南部ゴールドストンの定理の 一般化

日高義将 理化学研究所

素粒子物理学の進展2016 2016年9月6日

<u>Nambu('60)</u>, <u>Goldstone(61)</u>, <u>Nambu Jona-Lasinio('61)</u>, <u>Goldstone</u>, <u>Salam</u>, <u>Weinberg('62)</u>.

ローレンツ対称性がある場合
 大域的連続対称性の自発的破れ

 $N_{NG} = N_{BS}$ NGモードの数 破れた対称性の数

分散関係: $\omega = c |k|$

超流動音波

スピン波

CC by-sa Aney

パイオン

 π

CC by Zouavman Le Zouave

CC by-sa Roger McLassus

<mark>パイオン</mark> カイラル対称性

 π

超流動音波 U(1)対称性

<mark>スピン波</mark> スピン対称性

南部-Goldstoneモード

by-sa <u>Anev</u>

<mark>光子</mark> U(1) 1-形式対称性

表面波 並進対称性 <mark>拡散モード</mark> 回転対称性

CC by Zouavman Le Zouave

CC by-sa Roger McLassus

<u>パイオン</u> カイラル対称性

 π

超流動音波 U(1)対称性

スピン波 スピン対称性

CC by-sa Aney

NG定理をそのまま適用可能

U(1) 1-形式対称性

並進対称性

回転対称性

CC by-sa Roger McLassus

CC by Zouavman Le Zouav

NG定理の拡張が必要

CC by-sa Aney

<mark>光子</mark> U(1) 1-形式対称性

CC by Zouavman Le Zouave

表面波 並進対称性

<mark>拡散モード</mark> 回転対称性

CC by-sa Roger McLassus

その他のギャップレスモード 空気中の音波 ガリレイ対称性 トポロジカル絶縁体の Topological Insulator エッジモード Electron(up spin) Electron(down spin) トポロジーと離散対称性

カイラル磁気波 カイラル対称性と アノマリー

連続対称性の自発的破れ 何がうれしいか? 理論の詳細によらず様々な事が言える.

低エネルギー定理

例) Goldberger-Treiman relation

 $g_{\pi NN} = 2m_N g_A / f_\pi$

異なるvertexの結合定数の関係

マグノン: $\omega \sim k^2$

フォノン: $\omega \sim k$

自発的対称性の破れ

"自発的"破れ:

 $\langle [Q_a, \phi_i(\boldsymbol{x})] \rangle \equiv \operatorname{tr} \rho [Q_a, \phi_i(\boldsymbol{x})] \neq 0$ 真空: $\rho = |\Omega\rangle\langle\Omega|$ $\rho = \frac{\exp(-\beta(H - \mu N))}{\operatorname{tr}\exp(-\beta(H - \mu N))}$ 物質中: もし電荷がwell-definedなら $[iQ_a, \rho] = 0$ $\langle [iQ_a, \phi_i(\boldsymbol{x})] \rangle = \mathrm{tr}\rho[iQ_a, \phi_i(\boldsymbol{x})]$ $= \operatorname{tr}[\rho, iQ_a]\phi_i(\boldsymbol{x}) = 0$ 巡回性 自発的対称性の破れ⇒電荷がill-defined.

長距離力がある系

南部理論

 π

開放系

長距離力がある系

開放系

非相対論系

K中間子凝縮したCFL相のNG モード-

Miransky, Shovkovy ('02) Schafer, Son, Stephanov, Toublan, and Verbaarschot ('01)

$$SU(2)_I imes U(1)_Y o U(1)_{
m em}$$
 $N_{
m BS} = 3, \quad N_{
m NG} = 2$
分散: $\omega \propto k \ge \omega \propto k^2$

内部対称性の自発的破れ $対称性の群 G \Rightarrow H$

平の方向の数 $N_{\rm BS} = \dim(G/H)$

非相対論系でもこの関係は成り立つ。

スピンの場合 自由エネルギー: $F = \frac{1}{2} (\partial_i \pi^a)^2 + \cdots$ 独立な弾性変数の数= $N_{ m BS}$

これらは、静的な振る舞い動的な振る舞いは非自明.

NGモードの分類

Watanabe, Murayama ('12), YH ('12)

cf. Takahashi, Nitta ('14), Beekman ('14)

Type-A, Type-Bの古典模型

コマが付いた振り子

● 回転対称性は重力による陽な破れ

● z軸の周りの回転は対称性がある

) x, y軸に沿った対称性は破れている

) 破れた対称性の数は2つ

Type-A, Type-Bの古典模型

独立な2つの振り子の運動

Type-A, Type-Bの古典模型

この時, $\{L_x, L_y\}_P = L_z \neq 0$

Type-A $\omega \sim \sqrt{g}$

Type-B $\omega \sim g$

Type-AType-B $\omega \sim \sqrt{g} \sim \sqrt{k^2}$ $\omega \sim g \sim k^2$

有効ラグランジアンの方法

Leutwyler ('94) Watanabe, Murayama ('12)

可能な項を書き下す.

$$\mathcal{L} = \frac{1}{2} \rho_{ab} \pi^a \dot{\pi}^b + \frac{\bar{g}_{ab}}{2} \dot{\pi}^a \dot{\pi}^b - \frac{g_{ab}}{2} \partial_i \pi^a \partial_i \pi^b$$
+higher orders

ローレンツ対称性がない場合 時間の一階微分があっても良い.

$$\rho_{ab} \propto -i\langle [Q_a, j_b^0(x)] \rangle$$

Watanabe, Murayama ('12)

Type-B NGの例

	$N_{\rm BS}$	$N_{\text{type-A}}$	$N_{\mathrm{type-B}}$	$\frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$	$N_{\rm type-A} + 2N_{\rm type-B}$			
強磁性体中の マグノン SO(3)→SO(2)	2	0	1		2			
K中間子凝縮 したCFL相のNG モード SU(2)xSU(1)y→U(1)em	3	-	1		3			
Spinor BEC SO(3)xU(1)→U(1)	3	1	1	-1	3			
非相対論的 有限質量の CP ¹ 模型 U(1)x R³→R ²	2	0	1	-	2			
$N_{\text{type-A}} + 2N_{\text{type-B}} = N_{\text{BS}} \qquad N_{\text{BS}} - N_{\text{NG}} = \frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$								

Hayata, YH ('14)

熱浴粒子との散乱で幅を持つ

Type-A: $\omega = ak - ibk^2$ Type-B: $\omega = a'k^2 - ib'k^4$ これは電荷の拡散と同様 (or 低エネルギー定理) $\partial_t j^0 = -k^2\Gamma_k j^0 + \cdots$

Hayata, YH ('14)

熱浴粒子との散乱で幅を持つ

Type-A: $\omega = ak - ibk^2$ Type-B: $\omega = a'k^2 - ib'k^4$ これは電荷の拡散と同様 (or 低エネルギー定理) $\partial_t j^0 = -k^2 \Gamma_k j^0 + \cdots$ Type-B: $\Gamma_k \sim \sigma/\chi \sim k^2$

広がりを持った物体の 対称性への拡張

トポロジカルソリトン 非相対論的 CP1 模型

Type-B Kelvon

x trans.

1-form symmetry y trans.

Kobayashi, Nitta, 1403.4031

c.f. Watanabe, Murayama 1401.8139

Type-B Ripplon-Magnon

z trans.

 $|P_z, Q| \propto N$ U(1)

2-form symmetry Kobayashi, Nitta, 1402.6826

NGモードとしての光子 cf. Ferrari, Picasso ('71), Hata ('82), Kugo, Terao, Uehara ('85) Gaiotto et al. ('15)

電荷を持った物体 Wilson ('t Hooft) ループ $W = \exp\left[i \oint A_{\mu} dx^{\mu}\right]$ $H = \exp\left[i \oint \tilde{A}_{\mu} dx^{\mu}\right]$ 電荷:電束,磁束 $Q_e = \int d\boldsymbol{S} \cdot \boldsymbol{E} \quad \frac{dQ_e}{dt} = 0$ $Q_m = \int d\boldsymbol{S} \cdot \boldsymbol{B} \ \frac{dQ_m}{dt} = 0$

NGモードとしての光子 cf. Ferrari, Picasso ('71), Hata ('82), Kugo, Terao, Uehara ('85) Gaiotto et al. ('15)

電荷を持った物体 Wilson ('t Hooft) ループ $W = \exp\left[i \oint A_{\mu} dx^{\mu}\right]$ $H = \exp\left[i \oint \tilde{A}_{\mu} dx^{\mu}\right]$ 電荷:電束,磁束 $Q_e = \int d\boldsymbol{S} \cdot \boldsymbol{E} \quad \frac{dQ_e}{dt} = 0$ $Q_m = \int d\boldsymbol{S} \cdot \boldsymbol{B} \ \frac{dQ_m}{dt} = 0$

NGモードとしての光子

ループの期待値

 〈 〇 〉
 〈 面積則:
 破れてない

 クーロン則:
 破れている

光子=NGモード 6つの破れた生成子: E^i, B^i しかしそれらは独立ではない

 $[E^{i}(\boldsymbol{x}), B^{j}(\boldsymbol{y})] = \epsilon^{ijk} \partial_{k} \delta^{(3)}(\boldsymbol{x} - \boldsymbol{y})$ クンガ光子 $\nabla \cdot \boldsymbol{E} = 0$

非相対論的な光子

光子とドメインウォールと相互作用する系を考える $S = \frac{1}{2} \int d^4x \left(\mathbf{E}^2 - \mathbf{B}^2 \right) + C \int d^4x \pi \mathbf{E} \cdot \mathbf{B}$

もし $\partial_z \pi = \text{const}$ $\langle [Q_e(M_{xz}), Q_e(M_{yz})] \rangle \sim \int dz \partial_z \pi$ タイプ-B

CC BY-SA 2.0

非ハミルトニアン系での自発的対称性の破れの例 魚の上皮にいる細胞

B. Szabo, et al., Phys. Rev. E 74, 061908 (2006)

Model of active matter: Vicseck model, Active hydrodynamics, T. Vicsek, et al., PRL (1995). J. Toner, and Y. Tu, PRL (1995).

例 アクティブ流体のNG モード J. Toner, and Y. Tu, PRE (1998)

鳥の数保存則: $\partial \rho + \nabla \cdot (\rho v) = 0$

 $\frac{\partial_t \boldsymbol{v} + (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v} = \alpha \boldsymbol{v} - \beta \boldsymbol{v}^2 \boldsymbol{v} - \boldsymbol{\nabla} P + D_L \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{v}) + D_l (\boldsymbol{v} \cdot \boldsymbol{\nabla})^2 \boldsymbol{v} + \boldsymbol{f}$ 非保存項 ノイズ

定常解: $v^2 = \alpha/\beta \equiv v_0^2$ 対称性の破れ: $O(3) \rightarrow O(2)$ ゆらぎ: $v = (v_0 + \delta v_x, \delta v_y, \delta v_z)$

 $\omega = ck \quad \omega = i\Gamma k^2 \quad \mathbf{NG E} - \mathbf{F}$ 伝播モード 散逸モード

散逸系は普通の意味での作用が作れない

どのように対称性の破れを 議論すればよいか?

例) ブラウン運動の対称性

ランジュバン方程式 $\frac{d}{dt} \mathbf{x}(t) = \mathbf{u}(t)$ $\frac{d}{dt} \mathbf{u}(t) = -\gamma \mathbf{u}(t) + \boldsymbol{\xi}(t)$

 $\langle \xi_i(t)\xi_j(t')\rangle = 2\delta_{ij}\gamma T\delta(t-t')$

角運動量 $L = x \times u$ $\frac{d}{dt} \langle L(t) \rangle = -\gamma \langle x \times u(t) \rangle \neq 0$ 保存しない

ランジュバン方程式 $\frac{d}{dt}\boldsymbol{u}(t) = -\gamma \boldsymbol{u}(t) + \boldsymbol{\xi}(t)$ 経路積分 (or Fokker-Planck 方程式) **Martin-Siggia-Rose formalism** $Z = \int \mathcal{D}\chi \mathcal{D}u e^{iS_{\rm MSR}[\chi, u]}$ $iS_{\rm MSR} = \int dt \left[i\chi_i \left(\frac{d}{dt} u_i + u_i \right) - \frac{\chi_i^2}{2} \right]$ O(3) 対称性 $\chi_i \to R_{ij}\chi_j \quad u_i \to R_{ij}u_j \quad \text{with } R_{ij}R_{kj} = \delta_{jk}$

対称性の自発的破れ 例1) SU(2)xU(1)模型 Type-A Langevin 方程式 $(\partial_0^2 + \gamma \partial_0 - \nabla^2)\phi_a = -\frac{\partial V}{\partial \phi_a} + \xi_a$

線形解析

$$(\partial_0^2 + \gamma \partial_0 - \nabla^2)\pi_a = 0$$
夕イプ-ANGモード
 $-\omega^2 - i\gamma\omega + k^2 = 0$
 $\omega = \frac{-i}{2} \pm \frac{i}{2}\sqrt{\gamma^2 - 4k^2} \sim -\frac{i}{\gamma}k^2, -i\gamma + \frac{i}{\gamma}k^2$
散逸モード

対称性の自発的破れ Minami, YH ('15) 例2) SU(2)xU(1)模型 Type-B with 化学ポテンシャル $\overline{V(\phi)}$ $\begin{pmatrix} -\partial_0^2 - \gamma \partial_0 + \nabla^2 & 2\mu \partial_0 \\ -2\mu \partial_0 & -\partial_0^2 - \gamma \partial_0 + \nabla^2 \end{pmatrix} \begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix} = 0,$ $\omega = \frac{k^2}{4\mu^2 + \gamma^2} (\pm 2\mu - i\gamma)$ 2乗分散

MSRでの 自発的 破れ

模型解析: 2種類の散逸モード Type-A モード Type-Bモード 散逸的 $\omega = -ik^2\Gamma$ $\omega = ak^2 - ik^2\Gamma'$

cf. for review, Sieberer, Buchhold, Diehl, 1512.00637

まとめ

開放系でも自発的対称性の破れの

概念は適用可能

分散関係の予想

Minami, YH ('15)

タイプ	分散		伊方昌	<i>15</i> 11	=
	Re	Im	不行里	רע <u>ר</u>	副正明
A	k	k ²	Q _A , Q _R	超流動など	OK
	0	k ²	QA	鳥の群れ	
B <[Qa, Qr]>≠0	k ²	k ⁴	Q _A , Q _R	強磁性体	OK
	k ²	k ²	QA	?	

非相対論系での超対称性の破れ

Yu, Yang Phys. Rev. Lett. 100 090404 (2008), 105 150605 (2010)
Shi, Yu, Sun, Phys. Rev. A 81, 011604 (2010)
Lai and K. Yang Phys. Rev. A 91, 063620 (2015)
Blaizot, Hidaka, Satow, Phys. Rev. A 92, 063629 (2015)
Sannomiya, Katsura, Nakayama 1606.03947

非相対論系でのゲージ対称性の破れ

Gusynin, Miransky, Shovkovy, Phys. Lett. 581B, 82 (2004), Mod. Phys. Lett. A 19, 1341 (2004) Watanabe and Murayama Phys. Rev. D90, 121703 (2014) Hama, Hatsuda, Uchino, Phys. Rev. D 83, 125009 (2011)

他のギャップレスモード 有限の感受率

 $\chi = \int d^d x \left(\langle j_a^0(\boldsymbol{x}) j_a^0(\boldsymbol{0}) \rangle - \langle j_a^0(\boldsymbol{0}) \rangle^2 \right) > 0$

非自明な交換関係 $\langle [j_a^0(\boldsymbol{x}), j_b^0(\boldsymbol{y})] \rangle = c_{ab}(\nabla)\delta(\boldsymbol{x} - \boldsymbol{y})$

 $[j_V^0(\boldsymbol{x}), j_A^0(\boldsymbol{y})] = CB^k \partial_k \delta(\boldsymbol{x} - \boldsymbol{y})$ は

カイラルアノマリー $\partial_{\mu} j_{A}^{\mu} = CE^{i}B^{i}$ $[j_{V}^{0}(\boldsymbol{x}), j_{A}^{0}(\boldsymbol{y})] = CB^{k}\partial_{k}\delta(\boldsymbol{x}-\boldsymbol{y})$ は

$$B^{i} \neq 0$$
 ・ カイラル磁気波
 $\omega = v^{i}k_{i}$ $v^{i} = \frac{CB^{i}}{\sqrt{\chi_{V}\chi_{A}}}$

cf. Tomonaga-Luttinger liquidにおける電荷密度波

Ex2) 空気中の音波

 $-\langle [iT^{0i}(\boldsymbol{x}), T^{00}(\boldsymbol{y})] \rangle = h\partial_i \delta(\boldsymbol{x} - \boldsymbol{y})$

Ex2) 空気中の音波

 $-\langle [iT^{0i}(\boldsymbol{x}), T^{00}(\boldsymbol{y})] \rangle = h\partial_i \delta(\boldsymbol{x} - \boldsymbol{y})$ $h = \langle T^{00} + T^{ii} \rangle \mathbf{I} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}$

・ 空気中の音波 $\omega = vk \quad v^2 = \frac{h^2}{\chi_{T^{00}}\chi_{T^{0i}}} = \frac{\partial P}{\partial T^{00}}$