Precise top-quark mass at hadron colliders

> Sayaka Kawabata (SeoulTech)

Based on

- SK and H. Yokoya, arXiv:1607.00990
- SK, Y. Shimizu, Y. Sumino and H. Yokoya, PLB741 (2015) 232-238

Outline

- 1. Introduction to m_t determination
- 2. Diphoton mass spectrum を用いる方法
- 3. Lepton energy distribution を用いる方法
- 4. Summary

1. Introduction

Motivation to measure m_t

- One of the fundamental parameters of the SM
- Important input to various physics

Current status at hadron colliders

Tevatron+LHC m_t combinationarXiv:1403.4427 $m_t = 173.34 \pm 0.76$ GeV0.4 % precision !

Current status at hadron colliders

Current status at hadron colliders

Tevatron+LHC m_t combinationarXiv:1403.4427 $m_t = 173.34 \pm 0.76$ GeV0.4 % precision ! \checkmark \checkmark What kind of mass? $\neq m_t^{pole}, m_t^{MS}$ "Monte-Carlo mass"

 m_t^{pole} , $m_t^{\overline{MS}}$ measurements

m^t m^t = 173.8 ±2 GeV CMS, JHEP 08 (2016) 029

• $m_t^{MS} = 160.0^{+5.1}_{-4.5} \text{ GeV}$ D0, PLB 703 (2011) 422 The errors are still large.

m_t measurement at future e⁺e⁻ colliders

Threshold scan of tt production

Aim of this study

e⁺e⁻ collider と違って、hadron collider で 摂動QCD における定義の明確な top mass を 高精度で決定することは困難

この困難を克服する2つの方法を提案する

- Diphoton mass spectrum を用いる方法 SK and H. Yokoya, arXiv:1607.00990
- Lepton energy distribution を用いる方法 SK, Y. Shimizu, Y. Sumino and H. Yokoya, PLB741 (2015) 232-238

2. Diphoton mass spectrum を 用いる方法

SK and H. Yokoya, arXiv:1607.00990

Diphoton mass spectrum

- $\bullet \; H \to \gamma \gamma$
- New resonance search

Diphoton mass spectrum

- $\bullet \; H \to \gamma \gamma$
- New resonance search

$gg \rightarrow \gamma\gamma$ amplitude

- Two-loop amplitude for massless-quark loop Bern, De Freitas, Dixon, JHEP0109 (2001) 037
- One-loop amplitude for 5 massless-quark + top-quark loop

Dicus, Willenbrock, PRD37 (1988) 1801 Campbell, Ellis, Li, Williams, arXiv:1603.02663

Bound-state effectsを含める (this work)

Diphoton mass spectrum near threshold

m_t measurement at LHC and FCC

Simulation

• gg $\rightarrow \gamma\gamma$ generated according to our calculation

Diphox (LO)

- $q\bar{q} \rightarrow \gamma\gamma$
- Fragmentation contributions

Fitting fn : (gg prediction) + analytic smooth fn.

Sensitivity

• At FCC, systematic uncertainties should dominate.

Photon energy scale, isolation cuts, ...

Higher-order QCD corrections for pp → γγ X would be important.
 NLO qq̄, LO and NLO qg, NLO gg

3. Lepton energy distribution を 用いる方法

SK, Y. Shimizu, Y. Sumino and H. Yokoya, PLB741 (2015) 232-238

Weight function method

SK, Y.Shimizu, Y.Sumino, H.Yokoya, PLB 710, 658 (2012) SK, Y.Shimizu, Y.Sumino, H.Yokoya, JHEP 08, 129 (2013)

- Only lepton energy distribution is needed
- Independent of top-quark velocity distribution

Weight function method

SK, Y.Shimizu, Y.Sumino, H.Yokoya, PLB 710, 658 (2012) SK, Y.Shimizu, Y.Sumino, H.Yokoya, JHEP 08, 129 (2013)

- Only lepton energy distribution is needed
- Independent of top-quark velocity distribution

Method

1. Compute a weight function $W(E_\ell,m)$

$$W(E_l,m) = \int dE \mathcal{D}_0(E;m) \frac{1}{EE_l} (\text{odd func. of } \rho) \Big|_{e^{\rho} = E_l/E}$$

Lepton energy dist. in the rest frame of top quark (with mass m)

2. Using lepton energy dist. from experiment $D(E_{\ell})$, perform its weighted integration

$$I(m)\equiv\int dE_l D(E_l) W(E_l,m)$$

3. Obtain
$$m_t^{true}$$
 from
 $I(m = m_t^{true}) = 0$

Construction of weight function

For a two-body decay : $X \rightarrow \ell + Y$ (X is unpolarized)

Construction of weight function

For a two-body decay : $X \rightarrow \ell + Y$ (X is unpolarized)

 $W(E_l, m_X^{true}) = e^{ho}(\text{odd func. of }
ho)|_{e^{
ho} = E_l/E_0}$

Simulation analysis

- LHC √s = 14 TeV
- tt events, Lepton+jets channel

Event selection cuts and background deform lepton distribution.

Parton level の lepton distribution に戻す方針

SK, Y. Shimizu, Y. Sumino and H. Yokoya, PLB741 (2015) 232-238

Sensitivity of m_t determination

Uncertainties [GeV] (LO analysis)

Signal stat. error	0.4 ·	← At 100 fb ⁻¹ , Lepton+jets channel
μ _F scale	+1.5/-1.4	
PDF	0.6	
Jet energy scale	+0.2/-0.0	
BG stat. error	0.4	

Sensitivity of m_t determination

Uncertainties [GeV] (LO analysis)

Signal stat. error	0.4 🔸	← At 100 fb ⁻¹ , Lepton+jets channel
μ _F scale	+1.5/-1.4	Can be improved by including NLO
PDF	0.6	$+ \mathcal{U} + \mathcal{U}$
Jet energy scale	+0.2/-0.0	NLO b
BG stat. error	0.4	\overline{t} LO \overline{t} q
		$ \overline{q}$

Scale uncertainty in NLO top decay +0.3/-0.2 GeV preliminary

We aim for $\Delta m_t^{\text{pole}} < 1 \text{ GeV}$

4. Summary

- Precise determination of a theoretically well-defined m_t is demanded.
- We proposed two methods for precise m_t measurement at hadron colliders.
 - Diphoton mass spectrum を用いる方法

 Δ^{stat} m_t = 0.06 GeV for 10 ab⁻¹ at FCC

• Lepton energy distribution を用いる方法

 Δm_t^{pole} < 1GeV is probable at LHC