalar ratio r.
- To test inflationary models, more information would be necessary.

(Non-Gaussianity does not help for standard single-field inflation models.)

More precise measurements of power spectrum may be very useful.

higher order scale-dependence might help

Primordial (scalar) power spectrum:

Angular scale

$$90^{\circ}$$
 18° 1° 0.2° 0.1° 0.07°
 $[Planck]$
 4000
 2000
 1000
 2000
 1000
 1000
 1000
 1500
 2000
 2000
 2000
 2000
 1000
 1500
 2000
 2000
 2000
 2000
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000

$$\mathcal{P}_{\zeta}(k) = A_s(k_{\text{ref}}) \left(\frac{k}{k_{\text{ref}}}\right)^{n_s - 1 + \frac{1}{2}\alpha \ln(k/k_{\text{ref}}) + \frac{1}{6}\beta \ln^2(k/k_{\text{ref}})}$$

- Spectral index: $n_s = 0.9586 \pm 0.0056$
- Running of ns: $\alpha = 0.009 \pm 0.010$ ~O(SR^2)
- Running of the running of ns: $\beta = 0.025 \pm 0.013$ ~O(SR^3)

(68% CL) [Planck TT+TE+EE+lowP, Planck collaboration 2015]

futuristic 21 cm observations can probe more

Running of running: useful ?

$$V(\phi) = V_0 \left[1 - \left(rac{\mu}{\phi}
ight)^q + \cdots
ight]$$

Running of running may be useful in some cases

Precise measurement of power spectrum

Planck + 21 cm

[Kohri, Oyama, Sekiguchi, TT 2013]

Precise measurement of power spectrum

CMBPol + 21 cm

[Kohri, Oyama, Sekiguchi, TT 2013]

→ future 21 cm observations can probe $\beta \sim \mathcal{O}(10^{-4})$

Summary

- 21 cm line of neutral hydrogen can probe the dark age which cannot be seen with any other observations.
- 21 cm line can probe various aspects of cosmology. (inflation, dark matter, neutrino, ...)
- SKA will operate in 2020s.
- 21 cm cosmology will bring us a lot of information which cannot be probed with other cosmological observations.