Is the theoretical prediction for the muon g-2really correct ?

M. Hayakawa

@ YITP, September 5-9, 2016

- $a_{\mu}(\exp)$ was measured at Brookhaven National Laboratory (BNL).
- Improvement of $a_{\mu}(\exp)$ with uncertainty $\delta a_{\mu}(\operatorname{next} \exp)$ at Fermilab and J-PARC.

- Question the validity of a_{μ} (SM), and ask again if a_{μ} (SM) really differs from a_{μ} (exp).
- Dissect as large contribution to a_{μ} (SM) as

 $\Delta a_{\mu} \equiv a_{\mu} (\exp) - a_{\mu} (SM) \sim 249 (87) \times 10^{-11}.$

$a_{\mu}(SM)$

We decompose $a_{\mu} \equiv (g_{\mu} - 2)/2$ into three parts :

 $a_{\mu}(SM) = a_{\mu}(QED) + a_{\mu}(QCD) + a_{\mu}(weak).$

They are mutually exclusive :

- QED contribution, a_μ(QED), is calculated by QED with charged leptons (e, μ, τ) only.
- QCD contribution, a_{μ} (QCD), is calculated by (QCD + QED) with a_{μ} (QED) subtracted.
- a_{μ} (weak) consists of all the others, *i.e.* those from Feynman diagrams with at least one W boson, Z boson or Higgs boson.

Each of them is further expanded as a power series $w.r.t. \alpha$ (+ Yukawa coupling constant $+\lambda_H$ for a_μ (weak)).

theoretical issues regarding $a_{\mu}(SM)$

I list the contributions that could be *incorrect* and could be *responsible* for $\Delta a_{\mu} \equiv a_{\mu}(\exp) - a_{\mu}(SM) = 249 \ (87) \times 10^{-11} \ (10^{-11} \text{ used as universal unit}):$

• Leading-Order Hadronic Vacuum Polarization contribution $\sim O(\alpha^2)$, a_{μ} (LO-HVP) = 6 949 (43) × 10⁻¹¹ (K. Hagiwara, R. Liao, A. D. Martin, D. Nomura and T. Teubner, J. Phys. G 38, 085003 (2011).).

- Hadronic Light-by-Light contribution $\sim O(\alpha^3)$, a_{μ} (HLbL) = 116 (40) × 10⁻¹¹.
- 4-loop QED correction ~ $O(\alpha^4)$, a_{μ} (QED, 4-loop) = 381.008 (19) × 10⁻¹¹.

• a_{μ} (LO-HVP) = 6 949 (43) × 10⁻¹¹ dominates a_{μ} (QCD), which is $O(\alpha^2)$ (Recall $\Delta a_{\mu} = 249$ (87) × 10⁻¹¹).

Figure: The $O(\alpha^2)$ -diagram in a_{μ} (LO-HVP). QCD part represents the *renormalized* HVP function.

Figure: The $O(\alpha^3)$ -diagram in a_{μ} (LO-HVP), although QCD part is actually the hadronic light-by-light scattering amplitude.

$$a_{\mu}(\text{LO-HVP}) = \left(\frac{\alpha}{3\pi}\right)^2 \int_{(m_{\pi^0})^2}^{\infty} \frac{ds}{s} \frac{m_{\mu}^2}{s} K(s) \left(\frac{\alpha}{\alpha(s)}\right)^2 \frac{\sigma(s)}{\frac{4\pi\alpha^2}{3s}},$$

where

- $\sigma(s) \equiv \sigma(e^+e^- \to \gamma^*(s) \to \{\text{hadrons, hadrons} + \gamma\})$
- K(s) is a known function of s, which is almost constant.
- The factor (α/α(s))², with the running QED gauge coupling constant α(s), eliminates a part of the NLO effect in σ(s) that should be treated as a_μ(NLO-HVP) separately.
- The validity of a_{μ} (LO-HVP) is determined by the validity of the experimental results for $\sigma(s)$.

• $\sigma(s)$ at smaller s dominates $a_{\mu}(\text{LO-HVP})$:

Figure: The distribution of hadronic ingredients in a_{μ} (LO-HVP).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

content of this talk

- 1. Why is lattice QCD study is necessary for HLbL contribution,
 - A remark on lattice QCD simulation.
- The latest development on 4-loop QED correction (A. Kurz, T. Liu, P. Marquard, A. Smirnov, V. Smirnov and M. Steinhauser, arXiv:1602.02785 [hep-ph] + Phys. Rev. D 92, no. 7, 073019 (2015).).
 - Impact of completion of 5-loop QED correction on $\delta a_{\mu}(\text{next exp})$.
- 3. The current situation regarding lattice QCD simulation for HLbL contribution.

HLbL contribution a_{μ} (HLbL)

HLbL (Hadronic Light-by-Light scattering contribution):

• Induced through the scattering of photons caused by QCD.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

• The yellow part requires *theoretical calculation*.

hadronic model calculation of $a_{\mu}(\text{HLbL})$

 a_μ(HLbL) has been *only estimated* according to the hadronic models whose dynamical variables are *mesons* (π[±], π⁰, ···);

$$10^{11} \times a_{\mu}(\text{HLbL}) = 116 \ (40)$$
$$10^{11} \times \{a_{\mu}(\text{exp}) - a_{\mu}(\text{SM})\} = 249 \ (87)$$

- We cannot help but worry about *significance* of the contribution from the scattering of photons with such q that $500 \text{ MeV} \lesssim |q| \lesssim 1,000 \text{ MeV}$, which we do *not* expect can be described by low energy effective theories of QCD (LET).
- I have called this estimation the *hadronic model calculation*, **not** the calculation due to LET, *i.e.* chiral perturbation theory.
- The question can be studied only through the calculation with *quarks and gluons as the dynamical variables*.
- a_{μ} (HLbL; $m_u = m_d \sim 5$ MeV, $\alpha_{SU(3)} = 0$) $\sim 6500 \times 10^{-11}$.

• Crucial to calculate a_{μ} (HLbL) by lattice QCD simulation.

content for $a_{\mu}(\text{HLbL})$, part (1)

• Introduce the terms frequently used by lattice community :

- connected(-type) diagram,
- disconnected(-type) diagram.
- Current situation of lattice QCD simulation for a_μ(HLbL):
 - $a_{\mu}(c\text{HLbL}) \equiv [a_{\mu}(\text{HLbL}) \text{ from } connected-type \text{ diagram}]$ has been computed.
 - ("None has been done for disconnected-type diagrams" till the end of this July ⇒)
 Only one of six disconnected-type diagram contributions has been computed.

• Can we examine the validity of hadronic model calculation (⇒ significance of disconnected-type diagram)?

introduction to lattice QCD simulation

Consider the VEV of the operator M involving quark fields w.r.t QCD:

$$\left\langle M[U;\psi,\overline{\psi}]\right\rangle_{\rm QCD} \equiv \frac{1}{Z_{\rm QCD}} \int dU \int d\psi d\overline{\psi} \, M[U;\psi,\overline{\psi}] \, e^{-S_{\rm QCD}\left[U;\psi,\overline{\psi}\right]} \, ,$$

where

- Flavor-multiplet of quark fields $\psi = (u, d, s)^T$.
- Wilson line U(x, μ) ∈ SU(3)_C couples the object at x + aμ̂ to the one at x in a gauge-invariant manner.
- In $S_{\text{QCD}}\left[U;\psi,\overline{\psi}\right] = S_{\text{YM}}\left[U\right] + S_{\text{F}}\left[U;\psi,\overline{\psi}\right]$,

$$S_{\rm F}[U;\,\psi,\,\overline{\psi}] = \overline{\psi} \cdot {\sf D}[U] \cdot \psi \equiv \sum_{x} \overline{\psi}(x) \left(\sum_{y} {\sf D}[U](x,\,y)\psi(y)\right)\,,$$

where the **Dirac operator** D[U] contains the *interaction with gluons* and **quark mass** terms.

introduction to lattice QCD simulation

$$\begin{split} \left\langle M[U;\psi;\overline{\psi}]\right\rangle_{\rm QCD} &\equiv \frac{1}{Z_{\rm QCD}} \int dU \int d\psi d\overline{\psi} \, M[U;\psi,\overline{\psi}] \, e^{-S_{\rm QCD}[U;\psi,\overline{\psi}]} \\ &= \frac{1}{Z_{\rm QCD}} \int dU \, e^{-S_{\rm YM}[U]} \lim_{\eta,\overline{\eta}\to 0} \int d\psi d\overline{\psi} \, \underline{M[U;\psi,\overline{\psi}]} \, e^{-\overline{\psi}\cdot {\sf D}[U]\cdot\psi+\overline{\eta}\cdot\psi+\overline{\psi}\cdot\eta} \\ &= \frac{1}{Z_{\rm QCD}} \int dU \, e^{-S_{\rm YM}[U]} \lim_{\eta,\overline{\eta}\to 0} M \left[U; \frac{\partial^L}{\partial\overline{\eta}}, \frac{\partial^R}{\partial\eta} \right] \\ &\qquad \times \int d\psi d\overline{\psi} \, e^{-\overline{\psi}\cdot {\sf D}[U]\cdot\psi+\overline{\eta}\cdot\psi+\overline{\psi}\cdot\eta} \\ &= \frac{1}{Z_{\rm QCD}} \int dU \, e^{-S_{\rm YM}[U]} \int d\psi' d\overline{\psi}' \, e^{-\overline{\psi}'\cdot {\sf D}[U]\cdot\psi'} \\ &\qquad \times \lim_{\eta,\overline{\eta}\to 0} M \left[U; \frac{\partial^L}{\partial\overline{\eta}}, \frac{\partial^R}{\partial\eta} \right] \underbrace{e^{-\overline{\eta}\cdot {\sf D}[U]^{-1}\cdot\eta} \\ &= \left\langle \lim_{\eta,\overline{\eta}\to 0} M \left[U; \frac{\partial^L}{\partial\overline{\eta}}, \frac{\partial^R}{\partial\eta} \right] e^{-\overline{\eta}\cdot {\sf D}[U]^{-1}\cdot\eta} \right\rangle_{\rm QCD}. \end{split}$$

correlation function relevant to determination of m_{P^a}

The correlation function relevant to determination of m_{P^a} :

$$G^{a}(x_{0}) \equiv \left\langle \sum_{\mathbf{x}} \overline{\psi}(x) \gamma_{5} T^{a} \psi(x) \cdot \overline{\psi}(0) \gamma_{5} T^{a} \psi(0) \right\rangle_{\text{QCD}} ,$$

where T^a are $U(3)_F$ generators (tr $(T^aT^b) = \delta^{ab}$; $T^{a=0} \equiv \mathbb{I}_3/\sqrt{3}$). In what follows, $m_u = m_d = m_s$ is assumed:

- $SU(3)_F$ symmetry.
- The ground state in the flavor non-singlet channel (a = 3) is π, which should be a pseudo-Goldstone boson.

The ground state in the flavor *singlet* channel (a = 0) is η', which should *not be* a pseudo-Goldstone boson.

correlation function relevant to determination of m_{P^a}

$$\begin{aligned} G^{a}(x_{0}) &\equiv \left\langle \sum_{\mathbf{x}} \overline{\psi}(x) \gamma_{5} T^{a} \psi(x) \cdot \overline{\psi}(0) \gamma_{5} T^{a} \psi(0) \right\rangle_{\text{QCD}} \\ &= \left\langle \sum_{\mathbf{x}} \lim_{\eta, \overline{\eta} \to 0} \left(\frac{\partial^{R}}{\partial \eta(x)} \gamma_{5} T^{a} \frac{\partial^{L}}{\partial \overline{\eta}(x)} \right) \left(\frac{\partial^{R}}{\partial \eta(0)} \gamma_{5} T^{a} \frac{\partial^{L}}{\partial \overline{\eta}(0)} \right) e^{-\overline{\eta} \cdot \mathbf{D}[U]^{-1} \cdot \eta} \right\rangle_{\text{QCD}} \\ &= \left\langle \sum_{\mathbf{x}} \left(\frac{\partial^{R}}{\partial \eta(x)} \gamma_{5} T^{a} \frac{\partial^{L}}{\partial \overline{\eta}(x)} \right) \left(\frac{\partial^{R}}{\partial \eta(0)} \gamma_{5} T^{a} \frac{\partial^{L}}{\partial \overline{\eta}(0)} \right) \right. \\ &\times \frac{1}{2} \left(\overline{\eta} \cdot \mathbf{D}[U]^{-1} \cdot \eta \right) \left(\overline{\eta} \cdot \mathbf{D}[U]^{-1} \cdot \eta \right) \right\rangle_{\text{QCD}} \\ &= -\text{tr} \left((T^{a})^{2} \right) \left\langle \sum_{\mathbf{x}} \text{tr}_{s,c} \left[\gamma_{5} \mathbf{D}[U]^{-1}(x, 0) \gamma_{5} \mathbf{D}[U]^{-1}(0, x) \right] \right\rangle_{\text{QCD}} \\ &+ \left(\text{tr} (T^{a}) \right)^{2} \left\langle \sum_{\mathbf{x}} \text{tr}_{s,c} \left[\gamma_{5} \mathbf{D}[U]^{-1}(x, x) \right] \text{tr}_{s,c} \left[\gamma_{5} \mathbf{D}[U]^{-1}(0, 0) \right] \right\rangle_{\text{QCD}} . \end{aligned}$$

difference between π and η'

• In the flavor-non-singlet channel, $\operatorname{tr} T^3 = 0$ so that

$$G^{a=3}(x_0) = -\left\langle \sum_{\mathbf{x}} \inf_{s,c} \left(\gamma_5 \mathsf{D}[U]^{-1}(x,0) \gamma_5 \mathsf{D}[U]^{-1}(0,x) \right) \right\rangle_{\text{QCD}} ,$$

which is represented by the *connected*-type diagram

- Each line denotes $D[U]^{-1}$, not a free quark propagator.
- The connected-type diagram is responsible for generating the pole of *pseudo-Goldstone boson*.

difference between π and η'

• In the continuum theory $(G_{\mu}(x)$ is gluon field),

$$\mathbf{D}^{-1} = \frac{1}{\gamma_{\mu}\partial_{\mu} + m - i\gamma_{\mu}G_{\mu}}$$

= $\frac{1}{\gamma_{\mu}\partial_{\mu} + m} + \frac{1}{\gamma_{\mu}\partial_{\mu} + m} (i\gamma_{\alpha}G_{\alpha}) \frac{1}{\gamma_{\nu}\partial_{\nu} + m}$
+ $\frac{1}{\gamma_{\mu}\partial_{\mu} + m} (i\gamma_{\alpha}G_{\alpha}) \frac{1}{\gamma_{\nu}\partial_{\nu} + m} (i\gamma_{\beta}G_{\beta}) \frac{1}{\gamma_{\lambda}\partial_{\lambda} + m}$
+ \cdots .

• The QCD average $\langle \mathcal{A}[U] \rangle_{\text{QCD}}$ includes the effect of the virtual quark-antiquark pair creation/annihilation through gluons.

difference between π and η'

• To the flavor-singlet channel the *disconnected*-type diagram

also contributes:

$$G^{0}(x_{0}) = \underbrace{G^{3}(x_{0})}_{\text{connected} \to \text{pion mass}} + \underbrace{3\left\langle \sum_{\mathbf{x}} \operatorname{tr}_{\mathrm{s,c}} \left(\gamma_{5} \mathsf{D}[U]^{-1}(x, x)\right) \operatorname{tr}_{\mathrm{s,c}} \left(\gamma_{5} \mathsf{D}[U]^{-1}(0, 0)\right) \right\rangle_{\mathrm{QCD}}}_{\text{disconnected}}$$

• Disconnected-type diagram accounts for $m_{\eta'} \sim 1,000 {
m ~MeV}$.

$\mathrm{HLbL}\ diagrams$

Each contribution to $a_{\mu}(\text{HLbL})$ can be expressed as a diagram written by $\mathsf{D}[U]^{-1}$:

• *Connected-type diagram*, in which **all** of four electromagnetic (EM) vertices lie on a **single** quark loop:

where each **black line** denotes $D[U]^{-1}$ for a given U.

• Six *disconnected-type* diagrams, in each of which four EM vertices are *distributed over more than one* quark loops.

$\mathrm{HLbL}\ diagrams$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $(2_E, 2)$ -type diagrams

FIG. 1: $(2_E, 2)$ -type diagrams

<ロ> <問> <問> < 回> < 回>

æ

$(3_E, 1)$ -type diagrams

FIG. 1: $(3_E, 1)$ -type diagrams. The diagrams with O(a) local QED vertices are not shown.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

 $(1_E, 3)$ -type diagrams

Figure: $(1_E, 3)$ -type diagrams

ヘロト ヘヨト ヘヨト ヘヨト

з.

Diagrams of $(1_E, 1, 2)$ -type

FIG. 1: $(1_E, 1, 2)$ -type diagrams

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Diagrams of $(2_E, 1, 1)$ -type

Figure: $(2_E, 1, 1)$ -type diagrams

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

Diagram of $(1_E, 1, 1, 1)$ -type

Figure: $(1_E, 1, 1, 1)$ -type diagrams

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

possible significance of disconnected-type diagrams

In most cases, calculation of disconnected-type diagrams is *much more difficult* than that of connected one:

- If we can speculate that disconnected-type diagrams is negligibly small compared to the connected one, we can concentrate on calculation of connected-type diagram.
- But, we are unable to do so.
- Lattice QCD simulation is necessary for the disconnected-type diagram.
- Disconnected-type diagrams can be important *if* hadronic model calculation (HMc) captures bulk of dynamics for a_{μ} (HLbL).

more on hadronic model calculation

 In HMc, the pseudoscalar-pole contribution is the most dominant (M. H., T. Kinoshita and A. I. Sanda, Phys. Rev. Lett. 75, 790 (1995);
 J. Bijnens, E. Pallante and J. Prades, Phys. Rev. Lett. 75, 1447 (1995).):

- $a_{\mu}(\eta') \simeq 0.2 \times a_{\mu}(\pi^0).$
- Suppose that HMc is valid. *Unless* disconnected-type diagrams *are included*,
 - η' propagates as a *pseudo-Goldstone boson*.
 - η' -contribution will be *over-estimated*: $[true \ a_{\mu}(\text{HLbL})] < a_{\mu}(\text{cHLbL}).$

possible significance of disconnected-type diagrams

We are calculating $(2_E, 2)$ -type diagram (the *only* disconnected-type diagram that survives in the $SU(3)_F$ limit):

FIG. 1: $(2_E, 2)$ -type diagrams

(日) (四) (三) (三)

possible significance of disconnected-type diagrams

Our lattice calculation implies that $a_{\mu}(\text{cHLbL}) \sim [a_{\mu}(\text{HLbL})$ by HMc]. If the disconnected-type diagram contribution, $a_{\mu}(\text{dHLbL})$, turns out

- 1) negligibly small, $|a_{\mu}(dHLbL)| \ll |a_{\mu}(cHLbL)|$,
 - HMc cannot be trustworthy,
 - but had given a correct value accidentally.
- 2) non-negligible and *negative*,
 - the picture in HMc may be valid,
 - $a_{\mu}(\text{HLbL}) \equiv a_{\mu}(\text{cHLbL}) + a_{\mu}(\text{dHLbL}) < [a_{\mu}(\text{HLbL}) \text{ by HMc}],$
 - *amplifying* the discrepancy $\Delta a_{\mu} \equiv a_{\mu}(\exp) a_{\mu}(SM) > 0$.
- 3) non-negligible and *positive*,
 - the picture in HMc will be wrong,
 - $a_{\mu}(\text{HLbL}) \equiv a_{\mu}(\text{cHLbL}) + a_{\mu}(\text{dHLbL}) > [a_{\mu}(\text{HLbL}) \text{ by HMc}].$
 - $a_{\mu}(SM)$ will become *closer* to $a_{\mu}(exp)$.

current situation of muon g-2

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

perturbative QED dynamics in lepton g-2

• Perturbative series expansion of the QED correction ($\psi = e, \mu$):

$$a_{\psi}(\text{QED}) = a_{\psi}^{(1)} \times \left(\frac{\alpha}{\pi}\right) + a_{\psi}^{(2)} \times \left(\frac{\alpha}{\pi}\right)^2 + a_{\psi}^{(3)} \times \left(\frac{\alpha}{\pi}\right)^3 + \cdots$$

• Perturbative dynamics is contained in $a_{\psi}^{(n)}$:

$$a_{e}(\text{QED}) = 0.5 \times \left(\frac{\alpha}{\pi}\right) + O(1) \times \left(\frac{\alpha}{\pi}\right)^{2} + O(1) \times \left(\frac{\alpha}{\pi}\right)^{3} + O(1) \times \left(\frac{\alpha}{\pi}\right)^{4} + O(1) \times \left(\frac{\alpha}{\pi}\right)^{5} + \cdots,$$
$$a_{\mu}(\text{QED}) = 0.5 \times \left(\frac{\alpha}{\pi}\right) + O(1) \times \left(\frac{\alpha}{\pi}\right)^{2} + O(10) \times \left(\frac{\alpha}{\pi}\right)^{3} + O(100) \times \left(\frac{\alpha}{\pi}\right)^{4} + O(1,000) \times \left(\frac{\alpha}{\pi}\right)^{5} + \cdots,$$

where
$$O(100) \times \left(\frac{\alpha}{\pi}\right)^4 \sim O(300) \times 10^{-11} \sim a_\mu(\text{SM}) - a_\mu(\text{exp}).$$

perturbative QED dynamics in lepton g-2

The difference between a_{μ} (QED) and a_{e} (QED) arises because

• For e, μ and τ are both heavier than itself. Therefore, the mass-independent term $A_1^{(n)}$ dominates $a_e^{(n)}$:

$$a_{e}^{(n)} = \underline{A_{1}^{(n)}} + A_{2}^{(n)} \left(\frac{m_{e}}{m_{\mu}}\right) + A_{2}^{(n)} \left(\frac{m_{e}}{m_{\tau}}\right) + A_{3}^{(n)} \left(\frac{m_{e}}{m_{\mu}}, \frac{m_{e}}{m_{\tau}}\right)$$

 For μ, e is much *lighter* than itself. Therefore, the terms caused by the diagrams with electron loops dominate a⁽ⁿ⁾_μ (n > 1):

$$a_{\mu}^{(n)} = A_1^{(n)} + \underline{A_2^{(n)}\left(\frac{m_{\mu}}{m_e}\right)} + A_2^{(n)}\left(\frac{m_{\mu}}{m_{\tau}}\right) + \underline{A_3^{(n)}\left(\frac{m_{\mu}}{m_e}, \frac{m_{\mu}}{m_{\tau}}\right)}.$$

• Mathematically, $a_{\psi}^{(n)}$ ($\psi = e, \mu, \tau$) are just given by a magic number $A_1^{(n)}$, and two functions $A_2^{(n)}(x)$ and $A_3^{(n)}(x, y)$.

situation of a_{μ} (QED, 4-loop) before 2016

- Full calculation of $a_{\mu}^{(4)}$, which consists of 891 Feynman diagrams, has been done by only one group.
- Human error in the present result of $a_{\mu}^{(4)}$?
- T. Aoyama, M. H., T. Kinoshita and M. Nio, Phys. Rev. Lett. **99**, 110406 (2007) found that a part of previous calculation of $a_{e,\,\mu}^{(4)}$ had been incorrect :

$$a_{e}^{(4)} = \underbrace{A_{1}^{(4)}}_{\text{corrected}} + A_{2}^{(4)}\left(\frac{m_{e}}{m_{\mu}}\right) + A_{2}^{(4)}\left(\frac{m_{e}}{m_{\tau}}\right) + A_{3}^{(4)}\left(\frac{m_{e}}{m_{\mu}}, \frac{m_{e}}{m_{\tau}}\right) \,,$$

affecting a_e and $\alpha(a_e)$ significantly.

• Such a modification did *not* affect $a^{(4)}_{\mu}$ so much (, but affect a_{μ} a little bit through $\alpha(a_e)$).

Figure: History of $\alpha^{-1}(a_e)$ derived from $a_e(\alpha) = a_e(\exp)$.

current situation on 4-loop QED correction

- Situation changed *dramatically* due to the following works by *Steinhauser*, *et. al* ;
 - A. Kurz, T. Liu, P. Marquard, A. Smirnov, V. Smirnov and M. Steinhauser, arXiv:1602.02785 [hep-ph],
 - A. Kurz, T. Liu, P. Marquard, A. Smirnov, V. Smirnov and M. Steinhauser, Phys. Rev. D 92, no. 7, 073019 (2015).
- They focus on the dominant contribution only

$$a_{\mu}^{(4)} = A_1^{(4)} + \underline{A_2^{(4)}\left(\frac{m_{\mu}}{m_e}\right)} + A_2^{(4)}\left(\frac{m_{\mu}}{m_{\tau}}\right) + \underline{A_3^{(4)}\left(\frac{m_{\mu}}{m_e}, \frac{m_{\mu}}{m_{\tau}}\right)}$$

- They found complete agreement with the result by T. Aoyama, M. H, T. Kinoshita and M. Nio, PTEP 2012, 01A107 (2012) for these !
- Mistake no longer exists in the calculation of 4-loop QED correction that matters significantly to a_μ.

impact of complete 5-loop QED correction

• Dominant 5-loop QED correction would be given by

Rough estimation signifies
 5-loop QED correction ~ O(1) × 10⁻¹¹ = δa_μ(next exp)

impact of complete 5-loop QED correction

• Recall that the combined uncertainty

$$\delta a_{\mu} \cong \sqrt{\left(\delta a_{\mu} \left(\mathrm{SM}\right)\right)^{2} + \left(\delta a_{\mu} \left(\mathrm{exp}\right)\right)^{2}} \ge \delta a_{\mu} \left(\mathrm{SM}\right) \,.$$

roughly quantifies **likelihood of** the difference between a_{μ} (SM) and a_{μ} (exp).

- The comparison between theory and experiment with such improved accuracy requires solid result for the 5-loop QED correction.
- We completed full calculation of 5-loop QED correction, which consists of 12, 678 Feynman diagrams (T. Aoyama, M. H., T. Kinoshita and M. Nio, Phys. Rev. Lett. 109, 111808 (2012).)

impact of complete 5-loop QED correction

Table: $a_{\mu}(\text{QED})$ at each loop, *scaled by* 10¹¹

loop n	using $lpha({ m Rb})$	using $\alpha(a_e)$
1	$116\ 140\ 973.318\ (77)$	$116 \ 140 \ 973.213 \ (30)$
2	$413\ 217.6291\ (90)$	$413\ 217.6284\ (89)$
3	$30\ 141.902\ 48\ (41)$	$30 \ 141.902 \ 39 \ (40)$
4	381.008(19)	381.008(19)
5	5.0938(70)	5.0938(70)
sum	$116\ 584\ 718.951\ (80)$	116 584 718.846 (37)

Complete calculation of $a_{\mu}^{(5)}$ eliminated the uncertainty $\sim O(1) \times 10^{-11} = \delta a_{\mu}(\text{next exp})$, which would have persisted without being done ! Now, the uncertainty in $a_{\mu}(\text{QED})$ comes mostly from

• one-loop (n = 1) contribution through the uncertainty in α ,

$a_{\mu}(\text{HLbL})$, part 2

- Why has $a_{\mu}(\mathrm{HLbL})$ not been calculated by lattice QCD ?
- Attempt in collaboration with

Thomas Blum, Saumitra Chowdury (Connecticut U.) Norman Christ (Columbia U.) Luchang Jin (Columbia U. \Rightarrow BNL) Taku Izubuchi (BNL & RIKEN-BNL Research Center) Christoph Lehner, Chulwoo Jung (BNL) Peter Boyle (Edinburgh U.) Andress Jüttner (Southampton U.) Norikazu Yamada (KEK & Sokendai)

Preliminary results

straightforward method for $a_{\mu}(\text{cHLbL})$ Initialize f = 0, and repeat the following computation with spinor-color-valued field $b^{[x_{\text{ex}}, s_0, c_0]}(x)_{s, c} \equiv \delta^{x_{\text{ex}}} \delta^{s_0}_s \delta^{c_0}_c$ (for a fixed position x_{ex} of the external QED vertex) for all spinor components s_0 and color components c_0 (and $\mu \perp q \equiv p_{(F)} - p_{(I)}$):

- 1. Solve $D[U]v = \gamma_{\mu} b^{[x_{ex}, s_0, c_0]}$. Solve $D[U]w = \gamma_5 b^{[x_{ex}, s_0, c_0]}$.
- 2. Calculate $b_{(1)}(x) \equiv e^{\mathbf{i} l_{(1)} \cdot x} v(x)$ and $u(x) \equiv \gamma_5 e^{\mathbf{i} l_{(2)} \cdot x} w(x)$.

3. Solve
$$D[U]v_{(1)} = b_{(1)}$$

- 4. Calculate $b_{(2)}(x) \equiv e^{i(l_{(2)}+q-l_{(1)})\cdot x}v_{(1)}(x)$.
- 5. Solve $D[U]v_{(2)} = b_{(2)}$.
- 6. Take the inner product $h \equiv (u, v_{(2)})$, and add it to f; $f \leftarrow f + h$.

impossibility of calculation of a_{μ} (HLbL)

• Calculation of connected-type hadronic light-by-light scattering diagram (cHLbL) requires the following number of repetition of solving the linear problems:

$$\begin{array}{ll} (V_4)^2 & \Leftrightarrow \left(l_{(1)}, \, l_{(2)}\right) \\ \times 2 & \Leftrightarrow \ v \ \text{and} \ w \ \text{at the step 1 can be reused} \\ \times 3 & \Leftrightarrow \ (\mu \perp q) \\ \times \underbrace{\{\#(\text{spinors}) \times \#(\text{colors}) = 4 \times 3 = 12\}}_{}, \end{array}$$

determination of pion mass

 $\mathsf{per}\ \{\mathrm{flavor}, U\}.$

- # (independent momenta) = *lattice volume*, V_4 .
- For the lattice geometry $48^3 \times 96$, $V_4 \sim 10^7$, so that $\left(V_4\right)^2 \sim 10^{14}$.
- It would require more than 100 years even if we were allowed to use full resource of *KEI* computer !

reexamination of the problem

To make the impossible possible, we scrutinize the problem itself:

- It is *not* certain that the contribution from the HLbL of hard photons (|q| ≥ 0.8 GeV) is negligible compared to O(10) × 10⁻¹¹.
- It is sure that the contribution from the HLbL of harder photons is *smaller than* that of **soft photons**:
 - Photon propagator $\sim 1/q^2$ damps hard photon contribution.
 - The size of the HLbL amplitude *itself* is *smaller* for hard photons, $|q| \gtrsim 0.8$ GeV.

reexamination of the problem

- The straightforward method would *consume most of the run-time* on the supercomputer for the calculation of insignificant contribution.
- Tempted to explicitly cut off the internal photon momenta.
- But, the momentum cutoff **breaks gauge symmetry explicitly**, which could *instabilize the result*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

strategy for lattice QCD simulation of $a_{\mu}(\text{HLbL})$

Gauge-invariant importance sampling is the *only* strategy which may enable us to calculate a_{μ} (HLbL) by lattice QCD simulation:

- **Importance sampling** implies that the contribution from the scattering with **softer** photons is *more preferentially* calculated in some **stochastic manner**, and is summed up.
- The **hard**-photon contribution is also computed, but sampled *less frequently* according to its importance.
- The **optimal choice** for the function evaluating the importance requires *full knowledge* on the HLbL amplitude, and *cannot* be made.
- With a *presumed* probability p(a) estimating importance, we do

reweighting
$$\sum_{a \in A} f(a) = \sum_{a \in A} p(a) \frac{f(a)}{p(a)} \sim \sum_{j=1}^{N} \frac{f(a_{(j)})}{p(a_{(j)})}$$
 with a sample $\{a_{(j)}\}_{j=1, \dots, N}$ chosen according to $p(a)$, or its variants.

nonperturbative QED method for a_{μ} (cHLbL) Consider the following quantity (hep-lat/0509016, arXiv:1407.2923 [hep-lat])

$$\frac{1}{3} \times \left(\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ \end{array} \right)^{-1} \xrightarrow{}_{QCD + q \cdot QED_{A}} - \underbrace{ & & \\ & & \\ & & \\ & & \\ \end{array} \right)^{QCD + q \cdot QED_{B}} \xrightarrow{}_{QCD + q \cdot QED_{A}} \xrightarrow{}_{QCD + q \cdot Q$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

nonperturbative QED method for $a_{\mu}(cHLbL)$ Nonperturbative QED method assumes

• The quantity nonperturbatively computed w.r.t. QED can be expanded in a power series of α .

The result for the nonperturbative $\left(\mathrm{QCD}+\mathrm{q\text{-}QED}\right)$ calculation of pion mass supports it

(N. Yamada et al. [RBC Collaboration], PoS LAT 2005, 092 (2006)):

- Perturbatively, q-QED average supplies *only virtual photons*, *i.e. no* creation/annihilation of quark-antiquark pairs via photon.
- Each photon line thus created has *two* end points in either one of the following three ways:
 - (1) both on the valence quark part,
 - (2) both on the muon part,
 - (3) one on the valence quark part, but the other on the muon part.

・ロット 今日 マイ キャー・

- 3

nonperturbative QED method for $a_{\mu}(cHLbL)$

・ロト ・ 一下・ ・ ヨト ・ 日 ・

3

+ (diagrams intervened by 5 or more photons)

nonperturbative QED method for $a_{\mu}(\text{cHLbL})$

The basic idea behind (M. H., T. Blum, T. Izubuchi and N. Yamada, PoS LAT 2005, 353 (2006); T. Blum, S. Chowdhury, M. H. and T. Izubuchi, Phys. Rev. Lett. 114, 012001 (2015).) is as follows:

- *Remove two photons* connecting quark part and muon part, and *reproduce* them *stochastically*.
- Smoother $A_{\mu}(x)$ would be preferentially sampled at weak coupling.
- Couple quarks to such $A_{\mu}(x)$ and construct quark loop in that background.
- As a smoother $A_{\mu}(x)$ would be more abundant in low frequency modes, the contribution from the scattering of softer photons would be preferentially sampled.

nonperturbative QED method for $a_{\mu}(cHLbL)$

- Nonperturbative QED method requires subtraction of $O(\alpha^2)$ contribution to the magnetic form factor.
- Subtraction will be realized only if the subtraction term is *strongly correlated* with the 1st term.
- Use of the same q-QED configurations for the *muon part* in the subtraction term as the 1st term will be *beneficial*, because

$$\begin{split} &\frac{1}{\#(U)} \sum_{U} \frac{1}{\#(A)} \sum_{A} \sum_{x, y} \sum_{\lambda} \\ &\left(\mathcal{Q}_{\mu, \lambda}[U, A](x) - \frac{1}{\#(B)} \sum_{B} \mathcal{Q}_{\mu, \lambda}[U, B](x) \right) \\ &\times \sum_{\rho} e^2 D_{\lambda \rho}(x - y) \times \mathcal{L}_{\rho}[A](y; t_F, t_I) \,, \end{split}$$

at A = 0, which is $O(\alpha^2)$, has no contribution to the magnetic form factor.

nonperturbative QED method for $a_{\mu}(cHLbL)$

- For $a_{\mu}(\text{cHLbL})$,
 - Iwasaki gauge action with (2 + 1) dynamical quarks on $24^3 \times 64$ with $a^{-1} = 1.73$ GeV.
 - Shamir-type domain wall fermion with $L_5 = 16$, $M_5 = 1.80$ and $m_{\pi} = 329$ MeV, and $am_{\mu} = 0.1$ and $M_{5, \mu} = 0.99$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- **noncompact** lattice QED in Feynman gauge with $e_0 = 1$.
- We measure $F_2(Q^2)$ at momenta Q_{μ} with the minimum size in the space with finite volume, $|Q| = \frac{2\pi}{L}$.

nonperturbative QED method for $a_{\mu}(\text{cHLbL})$

Figure: $F_2(Q^2 = (2\pi/L)^2)/(\alpha/\pi)^3$ from cHLbL (Black). $t_{sep} \equiv t_F - t_I$. The external QED vertex is put at $(t_I + t_{sep}/2)$. Blue line denotes $F_2(0)$ from hadronic model calculation. ・ロト ・ 一下・ ・ ヨト ・ 日 ・

moment method

With r/2, u, (-r/2) and h the positions of *four* QED vertices on the quark loop (T. Blum, N. Christ, M. H., T. Izubuchi, L. Jin and C. Lehner, Phys. Rev. D **93**, 014503 (2016) [arXiv:1510.07100 [hep-lat]])

$$a_{\mu}(\text{cHLbL}) = \frac{1}{\#(U)} \sum_{U} \sum_{r} p(|r|) \\ \left[\frac{1}{p(|r|)} \times \text{Magnetic part of} \sum_{u,h} \mathcal{K}_{\nu}\left(\frac{r}{2}, u, -\frac{r}{2}, h; U\right) \right]$$

We perform *important sample* w.r.t. r using a **presumed weight** p(|r|), and inversions with sources at $\frac{r}{2}$ and $-\frac{r}{2}$:

$$p(|r|) \propto \begin{cases} 1 & |r| < r_{(0)} \\ |r|^{-3.5} & |r| \ge r_{(0)} \end{cases}$$

$a_{\mu}(\text{cHLbL})$ by moment method

Figure: cHLbL contribution to $F_2(q^2)$ by the **moment method** (red dot, q = 0) (T. Blum, N. Christ, M. H., T. Izubuchi, L. Jin and C. Lehner, arXiv:1510.07100 [hep-lat]) and by nonperturbative QED method (black dot, $|q| = 2\pi/(24 a) = 457 \text{ MeV}$).

physical pion simulation on $48^3 \times 96$

- $m_{\pi} = 139$ MeV, physical m_s , $m_{\mu} = 106$ MeV.
- $a^{-1} = 1.79$ GeV, L = 5.5 fm.
- #(U) = 69.
- For every U,
 - for connected diagram, measurement is performed for $112(|r| \le 5) + 256(|r| > 5)$ pairs of points;
 - for $(2_E, 2)$ -type, *each* quark loop is constructed for $N_{\text{meas}} = 1024(u, d) + 512(s)$ positions of one EM vertex on that loop, providing $(N_{\text{meas}})^2$ combinations.

$(2_E, 2)$ -type disconnected diagram

FIG. 1: $(2_E, 2)$ -type diagrams

<ロ> (日) (日) (日) (日) (日)

э

Linear problem with local source

To get, for a fixed $x_s \in \Gamma$,

$$\left\{\mathsf{D}\left[\boldsymbol{U}\right]^{-1}\left(\boldsymbol{x},\,\boldsymbol{x}_{s}\right)\right\}_{\boldsymbol{x}\in\Gamma}\,,$$

we solve the following linear problem for every $\{s_0,\,c_0\}_{s_0=1,\,\cdots,\,4;\,c_0=1,\,\cdots,\,3}$

- Prepare local source vector $b^{[x_s, s_0, c_0]}(x) \equiv \delta^{x_s}_{\ x} \eta^{[s_0, c_0]}$ with $\left(\eta^{[s_0, c_0]}\right)_{s, c} = \delta^{s_0}_{\ s} \delta^{c_0}_{\ c}.$
- Solve $D[U]v^{[x_s, s_0, c_0]} = b^{[x_s, s_0, c_0]}$ to get $v^{[x_s, s_0, c_0]}$.

•
$$\left[\mathsf{D} \left[U \right]^{-1}(x, x_s) \right]_{(s, c), (s_0, c_0)} \equiv \left(v^{[x_s, s_0, c_0]}(x) \right)_{(s, c)}.$$

Recall that, from $D[U]^{-1}(\mathbf{0}, x) = \gamma_5 D[U]^{-1}(x, \mathbf{0})^{\dagger} \gamma_5$,

$$G^{3}(x_{0}) \equiv \left\langle \sum_{\mathbf{x}} P^{3}((x_{0}, \mathbf{x})) P^{3}(0) \right\rangle_{U} = -\left\langle \sum_{\mathbf{x}} \left| \mathsf{D} \left[U \right]^{-1}(x, 0) \right|^{2} \right\rangle_{U}$$

for the equality in $SU(3)_F$ -limit.

possible significance of disconnected-type diagrams

Our lattice calculation implies that $a_{\mu}(\text{cHLbL}) \sim [a_{\mu}(\text{HLbL})$ by HMc]. If the disconnected-type diagram contribution, $a_{\mu}(\text{dHLbL})$, turns out

- 1) negligibly small, $|a_{\mu}(dHLbL)| \ll |a_{\mu}(cHLbL)|$,
 - HMc cannot be trustworthy,
 - but had given a correct value accidentally.
- 2) non-negligible and *negative*,
 - the picture in HMc may be valid,
 - $a_{\mu}(\text{HLbL}) \equiv a_{\mu}(\text{cHLbL}) + a_{\mu}(\text{dHLbL}) < [a_{\mu}(\text{HLbL}) \text{ by HMc}],$
 - *amplifying* the discrepancy $\Delta a_{\mu} \equiv a_{\mu}(\exp) a_{\mu}(SM) > 0$.
- 3) non-negligible and *positive*,
 - the picture in HMc will be wrong,
 - $a_{\mu}(\text{HLbL}) \equiv a_{\mu}(\text{cHLbL}) + a_{\mu}(\text{dHLbL}) > [a_{\mu}(\text{HLbL}) \text{ by HMc}].$
 - $a_{\mu}(SM)$ will become *closer* to $a_{\mu}(exp)$.

physical pion simulation on $48^3 \times 96$

With statistical uncertainty only,

$$a_{\mu}(\text{cHLbL}) = (116.0 \pm 9.6) \times 10^{-11}$$
$$a_{\mu}((2_{E}, 2)) = (-62.5 \pm 8.0) \times 10^{-11}$$
$$a_{\mu}(\text{cHLbL} + (2_{E}, 2)) = (53.5 \pm 13.5) \times 10^{-11}$$

while the hadronic model calculation (HMc) gave

$$a_{\mu}(\text{HLbL})|_{\text{HMc}} = (116 \pm 40) \times 10^{-11}$$

We need

- Intensive study on systematic uncertainty $(V < \infty, a \neq 0)$.
- Calculation of other disconnected-type diagrams.

current situation of muon g - 2 with $a_{\mu}(\text{HLbL})|_{\text{HMc}}$

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Nonperturbative QED method for full $a_{\mu}(\text{HLbL})$

- Nonperturbative QED method to compute full a_µ(HLbL), *i.e.* (connected + 6 disconnected), was proposed in arXiv:1301.2607 [hep-lat], which has one overlooked point.
- The term (-K_D) is introduced to remove unwanted contribution (M. H., T. Blum, N. H. Christ, T. Izubuchi, L. C. Jin and C. Lehner, arXiv:1511.01493 [hep-lat]).

$$\frac{1}{3}\left\{ \left(\mathcal{M}_{C}-\mathcal{S}_{C}\right)+\left(\mathcal{M}_{C'}-\mathcal{S}_{C'}\right)+\left(\mathcal{M}_{D}-\mathcal{S}_{D}\right)-\mathcal{K}_{D}\right\}$$

Nonperturbative QED method for full a_{μ} (HLbL)

$$\frac{1}{3}\left\{\left(\mathcal{M}_{C}-\mathcal{S}_{C}\right)+\left(\mathcal{M}_{C'}-\mathcal{S}_{C'}\right)+\left(\mathcal{M}_{D}-\mathcal{S}_{D}\right)-\mathcal{K}_{D}\right\}$$

▲ロ▶ ▲圖▶ ▲圖▶ ▲圖▶ 三国 - のQで

Nonperturbative QED method for full $a_{\mu}(\text{HLbL})$

$$\frac{1}{3}\left\{ \left(\mathcal{M}_{C}-\mathcal{S}_{C}\right)+\left(\mathcal{M}_{C'}-\mathcal{S}_{C'}\right)+\left(\mathcal{M}_{D}-\mathcal{S}_{D}\right)-\mathcal{K}_{D}\right\}$$

Nonperturbative QED method for full $a_{\mu}(\text{HLbL})$

Every HLbL diagram is generated with *triplicate redundancy*:

Table: The multiplicity provided by each term in nonperturbative QED method. *C*, say, denotes $\mathcal{M}_C - \mathcal{S}_C$.

	C + C'	D
4_E	3	0
$(3_E, 1)$	2	1
$(1_E, 3)$	0	3
$(2_E, 2)$	1	2
$(2_E, 1, 1)$	1	2
$(1_E, 1, 2)$	0	3
$(1_E, 1, 1, 1)$	0	3

Nonperturbative QED method for full $a_{\mu}(HLbL)$

Figure: An identical diagram of $(2_E, 2)$ -type is generated in three ways from \mathcal{M}_C (left) and \mathcal{M}_D (middle, right). The red lines and vertices are generated by the ensemble average of (QCD + QED).

< ロ > < 同 > < 回 > < 回 >

Figure: The left diagram is the disconnected component involved in a diagram of type $(2_E, 2)$ induced from \mathcal{M}_C . It is canceled by $(-\mathcal{S}_C)$.

• The disconnected contribution with (bare HVP function + the two photons attached to it) generated *entirely* by ensemble average is canceled by $(-S_C)$, $(-S_{C'})$ or $(-S_D)$.

Figure: An identical diagram of $(1_E, 1, 2)$ -type is generated from \mathcal{M}_D in three ways. The disconnected component of the left diagram is canceled by $(-\mathcal{S}_D)$. However, the other two disconnected components survive without being subtracted.

Figure: Summary of unwanted diagrams, showing that every diagram with the same topology appears exactly *twice*.

Here, bare HVP function consists of connected-type contribution and disconnected-type contribution in terms of lattice field theory (diagrams with O(a) QED vertices are not shown here)

$$\mathbf{W}_{\mathrm{QCD}} = \mathbf{W}_{\mathrm{QCD}} + \mathbf{W}_{\mathrm{QCD}}$$

where the red lines and vertices are generated by the ensemble average of (QCD + QED).

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●
HLbL amplitude by Mainz lattice group

Figure: cHLbL amplitude in two-flavor QCD (J. Green, O. Gryniuk, G. von Hippel, H. B. Meyer and V. Pascalutsa, Phys. Rev. Lett. **115**, no. 22, 222003 (2015)), together with the one by π^0 -propagation (dashed line) and the one by $\pi^0 + \eta'(\text{singlet})$ (dotted line) in HMc.