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current situation of muon g − 2

✲
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• aµ(exp) was measured at Brookhaven National Laboratory
(BNL).

• Improvement of aµ(exp) with uncertainty δaµ(next exp) at
Fermilab and J-PARC.



reexamination of theory of muon g − 2
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• Question the validity of aµ (SM), and ask again if aµ (SM) really
differs from aµ (exp).

• Dissect as large contribution to aµ (SM) as

∆aµ ≡ aµ (exp)− aµ (SM)∼ 249 (87)× 10−11 .



aµ(SM)

We decompose aµ ≡ (gµ − 2)/2 into three parts :

aµ(SM) = aµ(QED) + aµ(QCD) + aµ(weak) .

They are mutually exclusive :

• QED contribution, aµ(QED), is calculated by QED with

charged leptons (e, µ, τ) only .

• QCD contribution, aµ(QCD), is calculated by (QCD +
QED) with aµ(QED) subtracted .

• aµ(weak) consists of all the others, i .e. those from Feynman
diagrams with at least one W boson, Z boson or Higgs boson.

Each of them is further expanded as a power series w .r .t . α (+
Yukawa coupling constant +λH for aµ(weak)).



theoretical issues regarding aµ(SM)

I list the contributions that could be incorrect and could be
responsible for ∆aµ ≡ aµ(exp)− aµ(SM) = 249 (87)× 10−11

(10−11 used as universal unit) :

• Leading-Order Hadronic Vacuum Polarization contribution
∼ O(α2),
aµ (LO-HVP) = 6 949 (43) × 10−11 ( K. Hagiwara, R. Liao,

A. D. Martin, D. Nomura and T. Teubner, J. Phys. G 38, 085003 (2011). ) .

• Hadronic Light-by-Light contribution ∼ O(α3),
aµ (HLbL) = 116 (40) × 10−11 .

• 4-loop QED correction ∼ O(α4),
aµ (QED, 4-loop) = 381.008 (19)× 10−11 .



aµ (LO-HVP)

• aµ (LO-HVP) = 6 949 (43) × 10−11 dominates aµ(QCD),
which is O(α2) (Recall ∆aµ = 249 (87)× 10−11).

QCD

Figure: The O(α2)-diagram in aµ (LO-HVP). QCD part represents
the renormalized HVP function.



aµ (LO-HVP)

QCD

Figure: The O(α3)-diagram in aµ (LO-HVP), although QCD part is
actually the hadronic light-by-light scattering amplitude.



aµ (LO-HVP)

aµ(LO-HVP)

=
( α
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where

• σ(s) ≡ σ (e+e− → γ∗(s)→ {hadrons, hadrons + γ})
• K(s) is a known function of s, which is almost constant.

• The factor (α/α(s))2, with the running QED gauge coupling
constant α(s), eliminates a part of the NLO effect in σ(s)
that should be treated as aµ(NLO-HVP) separately.

• The validity of aµ(LO-HVP) is determined by the validity

of the experimental results for σ(s).



aµ (LO-HVP)

• σ(s) at smaller s dominates aµ(LO-HVP) :

Figure: The distribution of hadronic ingredients in aµ(LO-HVP).



content of this talk

1. • Why is lattice QCD study is necessary for HLbL contribution,
• A remark on lattice QCD simulation.

2. • The latest development on 4-loop QED correction (A. Kurz,
T. Liu, P. Marquard, A. Smirnov, V. Smirnov and M. Steinhauser,

arXiv:1602.02785 [hep-ph] + Phys. Rev. D 92, no. 7, 073019 (2015).).
• Impact of completion of 5-loop QED correction on
δaµ(next exp).

3. The current situation regarding lattice QCD simulation for
HLbL contribution.



HLbL contribution aµ(HLbL)

HLbL (Hadronic Light-by-Light scattering contribution) :

QCD

µ

• Induced through the scattering of photons caused by QCD.

• The yellow part requires theoretical calculation .



hadronic model calculation of aµ(HLbL)

• aµ(HLbL) has been only estimated according to the hadronic
models whose dynamical variables are mesons (π±, π0, · · · ) ;

1011 × aµ(HLbL) = 116 (40)

1011 × {aµ(exp)− aµ(SM)} = 249 (87)

• We cannot help but worry about significance of the contribution
from the scattering of photons with such q that
500 MeV . |q| . 1, 000 MeV, which we do not expect can be
described by low energy effective theories of QCD (LET).

• I have called this estimation the hadronic model calculation, not
the calculation due to LET, i .e. chiral perturbation theory.

• The question can be studied only through the calculation with
quarks and gluons as the dynamical variables .

• aµ
(
HLbL; mu = md ∼ 5 MeV, αSU(3) = 0

)
∼ 6500× 10−11.

• Crucial to calculate aµ(HLbL) by lattice QCD simulation.



content for aµ(HLbL), part (1)

• Introduce the terms frequently used by lattice community :

• connected(-type) diagram,
• disconnected(-type) diagram.

• Current situation of lattice QCD simulation for aµ(HLbL) :

• aµ(cHLbL) ≡ [aµ(HLbL) from connected-type diagram] has
been computed.

• (”None has been done for disconnected -type diagrams” till
the end of this July ⇒)
Only one of six disconnected-type diagram contributions has
been computed.

• Can we examine the validity of hadronic model calculation (⇒
significance of disconnected -type diagram) ?



introduction to lattice QCD simulation

Consider the VEV of the operator M involving quark fields w .r .t QCD :

〈
M [U ;ψ, ψ]

〉
QCD

≡ 1

ZQCD

∫
dU

∫
dψdψM [U ; ψ, ψ] e−SQCD[U ;ψ,ψ] ,

where

• Flavor-multiplet of quark fields ψ = (u, d, s)
T
.

• Wilson line U(x, µ) ∈ SU(3)C couples the object at x+ aµ̂ to the
one at x in a gauge-invariant manner .

• In SQCD

[
U ; ψ, ψ

]
= SYM [U ] + SF

[
U ; ψ, ψ

]
,

SF[U ; ψ, ψ] = ψ · D[U ] · ψ ≡
∑

x

ψ(x)

(
∑

y

D[U ](x, y)ψ(y)

)
,

where the Dirac operator D[U ] contains the interaction with

gluons and quark mass terms.



introduction to lattice QCD simulation

〈
M [U ;ψ; ψ]

〉
QCD

≡ 1

ZQCD

∫
dU

∫
dψdψM [U ; ψ, ψ] e−SQCD[U ;ψ,ψ]

=
1

ZQCD

∫
dU e−SYM[U ] lim

η, η→0

∫
dψdψM [U ; ψ, ψ] e−ψ·D[U]·ψ+η·ψ+ψ·η

=
1

ZQCD

∫
dU e−SYM[U ] lim

η, η→0
M

[
U ;

∂L

∂η
,
∂R

∂η

]

×
∫
dψdψ e−ψ·D[U]·ψ+η·ψ+ψ·η

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

=
1

ZQCD

∫
dU e−SYM[U ]

∫
dψ′dψ

′
e−ψ

′

·D[U ]·ψ′

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

× lim
η, η→0

M

[
U ;

∂L

∂η
,
∂R

∂η

]
e−η·D[U]−1·η
✿✿✿✿✿✿✿✿✿✿

=

〈
lim

η, η→0
M

[
U ;

∂L

∂η
,
∂R

∂η

]
e−η·D[U ]−1·η

〉

QCD

.



correlation function relevant to determination of mP a

The correlation function relevant to determination of mPa :

Ga(x0) ≡
〈
∑

x

ψ(x)γ5T
a ψ(x) · ψ(0)γ5 T a ψ(0)

〉

QCD

,

where T a are U(3)F generators (tr
(
T aT b

)
= δab ; T a=0 ≡ I3/

√
3).

In what follows, mu = md = ms is assumed :

• SU(3)F symmetry.

• The ground state in the flavor non-singlet channel (a = 3) is π,
which should be a pseudo-Goldstone boson .

• The ground state in the flavor singlet channel (a = 0) is η′,
which should not be a pseudo-Goldstone boson.



correlation function relevant to determination of mP a

Ga(x0) ≡
〈
∑

x

ψ(x)γ5T
a ψ(x) · ψ(0)γ5 T a ψ(0)

〉

QCD

=

〈
∑

x

lim
η, η→0

(
∂R

∂η(x)
γ5T

a ∂L

∂η(x)

)(
∂R

∂η(0)
γ5T

a ∂L

∂η(0)

)
e−η·D[U ]−1·η

〉

QCD

=

〈
∑

x

(
∂R

∂η(x)
γ5T

a ∂L

∂η(x)

)(
∂R

∂η(0)
γ5T

a ∂L

∂η(0)

)

×1

2

(
η · D[U ]−1 · η

) (
η · D[U ]−1 · η

)〉

QCD

= −tr
(
(T a)

2
)〈∑

x

trs, c
[
γ5D[U ]−1(x, 0)γ5D[U ]−1(0, x)

]
〉

QCD

+ (tr (T a))2
〈
∑

x

trs, c
[
γ5D[U ]−1(x, x)

]
trs, c

[
γ5D[U ]−1(0, 0)

]
〉

QCD

.



difference between π and η′

• In the flavor-non-singlet channel, trT 3 = 0 so that

Ga=3(x0) = −
〈
∑

x

tr
s, c

(
γ5D[U ]−1(x, 0)γ5D[U ]−1(0, x)

)
〉

QCD

,

which is represented by the connected -type diagram

x 0

QCD

• Each line denotes D[U ]−1, not a free quark propagator .

• The connected-type diagram is responsible for generating the pole
of pseudo-Goldstone boson.



difference between π and η′

• In the continuum theory (Gµ(x) is gluon field),

D−1 =
1

γµ∂µ +m− iγµGµ

=
1

γµ∂µ +m
+

1

γµ∂µ +m
(iγαGα)

1

γν∂ν +m

+
1

γµ∂µ +m
(iγαGα)

1

γν∂ν +m
(iγβGβ)

1

γλ∂λ +m

+ · · · .

• The QCD average 〈A[U ]〉QCD includes the effect of the
virtual quark-antiquark pair creation/annihilation through
gluons.



difference between π and η′

• To the flavor-singlet channel the disconnected -type diagram

x 0

QCD

also contributes :

G0(x0) = G3(x0)︸ ︷︷ ︸
connected→pion mass

+ 3

〈
∑

x

tr
s, c

(
γ5D[U ]−1(x, x)

)
tr
s, c

(
γ5D[U ]−1(0, 0)

)
〉

QCD︸ ︷︷ ︸
disconnected

• Disconnected-type diagram accounts for mη′ ∼ 1, 000 MeV .



HLbL diagrams

Each contribution to aµ(HLbL) can be expressed as a diagram written
by D[U ]−1 :

• Connected -type diagram , in which all of four electromagnetic
(EM) vertices lie on a single quark loop :

〈

quark

〉

QCD

µ

+ (permutations of QED vertices(•)
on muon side) ,

where each black line denotes D[U ]−1 for a given U .

• Six disconnected -type diagrams, in each of which four EM vertices
are distributed over more than one quark loops.



HLbL diagrams

QCD

µ



(2E, 2)-type diagrams

QCD

con

QCD

con

QCD

con

FIG. 1: (2E , 2)-type diagrams



(3E, 1)-type diagrams

QCD QCD

QCD QCD

QCD QCD

FIG. 1: (3E , 1)-type diagrams. The diagrams with O(a) local QED vertices are not shown.



(1E, 3)-type diagrams

QCD QCD

Figure: (1E , 3)-type diagrams



Diagrams of (1E, 1, 2)-type

QCD

con

QCD

con

QCD

con

FIG. 1: (1E , 1, 2)-type diagrams



Diagrams of (2E, 1, 1)-type

QCD

con

QCD

con

QCD

con

Figure: (2E , 1, 1)-type diagrams



Diagram of (1E, 1, 1, 1)-type

QCD

con

Figure: (1E , 1, 1, 1)-type diagrams



possible significance of disconnected-type diagrams

In most cases, calculation of disconnected-type diagrams is much more

difficult than that of connected one :

• If we can speculate that disconnected-type diagrams is negligibly
small compared to the connected one, we can concentrate on
calculation of connected-type diagram.

• But, we are unable to do so.

• Lattice QCD simulation is necessary for the disconnected-type
diagram.

• Disconnected-type diagrams can be important if hadronic model
calculation (HMc) captures bulk of dynamics for aµ(HLbL).



more on hadronic model calculation

• In HMc, the pseudoscalar-pole contribution is the most dominant
(M. H., T. Kinoshita and A. I. Sanda, Phys. Rev. Lett. 75, 790 (1995);

J. Bijnens, E. Pallante and J. Prades, Phys. Rev. Lett. 75, 1447 (1995). ):

µ

π0, η, η′

• aµ(η′) ≃ 0.2× aµ(π0).

• Suppose that HMc is valid. Unless disconnected-type diagrams are
included ,

• η′ propagates as a pseudo-Goldstone boson .
• η′-contribution will be over -estimated :

[true aµ(HLbL)] < aµ(cHLbL).



possible significance of disconnected-type diagrams

We are calculating (2E , 2)-type diagram (the only disconnected-type
diagram that survives in the SU(3)F limit) :

QCD

con

QCD

con

QCD

con

FIG. 1: (2E , 2)-type diagrams



possible significance of disconnected-type diagrams

Our lattice calculation implies that aµ(cHLbL) ∼ [aµ(HLbL) by HMc].
If the disconnected-type diagram contribution, aµ(dHLbL), turns out

1) negligibly small, |aµ(dHLbL)| ≪ |aµ(cHLbL)|,
• HMc cannot be trustworthy,
• but had given a correct value accidentally .

2) non-negligible and negative,

• the picture in HMc may be valid,
• aµ(HLbL) ≡ aµ(cHLbL) + aµ(dHLbL)< [aµ(HLbL) by HMc],
• amplifying the discrepancy ∆aµ ≡ aµ(exp)− aµ(SM)> 0.

3) non-negligible and positive ,

• the picture in HMc will be wrong,
• aµ(HLbL) ≡ aµ(cHLbL) + aµ(dHLbL)> [aµ(HLbL) by HMc].
• aµ(SM) will become closer to aµ(exp).



current situation of muon g − 2

✲

0−100−200 +100 +200
(
aµ × 1011 − 116 592 000

)

SM

exp

δaµ(next exp)



perturbative QED dynamics in lepton g − 2

• Perturbative series expansion of the QED correction (ψ = e, µ) :

aψ(QED) = a
(1)
ψ ×

(α
π

)
+ a

(2)
ψ ×

(α
π

)2
+ a

(3)
ψ ×

(α
π

)3
+ · · · .

• Perturbative dynamics is contained in a
(n)
ψ :

ae(QED) = 0.5×
(α
π

)
+O(1)×

(α
π

)2
+O(1) ×

(α
π

)3

+O(1)×
(α
π

)4
+O(1)×

(α
π

)5
+ · · · ,

aµ(QED) = 0.5×
(α
π

)
+O(1)×

(α
π

)2
+O(10)×

(α
π

)3

+O(100)×
(α
π

)4

✿✿✿✿✿✿✿✿✿✿✿✿✿

+O(1, 000)×
(α
π

)5
+ · · · ,

where O(100)×
(α
π

)4
∼ O(300)× 10−11 ∼ aµ(SM)− aµ(exp).



perturbative QED dynamics in lepton g − 2

The difference between aµ(QED) and ae(QED) arises because

• For e, µ and τ are both heavier than itself. Therefore, the

mass-independent term A
(n)
1 dominates a

(n)
e :

a(n)e = A
(n)
1 +A

(n)
2

(
me

mµ

)
+A

(n)
2

(
me

mτ

)
+A

(n)
3

(
me

mµ

,
me

mτ

)
.

• For µ, e is much lighter than itself. Therefore, the terms caused by

the diagrams with electron loops dominate a
(n)
µ (n > 1) :

a(n)µ = A
(n)
1 +A

(n)
2

(
mµ

me

)
+A

(n)
2

(
mµ

mτ

)
+A

(n)
3

(
mµ

me

,
mµ

mτ

)
.

• Mathematically, a
(n)
ψ (ψ = e, µ, τ) are just given by a magic

number A
(n)
1 , and two functions A

(n)
2 (x) and A

(n)
3 (x, y).



situation of aµ (QED, 4-loop) before 2016

• Full calculation of a
(4)
µ , which consists of 891 Feynman diagrams,

has been done by only one group.

• Human error in the present result of a
(4)
µ ?

• T. Aoyama, M. H., T. Kinoshita and M. Nio, Phys. Rev. Lett. 99, 110406

(2007) found that a part of previous calculation of a
(4)
e, µ had been

incorrect :

a(4)e = A
(4)
1︸︷︷︸

corrected

+A
(4)
2

(
me

mµ

)
+A

(4)
2

(
me

mτ

)
+A

(4)
3

(
me

mµ

,
me

mτ

)
,

affecting ae and α(ae) significantly .

• Such a modification did not affect a
(4)
µ so much (, but affect aµ a

little bit through α(ae)).



”modern history” of α−1(ae)

Figure: History of α−1(ae) derived from ae(α) = ae(exp).



current situation on 4-loop QED correction

• Situation changed dramatically due to the following works by
Steinhauser , et . al ;

• A. Kurz, T. Liu, P. Marquard, A. Smirnov, V. Smirnov and

M. Steinhauser, arXiv:1602.02785 [hep-ph],
• A. Kurz, T. Liu, P. Marquard, A. Smirnov, V. Smirnov and

M. Steinhauser, Phys. Rev. D 92, no. 7, 073019 (2015).

• They focus on the dominant contribution only

a(4)µ = A
(4)
1 +A

(4)
2

(
mµ

me

)
+A

(4)
2

(
mµ

mτ

)
+A

(4)
3

(
mµ

me

,
mµ

mτ

)
.

• They found complete agreement with the result by T. Aoyama,

M. H, T. Kinoshita and M. Nio, PTEP 2012, 01A107 (2012) for these !

• Mistake no longer exists in the calculation of 4-loop QED
correction that matters significantly to aµ.



impact of complete 5-loop QED correction

• Dominant 5-loop QED correction would be given by

µ− e−

e−

e−

• Rough estimation signifies
5-loop QED correction ∼ O(1)× 10−11 = δaµ(next exp)



impact of complete 5-loop QED correction

• Recall that the combined uncertainty

δaµ ∼=
√
(δaµ (SM))2 + (δaµ (exp))

2 ≥ δaµ (SM) .

roughly quantifies likelihood of the difference between aµ (SM) and
aµ (exp).

• The comparison between theory and experiment with such improved
accuracy requires solid result for the 5-loop QED correction.

• We completed full calculation of 5-loop QED correction, which
consists of 12, 678 Feynman diagrams (T. Aoyama, M. H., T. Kinoshita

and M. Nio, Phys. Rev. Lett. 109, 111808 (2012).)



impact of complete 5-loop QED correction

Table: aµ(QED) at each loop, scaled by 1011

loop n using α(Rb) using α(ae)
1 116 140 973.318 (77) 116 140 973.213 (30)
2 413 217.6291 (90) 413 217.6284 (89)
3 30 141.902 48 (41) 30 141.902 39 (40)
4 381.008 (19) 381.008 (19)
5 5.0938 (70) 5.0938 (70)

sum 116 584 718.951 (80) 116 584 718.846 (37)

Complete calculation of a
(5)
µ eliminated

the uncertainty ∼ O(1)× 10−11 = δaµ(next exp),
which would have persisted without being done !
Now, the uncertainty in aµ(QED) comes mostly from

• one-loop (n = 1) contribution through the uncertainty in α,



aµ(HLbL), part 2

• Why has aµ(HLbL) not been calculated by lattice QCD ?

• Attempt in collaboration with

Thomas Blum, Saumitra Chowdury (Connecticut U .)

Norman Christ (Columbia U .)

Luchang Jin (Columbia U . ⇒ BNL )

Taku Izubuchi (BNL & RIKEN -BNL Research Center)

Christoph Lehner, Chulwoo Jung (BNL )

Peter Boyle (Edinburgh U .)

Andress Jüttner (Southampton U .)

Norikazu Yamada (KEK & Sokendai)

• Preliminary results



straightforward method for aµ(cHLbL)
Initialize f = 0, and repeat the following computation with
spinor-color-valued field b[xex, s0, c0](x)s, c ≡ δxex

x δ
s0
s δ

c0
c (for a fixed

position xex of the external QED vertex) for all spinor components s0
and color components c0 (and µ ⊥ q ≡ p(F ) − p(I)) :
1. Solve D[U ]v = γµ b

[xex, s0, c0]. Solve D[U ]w = γ5b
[xex, s0, c0].

2. Calculate b(1)(x) ≡ eil(1)·xv(x) and u(x) ≡ γ5eil(2)·xw(x).
3. Solve D[U ]v(1) = b(1).

4. Calculate b(2)(x) ≡ ei(l(2)+q−l(1))·xv(1)(x).
5. Solve D[U ]v(2) = b(2).

6. Take the inner product h ≡
(
u, v(2)

)
, and add it to f ; f ← f + h.

〈

quark

l(1) l(2)

〉

QCD

µ
pF pI



impossibility of calculation of aµ(HLbL)

• Calculation of connected-type hadronic light-by-light scattering
diagram (cHLbL) requires the following number of repetition of
solving the linear problems :

(V4)
2 ⇔

(
l(1), l(2)

)

× 2 ⇔ v and w at the step 1 can be reused

× 3 ⇔ (µ ⊥ q)
× {#(spinors)×#(colors) = 4× 3 = 12}︸ ︷︷ ︸

determination of pion mass

,

per {flavor, U}.
• #(independent momenta) = lattice volume, V4.

• For the lattice geometry 483 × 96, V4 ∼ 107, so that (V4)
2 ∼ 1014.

• It would require more than 100 years even if we were allowed to use
full resource of KEI computer !



reexamination of the problem
To make the impossible possible, we scrutinize the problem itself :

• It is not certain that the contribution from the HLbL of hard
photons (|q| & 0.8 GeV) is negligible compared to O(10)× 10−11.

• It is sure that the contribution from the HLbL of harder photons
is smaller than that of soft photons :

• Photon propagator ∼ 1/q2 damps hard photon contribution.
• The size of the HLbL amplitude itself is smaller for hard

photons , |q| & 0.8 GeV.

QCD



reexamination of the problem

• The straightforward method would consume most of the

run-time on the supercomputer for the calculation of insignificant
contribution.

• Tempted to explicitly cut off the internal photon momenta.

• But, the momentum cutoff breaks gauge symmetry explicitly,
which could instabilize the result .



strategy for lattice QCD simulation of aµ(HLbL)

Gauge-invariant importance sampling is the only strategy which may
enable us to calculate aµ(HLbL) by lattice QCD simulation :

• Importance sampling implies that the contribution from the
scattering with softer photons is more preferentially calculated in
some stochastic manner, and is summed up.

• The hard-photon contribution is also computed, but
sampled less frequently according to its importance.

• The optimal choice for the function evaluating the importance
requires full knowledge on the HLbL amplitude, and cannot be
made.

• With a presumed probability p(a) estimating importance, we do

reweighting
∑

a∈A

f(a) =
∑

a∈A

p(a)
f(a)

p(a)
∼

N∑

j=1

f(a(j))

p(a(j))
with a

sample
{
a(j)
}
j=1, ··· , N

chosen according to p(a), or its variants.



nonperturbative QED method for aµ(cHLbL)

Consider the following quantity (hep-lat/0509016, arXiv:1407.2923 [hep-lat])

1
3
×

µ QCD+ q-QEDA

−

µ q-QEDA

QCD+ q-QEDB

where D
[
Ue−iQeA

]−1
for quark line, D

[
eieA

]−1
for muon line, and

〈O[A]〉q-QED

≡ 1

Zq-QED

∫
dA exp

[
−
∑

x

{
1

4
(Fµν(x))

2
+ gauge-fixing

}]
O[A] .

(quenched QED ⇔ A does not couple to sea quarks)



nonperturbative QED method for aµ(cHLbL)
Nonperturbative QED method assumes

• The quantity nonperturbatively computed w.r.t. QED can be
expanded in a power series of α.

The result for the nonperturbative (QCD + q-QED) calculation of pion
mass supports it
(N. Yamada et al . [RBC Collaboration], PoS LAT 2005, 092 (2006) ) :
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nonperturbative QED method for aµ(cHLbL)

QCD+ q-QED

QCD

(1)

QCD

(2)

QCD

(3)

• Perturbatively, q-QED average supplies only virtual photons , i .e.
no creation/annihilation of quark-antiquark pairs via photon .

• Each photon line thus created has two end points in either one of
the following three ways :

(1) both on the valence quark part,
(2) both on the muon part,
(3) one on the valence quark part, but the other on the muon part.



nonperturbative QED method for aµ(cHLbL)

QCD+ q-QED

=

q-QED

QCD+ q-QED

+3×

q-QED

QCD+ q-QED
+ (5 permutations of

vertices on muon side)

+ (diagrams intervened by 5 or more photons)



nonperturbative QED method for aµ(cHLbL)

The basic idea behind (M. H., T. Blum, T. Izubuchi and N. Yamada, PoS LAT

2005, 353 (2006) ; T. Blum, S. Chowdhury, M. H. and T. Izubuchi, Phys. Rev. Lett.

114, 012001 (2015). ) is as follows :

• Remove two photons connecting quark part and muon part, and
reproduce them stochastically .

• Smoother Aµ(x) would be preferentially sampled at weak
coupling.

• Couple quarks to such Aµ(x) and construct quark loop in that
background.

• As a smoother Aµ(x) would be more abundant in low frequency

modes , the contribution from the scattering of softer photons
would be preferentially sampled .



nonperturbative QED method for aµ(cHLbL)

• Nonperturbative QED method requires subtraction of O(α2)
contribution to the magnetic form factor.

• Subtraction will be realized only if the subtraction term is strongly
correlated with the 1st term.

• Use of the same q-QED configurations for the muon part in the
subtraction term as the 1st term will be beneficial , because

1

#(U)

∑

U

1

#(A)

∑

A

∑

x, y

∑

λ(
Qµ, λ[U, A](x)−

1

#(B)

∑

B

Qµ, λ[U, B](x)

)

×
∑

ρ

e2Dλρ(x− y)× Lρ[A](y ; tF , tI) ,

at A = 0, which is O(α2), has no contribution to the magnetic
form factor.



nonperturbative QED method for aµ(cHLbL)

• For aµ(cHLbL),

• Iwasaki gauge action with (2 + 1) dynamical quarks on
243 × 64 with a−1 = 1.73 GeV.

• Shamir-type domain wall fermion with L5 = 16, M5 = 1.80
and mπ = 329 MeV, and amµ = 0.1 and M5, µ = 0.99.

• noncompact lattice QED in Feynman gauge with e0 = 1.

• We measure F2(Q
2) at momenta Qµ with the minimum size in the

space with finite volume, |Q| = 2π
L
.



nonperturbative QED method for aµ(cHLbL)

Figure: F2(Q
2 = (2π/L)2)/(α/π)3 from cHLbL (Black). tsep ≡ tF − tI .

The external QED vertex is put at (tI + tsep/2). Blue line denotes F2(0)
from hadronic model calculation.



moment method

With r/2,u, (−r/2) and h the positions of four QED vertices on the
quark loop (T. Blum, N. Christ, M. H., T. Izubuchi, L. Jin and C. Lehner, Phys.

Rev. D 93, 014503 (2016) [arXiv:1510.07100 [hep-lat]] )

aµ(cHLbL) =
1

#(U )

∑

U

∑

r

p(|r|)

 1

p(|r|) ×Magnetic part of
∑

u, h

Kν
( r
2
, u, − r

2
, h; U

)

 .

We perform important sample w.r.t. r using a presumed weight p(|r|),
and inversions with sources at r

2 and − r2 :

p(|r|) ∝
{

1 |r| < r(0)
|r|−3.5 |r| ≥ r(0)

.



aµ(cHLbL) by moment method

Figure: cHLbL contribution to F2(q
2) by the moment method (red dot,

q = 0) (T. Blum, N. Christ, M. H., T. Izubuchi, L. Jin and C. Lehner,

arXiv:1510.07100 [hep-lat] ) and by nonperturbative QED method (black
dot, |q| = 2π/(24 a) = 457 MeV).



physical pion simulation on 483 × 96

• mπ = 139 MeV, physical ms, mµ = 106 MeV.

• a−1 = 1.79 GeV, L = 5.5 fm.

• #(U) = 69.

• For every U ,

• for connected diagram, measurement is performed for
112(|r| ≤ 5) + 256(|r| > 5) pairs of points;

• for (2E, 2)-type, each quark loop is constructed for
Nmeas = 1024(u, d) + 512(s) positions of one EM vertex on

that loop, providing (Nmeas)
2
combinations.



(2E, 2)-type disconnected diagram

QCD

con

QCD

con

QCD

con

FIG. 1: (2E , 2)-type diagrams



Linear problem with local source
To get, for a fixed xs ∈ Γ,

{
D [U ]

−1
(x, xs)

}
x∈Γ

,

we solve the following linear problem for every
{s0, c0}s0=1, ··· , 4; c0=1, ··· , 3

• Prepare local source vector b[xs, s0, c0](x) ≡ δxs
x η

[s0, c0] with(
η[s0, c0]

)
s, c

= δs0s δ
c0
c .

• Solve D[U ]v[xs, s0, c0] = b[xs, s0, c0] to get v[xs, s0, c0].

•
[
D [U ]−1 (x, xs)

]
(s, c), (s0, c0)

≡
(
v[xs, s0, c0](x)

)
(s, c)

.

Recall that, from D [U ]
−1

(0, x) = γ5D [U ]
−1

(x, 0)
†
γ5,

G3(x0) ≡
〈
∑

x

P 3((x0, x))P
3(0)

〉

U

=−
〈
∑

x

∣∣∣D [U ]
−1

(x, 0)
∣∣∣
2
〉

U

for the equality in SU(3)F -limit.



possible significance of disconnected-type diagrams

Our lattice calculation implies that aµ(cHLbL) ∼ [aµ(HLbL) by HMc].
If the disconnected-type diagram contribution, aµ(dHLbL), turns out

1) negligibly small, |aµ(dHLbL)| ≪ |aµ(cHLbL)|,
• HMc cannot be trustworthy,
• but had given a correct value accidentally .

2) non-negligible and negative,

• the picture in HMc may be valid,
• aµ(HLbL) ≡ aµ(cHLbL) + aµ(dHLbL)< [aµ(HLbL) by HMc],
• amplifying the discrepancy ∆aµ ≡ aµ(exp)− aµ(SM)> 0.

3) non-negligible and positive ,

• the picture in HMc will be wrong,
• aµ(HLbL) ≡ aµ(cHLbL) + aµ(dHLbL)> [aµ(HLbL) by HMc].
• aµ(SM) will become closer to aµ(exp).



physical pion simulation on 483 × 96

With statistical uncertainty only,

aµ(cHLbL) = (116.0± 9.6)× 10−11

aµ((2E , 2)) = (−62.5± 8.0)× 10−11

aµ(cHLbL + (2E , 2)) = (53.5± 13.5)× 10−11 ,

while the hadronic model calculation (HMc) gave

aµ(HLbL)|HMc = (116± 40)× 10−11.

We need

• Intensive study on systematic uncertainty (V <∞, a 6= 0).

• Calculation of other disconnected-type diagrams.



current situation of muon g − 2 with aµ(HLbL)|HMc

✲

0−100−200 +100 +200
(
aµ × 1011 − 116 592 000

)

SM

exp

δaµ(next exp)



Nonperturbative QED method for full aµ(HLbL)

• Nonperturbative QED method to compute full aµ(HLbL), i .e.
(connected + 6 disconnected), was proposed in arXiv:1301.2607

[hep-lat] , which has one overlooked point.

• The term (−KD) is introduced to remove unwanted contribution
(M. H., T. Blum, N. H. Christ, T. Izubuchi, L. C. Jin and C. Lehner,

arXiv:1511.01493 [hep-lat]).

1

3
{(MC − SC) + (MC′ − SC′) + (MD − SD)−KD}



Nonperturbative QED method for full aµ(HLbL)

1

3
{(MC − SC) + (MC′ − SC′) + (MD − SD)−KD}

MC =

QCD+QED

SC =

QCD+QED

QCD+QED

MC′ =

QCD+QED

SC′ =

QCD+QED

QCD+QED



Nonperturbative QED method for full aµ(HLbL)

1

3
{(MC − SC) + (MC′ − SC′) + (MD − SD)−KD}

MD =

QCD+QED

SD =

QCD+QED

QCD+QED

KD =

D
[

U(1) e
−iQq eA(1)

]

−1

D

[

U(2) e
−iQ

q′
e A(2)

]

−1

D
[

e
−iQµ e A(1) e

−iQµ eA(2)
]

−1
↑ ↑

(

U(1), A(1)

)

,
(

U(2), A(2)

)



Nonperturbative QED method for full aµ(HLbL)

Every HLbL diagram is generated with triplicate redundancy :

Table: The multiplicity provided by each term in nonperturbative QED
method. C, say, denotesMC − SC .

C + C′ D
4E 3 0
(3E, 1) 2 1
(1E, 3) 0 3
(2E, 2) 1 2
(2E, 1, 1) 1 2
(1E, 1, 2) 0 3
(1E, 1, 1, 1) 0 3



Nonperturbative QED method for full aµ(HLbL)

QCD QCD QCD

Figure: An identical diagram of (2E , 2)-type is generated in three ways
fromMC (left) andMD (middle, right). The red lines and vertices are
generated by the ensemble average of (QCD + QED).



Structure of unwanted HVP

QCD

QCD

SC =

QCD+QED

QCD+QED

Figure: The left diagram is the disconnected component involved in a
diagram of type (2E, 2) induced fromMC . It is canceled by (−SC).

• The disconnected contribution with (bare HVP function + the two
photons attached to it) generated entirely by ensemble average is
canceled by (−SC), (−SC′) or (−SD).



Structure of unwanted HVP

QCD QCD QCD

Figure: An identical diagram of (1E , 1, 2)-type is generated fromMD in
three ways. The disconnected component of the left diagram is canceled
by (−SD). However, the other two disconnected components survive
without being subtracted.



Structure of unwanted HVP

QCD

QCD

QCD

QCD

QCD

QCD

QCD

QCD

QCD

QCD

QCD

QCD

Figure: Summary of unwanted diagrams, showing that every diagram
with the same topology appears exactly twice.



Structure of unwanted HVP

Here, bare HVP function consists of connected-type contribution and
disconnected-type contribution in terms of lattice field theory (diagrams
with O(a) QED vertices are not shown here)

QCD =
QCD

+
QCD

where the red lines and vertices are generated by the ensemble average of

(QCD +QED).



HLbL amplitude by Mainz lattice group

Figure: cHLbL amplitude in two-flavor QCD (J. Green, O. Gryniuk, G. von

Hippel, H. B. Meyer and V. Pascalutsa, Phys. Rev. Lett. 115, no. 22, 222003 (2015)

), together with the one by π0-propagation (dashed line) and the one by
π0 + η′(singlet) (dotted line) in HMc.


