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sociology

• We used to think
• need to solve problems with the SM
• hierarchy problem, strong CP, etc
• it is great if a solution also gives dark 

matter candidate as an option
• big ideas: supersymmetry, extra dim
• probably because dark matter problem 

was not so established in 80’s
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Figure 5: Upper limits on the DM-nucleon cross section, at 90% CL, plotted against DM particle
mass and compared with previously published results. Left: limits for the vector and scalar
operators from the previous CMS analysis [10], together with results from the CoGeNT [60],
SIMPLE [61], COUPP [62], CDMS [63, 64], SuperCDMS [65], XENON100 [66], and LUX [67]
collaborations. The solid and hatched yellow contours show the 68% and 90% CL contours
respectively for a possible signal from CDMS [68]. Right: limits for the axial-vector operator
from the previous CMS analysis [10], together with results from the SIMPLE [61], COUPP [62],
Super-K [69], and IceCube [70] collaborations.

Figure 6: Observed limits on the mediator mass divided by coupling, M/pgcgq, as a function
of the mass of the mediator, M, assuming vector interactions and a dark matter mass of 50 GeV
(blue, filled) and 500 GeV (red, hatched). The width, G, of the mediator is varied between M/3
and M/8p. The dashed lines show contours of constant coupling pgcgq.

K = sNLO/sLO of 1.4 for d = {2, 3}, 1.3 for d = {4, 5}, and 1.2 for d = 6 [71]. Figure 7 shows 95%
CL limits at LO, compared to published results from ATLAS, LEP, and the Tevatron. Table 7
shows the expected and observed limits at LO and NLO for the ADD model.

Figure 8 shows the expected and observed 95% CL limits on the cross-sections for scalar un-
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recent thinking

• dark matter definitely exists

• naturalness problem is optional?

• need to explain dark matter on its own

• perhaps we should decouple these two

• do we really need big ideas like SUSY?

• perhaps we can solve it with ideas more 
familiar to us?
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Seminar in Berkeley
Strongly Interacting Massive Particle

(SIMP)

Yonit Hochberg
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SIMPlest Miracle
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• Not only the mass 
scale is similar to 
QCD

• dynamics itself can be 
QCD!  Miracle3

• DM = pions

• e.g. SU(4)/Sp(4) = S5
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SIMPlest Miracle

• SU(2) gauge theory with four doublets

• SU(4)=SO(6) flavor symmetry

• ⟨qi qj⟩≠0 breaks it to Sp(2)=SO(5)

• coset space SO(6)/SO(5)=S5

• π5(S5)=ℤ ⇒ Wess-Zumino term

• 𝓛WZ=εabcde εμνρσ πa∂μπb∂νπc∂ρπd∂σπe



Wess-Zumino term

• SU(Nc) gauge theory

• π5(SU(Nf))=ℤ (Nf ≥3)

• Sp(Nc) gauge theory

• π5(SU(2Nf)/Sp(Nf))=ℤ (Nf≥2)

• SO(Nc) gauge theory

• π5(SU(Nf)/SO(Nf))=ℤ (Nf≥3)

E. Witten / Global aspects of current algebra 

(a) (b) (c) 

Fig. 1. A particle orbit 3' on the two-sphere (part (a)) bounds the discs D (part (b)) and D' (part (c)). 
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D or D' (the curve 7 could continuously be looped around the sphere or turned 
inside out). Working with D' we would get 

ia A i d x  i = , (9) exp(  ) exp( ) 
where a crucial minus sign on the right-hand side of (9) appears because ~, bounds D 
in a right-hand sense, but bounds D' in a left-hand sense. If we are to introduce the 
right-hand side of (8) or (9) in a Feynman path integral, we must require that they 
be equal. This is equivalent to 

1 = e x p ( i a f D + D F ~ j d Y ~ i J ) .  (10) 

Since D + D' is the whole two sphere S 2, and fs2F~jdE ij = 4~r, (10) is obeyed if and 
only if c~ is an integer or half-integer. This is Dirac~s quantization condition for the 
product of electric and magnetic charges. 

Now let us return to our original problem. We imagine space-time to be a very 
large four-dimensional sphere M. A given non-linear sigma model field U is a 
mapping of M into the SU(3) manifold (fig. 2a). Since 7r4(SU(3)) = 0, the four-sphere 
in SU(3) defined by U(x) is the boundary of a five-dimensional disc Q. 

By analogy with the previous problem, let us try to find some object that can be 
integrated over Q to define an action functional. On the SU(3) manifold there is a 
unique fifth rank antisymmetric tensor w~jkt m that is invariant under SU(3)L × 
SU(3)R*. Analogous to the right-hand side of eq. (8), we define 

F = fQwijkt m d.Y ijkt" . ( 11 ) 

* Let us first try to define w at U = 1; it can then be extended to the whole SU(3) manifold by an 
SU(3)L × SU(3)R transformation. At U =  1, w must be invariant under the diagonal subgroup of 
SU(3)L × SU(3) R that leaves fixed U = I. The tangent space to the SU(3) manifold at U = 1 can be 
identified with the Lie algebra of SU(3). So ~0, at U = 1, defines a fifth-order antisymmetrie invariant 
in the SU(3) Lie algebra. There is only one such invariant. Given five SU(3) generators A, B, C, D 
and E, the one such invariant is Tr A B C D E  - Tr BA CDE + permutations. The SU(3)I~ × SU(3) R 
invariant w so defined has zero curl (c~iwjk/.,.+_ permutat ions=0)  and for this reason (11) is 
invariant under infinitesimal variations of Q; there arises only the topological problem discussed in 
the text. 

Witten
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The Results
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self interaction

• self interaction of σ/m~10–24cm2 / 300MeV

• flattens the cusps in NFW profile

• actually desirable for dwarf galaxies?
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communication

• 3 to 2 annihilation

• excess entropy must 
be transferred to e±, γ

• need communication 
at some level

• leads to experimental 
signal
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DM

SMentropy



if totally decoupled

• 3→2 annihilations without heat exchange is 
excluded by structure formation, [de Laix, Scherrer 
and Schaefer, Astrophys. J. 452, 495 (1995)]

Tdm

Tsm

Carlson, Hall and Machacek, 
Astrophys. J. 398, 43 (1992)



vector portal

dark QCD
with SIMP

Standard Model
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FIG. 1: �+ /E production channels for LDM coupled through
a light mediator. Left: Resonant ⌥(3S) production, followed
by decay to � + �� through an on- or o↵-shell mediator.
Right: The focus of this paper – non-resonant � + �� pro-
duction in e+e� collisions, through an on- or o↵-shell light
mediator A0(⇤). (Note that in this paper, the symbol A0 is
used for vector, pseudo-vector, scalar, and pseudo-scalar me-
diators.)

a mono-photon trigger during the entire course of data

taking.
The rest of the paper is organized as follows. In Sec. II

we give a brief theoretical overview of LDM coupled
through a light mediator. Sec. III contains a more de-
tailed discussion of the production of such LDM at low-
energy e

+

e

� colliders. In Sec. IV we describe the BABAR
search [37], and extend the results to place constraints
on LDM. In Sec. V we compare our results to existing
constraints such as LEP, rare decays, beam-dump exper-
iments, and direct detection experiments. In Sec. VI we
estimate the reach of a similar search in a future e

+

e

�

collider such as Belle II. We conclude in Sec. VII. A short
appendix discusses the constraints on invisibly decaying
hidden photons for some additional scenarios.

II. LIGHT DARK MATTER WITH A LIGHT
MEDIATOR

A LDM particle, in a hidden sector that couples weakly
to ordinary matter through a light, neutral boson (the
mediator), is part of many well-motivated frameworks
that have received significant theoretical and experimen-
tal attention in recent years, see e.g. [38–55] and refer-
ences therein. A light mediator may play a significant
role in setting the DM relic density [56, 57], or in alle-
viating possible problems with small-scale structure in
⇤CDM cosmology [58, 59].

The hidden sector may generally contain a multitude of
states with complicated interactions among themselves.
However, for the context of this paper, it is su�cient
to characterize it by a simple model with just two parti-
cles, the DM particle � and the mediator A

0 (which, with
abuse of notation, may refer to a generic (pseudo-)vector,
or (pseudo-)scalar, and does not necessarily indicate a
hidden photon), and four parameters:

(i) m� (the DM mass)

(ii) mA0 (the mediator mass)

(iii) ge (the coupling of the mediator to electrons)

(iv) g� (the coupling of the mediator to DM).

In most of the parameter space only restricted combi-
nations of these four parameters are relevant for �� pro-
duction in e

+

e

� collisions; we describe this in more detail
in Sec. III. The spin and CP properties of the mediator
and DM particles also have a (very) limited e↵ect on their
production rates, but will have a more significant e↵ect
on comparisons to other experimental constraints, as will
the couplings of the mediator to other SM particles. For
the rest of the paper, the “dark matter” particle, �, can
be taken to represent any hidden-sector state that couples
to the mediator and is invisible in detectors; in particu-
lar, it does not have to be a (dominant) component of
the DM.

The simplest example of such a setup is DM that does
not interact with the SM forces, but that nevertheless
has interactions with ordinary matter through a hidden

photon. In this scenario, the A

0 is the massive mediator
of a broken Abelian gauge group, U(1)0, in the hidden
sector, and has a small kinetic mixing, "/ cos ✓W , with
SM hypercharge, U(1)Y [42–44, 56, 60–62]. SM fermions
with charge qi couple to the A

0 with coupling strength
ge = " e qi. The variables ", g�, m�, and mA0 are the free
parameters of the model. We restrict

g� <

p
4⇡ , (perturbativity) (1)

in order to guarantee calculability of the model. Such a
constraint is also equivalent to imposing �A0

/mA0 . 1
which is necessary for the A

0 to have a particle descrip-
tion. We will refer in the following to this restriction as
the “perturbativity” constraint.

In this paper, we discuss this prototype model as well
as more general LDM models with vector, pseudo-vector,
scalar, and pseudo-scalar mediators. We stress that in
UV complete models, scalar and pseudo-scalar medi-
ators generically couple to SM fermions through mix-
ing with a Higgs boson, and consequently their cou-
pling to electrons is proportional to the electron Yukawa,
ge / ye ⇠ 3 ⇥ 10�6. As a result, low-energy e

+

e

� col-
liders are realistically unlikely to be sensitive to them.
Nonetheless, since more intricate scalar sectors may al-
low for significantly larger couplings, we include them for
completeness.

For simplicity we consider only fermionic LDM, as the
di↵erences between fermion and scalar production are
very minor. We do not consider models with a t-channel
mediator (such as light neutralino production through
selectron exchange). In these, the mediator would be
electrically charged and so could not be light.

III. PRODUCTION OF LIGHT DARK MATTER
AT e+e� COLLIDERS

Fig. 1 illustrates the production of � + /

E events at
low-energy e

+

e

� colliders in LDM scenarios. The chan-
nel shown on the left of Fig. 1 is the resonant production
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a mono-photon trigger during the entire course of data

taking.
The rest of the paper is organized as follows. In Sec. II

we give a brief theoretical overview of LDM coupled
through a light mediator. Sec. III contains a more de-
tailed discussion of the production of such LDM at low-
energy e

+

e

� colliders. In Sec. IV we describe the BABAR
search [37], and extend the results to place constraints
on LDM. In Sec. V we compare our results to existing
constraints such as LEP, rare decays, beam-dump exper-
iments, and direct detection experiments. In Sec. VI we
estimate the reach of a similar search in a future e

+

e

�

collider such as Belle II. We conclude in Sec. VII. A short
appendix discusses the constraints on invisibly decaying
hidden photons for some additional scenarios.

II. LIGHT DARK MATTER WITH A LIGHT
MEDIATOR

A LDM particle, in a hidden sector that couples weakly
to ordinary matter through a light, neutral boson (the
mediator), is part of many well-motivated frameworks
that have received significant theoretical and experimen-
tal attention in recent years, see e.g. [38–55] and refer-
ences therein. A light mediator may play a significant
role in setting the DM relic density [56, 57], or in alle-
viating possible problems with small-scale structure in
⇤CDM cosmology [58, 59].

The hidden sector may generally contain a multitude of
states with complicated interactions among themselves.
However, for the context of this paper, it is su�cient
to characterize it by a simple model with just two parti-
cles, the DM particle � and the mediator A

0 (which, with
abuse of notation, may refer to a generic (pseudo-)vector,
or (pseudo-)scalar, and does not necessarily indicate a
hidden photon), and four parameters:

(i) m� (the DM mass)

(ii) mA0 (the mediator mass)

(iii) ge (the coupling of the mediator to electrons)

(iv) g� (the coupling of the mediator to DM).

In most of the parameter space only restricted combi-
nations of these four parameters are relevant for �� pro-
duction in e

+
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� collisions; we describe this in more detail
in Sec. III. The spin and CP properties of the mediator
and DM particles also have a (very) limited e↵ect on their
production rates, but will have a more significant e↵ect
on comparisons to other experimental constraints, as will
the couplings of the mediator to other SM particles. For
the rest of the paper, the “dark matter” particle, �, can
be taken to represent any hidden-sector state that couples
to the mediator and is invisible in detectors; in particu-
lar, it does not have to be a (dominant) component of
the DM.

The simplest example of such a setup is DM that does
not interact with the SM forces, but that nevertheless
has interactions with ordinary matter through a hidden

photon. In this scenario, the A

0 is the massive mediator
of a broken Abelian gauge group, U(1)0, in the hidden
sector, and has a small kinetic mixing, "/ cos ✓W , with
SM hypercharge, U(1)Y [42–44, 56, 60–62]. SM fermions
with charge qi couple to the A

0 with coupling strength
ge = " e qi. The variables ", g�, m�, and mA0 are the free
parameters of the model. We restrict

g� <

p
4⇡ , (perturbativity) (1)

in order to guarantee calculability of the model. Such a
constraint is also equivalent to imposing �A0

/mA0 . 1
which is necessary for the A

0 to have a particle descrip-
tion. We will refer in the following to this restriction as
the “perturbativity” constraint.

In this paper, we discuss this prototype model as well
as more general LDM models with vector, pseudo-vector,
scalar, and pseudo-scalar mediators. We stress that in
UV complete models, scalar and pseudo-scalar medi-
ators generically couple to SM fermions through mix-
ing with a Higgs boson, and consequently their cou-
pling to electrons is proportional to the electron Yukawa,
ge / ye ⇠ 3 ⇥ 10�6. As a result, low-energy e
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� col-
liders are realistically unlikely to be sensitive to them.
Nonetheless, since more intricate scalar sectors may al-
low for significantly larger couplings, we include them for
completeness.

For simplicity we consider only fermionic LDM, as the
di↵erences between fermion and scalar production are
very minor. We do not consider models with a t-channel
mediator (such as light neutralino production through
selectron exchange). In these, the mediator would be
electrically charged and so could not be light.
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Conclusion

• surprising an old theory for dark matter

• SIMP Miracle3

• mass ~ QCD

• coupling ~ QCD

• theory ~ QCD

• can solve problem with DM profile

• very rich phenomenology

• Exciting dark spectroscopy!
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why effective operators
• In the absence of any concrete signal of 

new particles, we need to discuss effective 
operators to go beyond Higgs, i.e.probe 
physics at higher energies or weaker 
couplings
• precision Higgs
• precision flavor
• B, L violation

• similar to four-fermion operators in weak 
interactions



Nambu Jona-Lasinio

• D=6 four-fermion operator

• can cause fermion bi-linear condensate

• inspired by the BCS theory

• gap equation to solve for the condensate

• Simple but important question:

• In a given field theory, what is the 
complete set of higher dimension 
operators?



Effective Operators
• Surprisingly difficult question
• In the case of the Standard Model
• Weinberg (1980) on D=6 B, D=5 L
• Buchmüller-Wyler (1986) on D=6 ops
• 80 operators for Nf=1, B, L conserving

• Grzadkowski et al (2010) removed 
redundancies and discovered one missed
• 59 operators for Nf=1, B, L conserving

• Mahonar et al (2013) general Nf

• Lehman-Martin (2014,15) D=7 for 
general Nf, D=8 for Nf=1 (incomplete)

/ /



where the + . . . inside the large brackets are terms which evaluate to zero upon performing
the contour integrals. This is the Hilbert series for dimension-five operators in the SM EFT.
One readily identifies that the Hilbert series is picking up the well known operators which
give neutrino masses.

Repeating this at order ✏6 we obtain the Hilbert series for dimension-six operators of
the SM EFT:

bH6 = H3H† 3
+ u†Q†HH† 2

+ 2Q2Q† 2
+Q† 3L†

+Q3L+ 2QQ†LL†
+ L2L† 2

+ uQH2H†

+2uu†QQ†
+ uu†LL†

+ u2u† 2
+ e†u†Q2

+ e†L†H2H†
+ 2e†u†Q†L†

+ eLHH† 2
+ euQ† 2

+2euQL+ ee†QQ†
+ ee†LL†

+ ee†uu†
+ e2e† 2 + d†Q†H2H†

+ 2d†u†Q† 2
+ d†u†QL

+ d†e†u† 2
+ d†eQ†L+ dQHH† 2

+ 2duQ2
+ duQ†L†

+ de†QL†
+ deu2

+ 2dd†QQ†
+ dd†LL†

+2dd†uu†
+ dd†ee† + d2d† 2 + u†Q†H†GR + d†Q†HGR +HH†G2

R +G3
R + uQHGL

+ dQH†GL +HH†G2
L +G3

L + u†Q†H†WR + e†L†HWR + d†Q†HWR +HH†W 2
R +W 3

R

+uQHWL + eLH†WL + dQH†WL +HH†W 2
L +W 3

L + u†Q†H†BR + e†L†HBR

+ d†Q†HBR +HH†BRWR +HH†B2
R + uQHBL + eLH†BL + dQH†BL +HH†BLWL

+HH†B2
L + 2QQ†HH†D + 2LL†HH†D + uu†HH†D + ee†HH†D + d†uH2D + du†H† 2D

+ dd†HH†D + 2H2H† 2D2 . (3.16)

Setting all of the spurions equal to unity gives bH6 = 84, the total number of independent
local operators at dimension 6, but more information is contained in eq.(3.16). For instance,
the counting can easily be further decomposed by baryon number violation, 76 + 8. The
perhaps more familiar ‘59 + 4’ counting is one in which hermitian conjugates of fermionic
operators are not counted separately (such counting can of course also be obtained from
eq. (3.16)).

Explicit form of the operators

At low dimensions (including dimension 7 and 8), explicitly constructing an operator basis
requires minimal effort. For example, the +Q3L term in eq. (3.16) tells us that there
is one independent operator composed of three powers of Q and one power of L; the
+2LL†QQ† term that there are two independent operators composed of one power each of
L,L†, Q and Q†; the +2HH†QQ†D term that there are two independent operators com-
posed of H,H†, Q,Q† and one covariant derivative, etc. Exactly how derivatives act and
how Lorentz and gauge indices are contracted is information beyond what the Hilbert se-
ries can provide. However, such information can be easily deduced for low-order terms.
For example, in the 2HH†QQ†D term, because the combination QQ† has to be formed
into a Lorentz singlet, it follows there must be a /D = �µDµ, i.e. ¯Q�µQDµ; the gauge
indices can be contracted in two inequivalent ways: i

⇥
H†

(DµH)� (DµH†
)H

⇤
¯Q�µQ and

i
⇥
H†⌧a(DµH)� (DµH†

)⌧aH
⇤
¯Q�µ⌧aQ, where ⌧a are the SU(2)W generators.

Multiple flavors

The inclusion of additional fermion families is trivial—simply add the extra fields into the
PE. Alternatively the PE of each fermion family can be raised to the power of Nf—the
results we selected to show below use this counting for ease of display, but in doing this
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where the + . . . inside the large brackets are terms which evaluate to zero upon performing
the contour integrals. This is the Hilbert series for dimension-five operators in the SM EFT.
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For example, in the 2HH†QQ†D term, because the combination QQ† has to be formed
into a Lorentz singlet, it follows there must be a /D = �µDµ, i.e. ¯Q�µQDµ; the gauge
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results we selected to show below use this counting for ease of display, but in doing this
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redundancies

• effective operators are invariants under the 
gauge group, Lorentz group, etc

• their classifications go back to Hilbert, Weyl
• applied to superpotentials, Standard Model
• but so far no general discussions on 

operators with derivatives
• two sources of redundancies
• equation of motion (EOM)
• integration by parts (IBP)



Simple Example
• scalars four-point at O(∂2): 4(4+1)/2=10

• ∂2φi=mi
2 removes the first class: 4

• We know only 2 out of 6 are independent

• s, t, u, s+t+u=m12+m22+m3
2+m42

• In addition, there are only d linearly 
independent momenta in d-dimensions

(@µ@µ'i)'j'k'l (@µ'i)(@µ'j)'k'l

(@µ'i)(@µ'j)'k'l � 'i'j(@µ'k)(@µ'l) =
1

2
@2('i'j)('k'l)�

1

2
('i'j)@

2('k'l) ⇡ 0

@µ'i@µ'j'k'l + @µ'i'j@µ'k'l + @µ'i'j'k@µ'l = @µ'i@µ('j'k'l) ⇡ 0



Main idea

• Take kinetic terms as the zeroth order 
Lagrangian

• Classically, it is conformally invariant under 
SO(4,2)≃SO(6,C)

• Operator-State correspondence tells us 
that operators fall into representations of 
the conformal group
• equation of motion: short multiplets
• remove total derivatives: primary states

(@�)2,  ̄i 6@ , (Fµ⌫)
2
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PE[�i�i(q,↵,�)]

Master formula
• Define a multi-variate Hilbert series

• PE are (anti-)symmetric products of 
characters for each field 𝜙i of dimension di

• integration over the gauge groups pick up 
gauge invariants

• integration over the conformal group picks 
only the primary states and Lorentz scalars

• expand it in power series in 𝜙i and p to find 

*There are corrections for operators d≤4 due to lack of
orthonormality among characters for short multiplets



Hilbert series

• ring freely generated by φ:
• 1, φ, φ2, φ3, φ4, …

• mod out by ideal, e.g. φ2=0

• convenient way to encode all possible 
operators in a given theory

• basically a “generating function”

H(') =
1

1� '

H(') =
1� '2

1� '
= 1 + '



characters

• character χ(x1, x2, … , xr)=TrR g
• e.g., SU(2)

• orthonormality on Haar measure

ei✓T3 = diag(eij✓, ei(j�1)✓, · · · , ei(�j)✓) = (y2j , y2j�2, · · · y�2j)

y = ei✓/2

�Ri,Rj =

Z
dµSU(2)�

⇤
Ri
�Rj =

I

|y|=1

dy

2⇡i

(1� y2)(1� y�2)

y
�⇤
Ri
�Rj

� = y2j + y2j�2 + · · ·+ y�2j = y2j
1� y�4j�2

1� y�2
=

y2j+1 � y�2j�1

y � y�1



conformal characters

• Primary field characterized by its spin 
s=(j1,j2) and conformal weight Δ

• For Δ=1+j1+j2 which saturates the unitarity 
bound, there are “short multiplets” for EoM

�[�,s](q,↵,�) = q�P (q;↵,�)�s(↵,�)

P (q;↵,�) =
1

(1� q↵�)(1� q↵��1)(1� q↵�1�)(1� q↵�1��1)

�0(↵,�) = 1� t2

�( 1
2 ,0)

(↵,�) = ↵+ ↵�1 � t(� + ��1) = �(0, 12 )
(�,↵)

�(1,0)(↵,�) = ↵2 + 1 + ↵�2 � t(↵+ ↵�1)(� + ��1) + t2 = �(0,1)(�,↵)

�

 ↵ Fµ⌫



Plethystic Exponential

• symmetric tensor product Rn of R

PE[u�1/2] =
1

det

✓
1� uy 0

0 1� uy�1

◆

=
1

(1� uy)(1� uy�1)
= 1 + u(y + y�1) + u2(y2 + 1 + y�2) + u3(y3 + y + y�1 + y�3) + · · ·

PE[u�R](x1, x2, · · · , xr) ⌘
1

detR(1� ug)

=

X

n

u

n
�Rn

= exp [�TrR log(1� ug)]

= exp

" 1X

n=1

u

n

n

�R(x
n
1 , · · · , xn

r )

#



Plethystic Exponential

• anti-symmetric tensor product Rn of R

PE[u�1/2] = det

✓
1 + uy 0

0 1 + uy�1

◆

= (1 + uy)(1 + uy�1) = 1 + u(y + y�1) + u2

PE[u�R](x1, x2, · · · , xr) ⌘ detR(1 + ug)

=

X

n

u

n
�Rn

= exp [TrR log(1 + ug)]

= exp

"
�

1X

n=1

(�u)

n

n

�R(x
n
1 , · · · , xn

r )

#



57

χH[t_, α_, β_, x_, y_, z1_, z2_] := χscal[t, α, β] * u1[3, x] * su2f[y];
χHd[t_, α_, β_, x_, y_, z1_, z2_] := χscal[t, α, β] * u1[-3, x] * su2fb[y];
χQ[t_, α_, β_, x_, y_, z1_, z2_] := χfermL[t, α, β] * u1[1, x] * su2f[y] * su3f[z1, z2];
χQd[t_, α_, β_, x_, y_, z1_, z2_] :=

χfermR[t, α, β] * u1[-1, x] * su2fb[y] * su3fb[z1, z2];
χu[t_, α_, β_, x_, y_, z1_, z2_] := χfermL[t, α, β] * u1[-4, x] * su3fb[z1, z2];
χud[t_, α_, β_, x_, y_, z1_, z2_] := χfermR[t, α, β] * u1[4, x] * su3f[z1, z2];
χd[t_, α_, β_, x_, y_, z1_, z2_] := χfermL[t, α, β] * u1[2, x] * su3fb[z1, z2];
χdd[t_, α_, β_, x_, y_, z1_, z2_] := χfermR[t, α, β] * u1[-2, x] * su3f[z1, z2];
χL[t_, α_, β_, x_, y_, z1_, z2_] := χfermL[t, α, β] * u1[-3, x] * su2f[y];
χLd[t_, α_, β_, x_, y_, z1_, z2_] := χfermR[t, α, β] * u1[3, x] * su2fb[y];
χe[t_, α_, β_, x_, y_, z1_, z2_] := χfermL[t, α, β] * u1[6, x];
χed[t_, α_, β_, x_, y_, z1_, z2_] := χfermR[t, α, β] * u1[-6, x];
χBl[t_, α_, β_, x_, y_, z1_, z2_] := χfsL[t, α, β];
χBr[t_, α_, β_, x_, y_, z1_, z2_] := χfsR[t, α, β];
χWl[t_, α_, β_, x_, y_, z1_, z2_] := χfsL[t, α, β] * su2ad[y];
χWr[t_, α_, β_, x_, y_, z1_, z2_] := χfsR[t, α, β] * su2ad[y];
χGl[t_, α_, β_, x_, y_, z1_, z2_] := χfsL[t, α, β] * su3ad[z1, z2];
χGr[t_, α_, β_, x_, y_, z1_, z2_] := χfsR[t, α, β] * su3ad[z1, z2];
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Master formula
• Define a multi-variate Hilbert series

• PE are (anti-)symmetric products of 
characters for each field 𝜙i of dimension di

• integration over the gauge groups pick up 
gauge invariants

• integration over the conformal group picks 
only the primary states and Lorentz scalars

• expand it in power series in 𝜙i and p to find 

*There are corrections for operators d≤4 due to lack of
orthonormality among characters for short multiplets







   f =
      2*L^2*Ld^2*t^2 + 2*ee*ed*L*Ld*t^2 + ee^2*ed^2*t^2 + 2*d*dd*L*Ld*t^2 + 2*
      d*dd*ee*ed*t^2 + 2*d^2*dd^2*t^2 + ud^2*dd*ed*t^2 + 2*u*ud*L*Ld*t^2 + 2*u
      *ud*ee*ed*t^2 + 4*u*ud*d*dd*t^2 + u^2*d*ee*t^2 + 2*u^2*ud^2*t^2 + 2*Qd*
      dd*ee*L*t^2 + 3*Qd*ud*ed*Ld*t^2 + 2*Qd*u*d*Ld*t^2 + 3*Qd^2*ud*dd*t^2 + 
      Qd^2*u*ee*t^2 + Qd^3*Ld*t^2 + 2*Q*d*ed*Ld*t^2 + 2*Q*ud*dd*L*t^2 + 3*Q*u*
      ee*L*t^2 + 4*Q*Qd*L*Ld*t^2 + 2*Q*Qd*ee*ed*t^2 + 4*Q*Qd*d*dd*t^2 + 4*Q*Qd
      *u*ud*t^2 + Q^2*ud*ed*t^2 + 3*Q^2*u*d*t^2 + 4*Q^2*Qd^2*t^2 + Q^3*L*t^2
       + Wr*L^2*Ld^2 + Wr*ee*ed*L*Ld + Wr*d*dd*L*Ld + Wr*u*ud*L*Ld + Wr*Qd*dd*
      ee*L + 3*Wr*Qd*ud*ed*Ld + Wr*Qd*u*d*Ld + 3*Wr*Qd^2*ud*dd + Wr*Qd^2*u*ee
       + 2*Wr*Qd^3*Ld + Wr*Q*d*ed*Ld + Wr*Q*ud*dd*L + 3*Wr*Q*Qd*L*Ld + Wr*Q*Qd
      *ee*ed + 2*Wr*Q*Qd*d*dd + 2*Wr*Q*Qd*u*ud + 2*Wr*Q^2*Qd^2 + Wr^2*L*Ld*t
       + Wr^2*Q*Qd*t + 2*Wr^4 + Wl*L^2*Ld^2 + Wl*ee*ed*L*Ld + Wl*d*dd*L*Ld + 
      Wl*u*ud*L*Ld + Wl*Qd*dd*ee*L + Wl*Qd*u*d*Ld + Wl*Q*d*ed*Ld + Wl*Q*ud*dd*
      L + 3*Wl*Q*u*ee*L + 3*Wl*Q*Qd*L*Ld + Wl*Q*Qd*ee*ed + 2*Wl*Q*Qd*d*dd + 2*
      Wl*Q*Qd*u*ud + Wl*Q^2*ud*ed + 3*Wl*Q^2*u*d + 2*Wl*Q^2*Qd^2 + 2*Wl*Q^3*L
       + 2*Wl*Wr*L*Ld*t + Wl*Wr*ee*ed*t + Wl*Wr*d*dd*t + Wl*Wr*u*ud*t + 2*Wl*
      Wr*Q*Qd*t + Wl^2*L*Ld*t + Wl^2*Q*Qd*t + 2*Wl^2*Wr^2 + 2*Wl^4 + Gr*d*dd*L
      *Ld + Gr*d*dd*ee*ed + Gr*d^2*dd^2 + 3*Gr*ud^2*dd*ed + Gr*u*ud*L*Ld + Gr*
      u*ud*ee*ed + 4*Gr*u*ud*d*dd + Gr*u^2*ud^2 + Gr*Qd*dd*ee*L + 3*Gr*Qd*ud*
      ed*Ld + 2*Gr*Qd*u*d*Ld + 6*Gr*Qd^2*ud*dd + Gr*Qd^2*u*ee + 2*Gr*Qd^3*Ld
       + Gr*Q*d*ed*Ld + 2*Gr*Q*ud*dd*L + 2*Gr*Q*Qd*L*Ld + Gr*Q*Qd*ee*ed + 4*Gr
      *Q*Qd*d*dd + 4*Gr*Q*Qd*u*ud + Gr*Q^2*ud*ed + 2*Gr*Q^2*Qd^2 + Gr*Wr*Q*Qd*
      t + Gr*Wl*Q*Qd*t + Gr^2*d*dd*t + Gr^2*u*ud*t + Gr^2*Q*Qd*t + 2*Gr^2*Wr^2
       + Gr^2*Wl^2 + 3*Gr^4 + Gl*d*dd*L*Ld + Gl*d*dd*ee*ed + Gl*d^2*dd^2 + Gl*
      u*ud*L*Ld + Gl*u*ud*ee*ed + 4*Gl*u*ud*d*dd + 3*Gl*u^2*d*ee + Gl*u^2*ud^2
       + Gl*Qd*dd*ee*L + 2*Gl*Qd*u*d*Ld + Gl*Qd^2*u*ee + Gl*Q*d*ed*Ld + 2*Gl*Q
      *ud*dd*L + 3*Gl*Q*u*ee*L + 2*Gl*Q*Qd*L*Ld + Gl*Q*Qd*ee*ed + 4*Gl*Q*Qd*d*
      dd + 4*Gl*Q*Qd*u*ud + Gl*Q^2*ud*ed + 6*Gl*Q^2*u*d + 2*Gl*Q^2*Qd^2 + 2*Gl
      *Q^3*L + Gl*Wr*Q*Qd*t + Gl*Wl*Q*Qd*t + Gl*Gr*L*Ld*t + Gl*Gr*ee*ed*t + 3*
      Gl*Gr*d*dd*t + 3*Gl*Gr*u*ud*t + 3*Gl*Gr*Q*Qd*t + Gl*Gr*Wl*Wr + Gl^2*d*dd
      *t + Gl^2*u*ud*t + Gl^2*Q*Qd*t + Gl^2*Wr^2 + 2*Gl^2*Wl^2 + 3*Gl^2*Gr^2
       + 3*Gl^4 + Br*ee*ed*L*Ld + Br*d*dd*L*Ld + Br*d*dd*ee*ed + 2*Br*ud^2*dd*
      ed + Br*u*ud*L*Ld + Br*u*ud*ee*ed + 2*Br*u*ud*d*dd + Br*Qd*dd*ee*L + 3*
      Br*Qd*ud*ed*Ld + Br*Qd*u*d*Ld + 3*Br*Qd^2*ud*dd + Br*Qd^3*Ld + Br*Q*d*ed
      *Ld + Br*Q*ud*dd*L + 2*Br*Q*Qd*L*Ld + Br*Q*Qd*ee*ed + 2*Br*Q*Qd*d*dd + 2
      *Br*Q*Qd*u*ud + Br*Q^2*ud*ed + Br*Wr*L*Ld*t + Br*Wr*Q*Qd*t + Br*Wl*L*Ld*
      t + Br*Wl*Q*Qd*t + Br*Gr*d*dd*t + Br*Gr*u*ud*t + Br*Gr*Q*Qd*t + Br*Gr^3
       + Br*Gl*d*dd*t + Br*Gl*u*ud*t + Br*Gl*Q*Qd*t + Br*Gl^2*Gr + 2*Br^2*Wr^2
       + Br^2*Wl^2 + 2*Br^2*Gr^2 + Br^2*Gl^2 + Br^4 + Bl*ee*ed*L*Ld + Bl*d*dd*
      L*Ld + Bl*d*dd*ee*ed + Bl*u*ud*L*Ld + Bl*u*ud*ee*ed + 2*Bl*u*ud*d*dd + 2
      *Bl*u^2*d*ee + Bl*Qd*dd*ee*L + Bl*Qd*u*d*Ld + Bl*Qd^2*u*ee + Bl*Q*d*ed*
      Ld + Bl*Q*ud*dd*L + 3*Bl*Q*u*ee*L + 2*Bl*Q*Qd*L*Ld + Bl*Q*Qd*ee*ed + 2*
      Bl*Q*Qd*d*dd + 2*Bl*Q*Qd*u*ud + 3*Bl*Q^2*u*d + Bl*Q^3*L + Bl*Wr*L*Ld*t
       + Bl*Wr*Q*Qd*t + Bl*Wl*L*Ld*t + Bl*Wl*Q*Qd*t + Bl*Gr*d*dd*t + Bl*Gr*u*
      ud*t + Bl*Gr*Q*Qd*t + Bl*Gl*d*dd*t + Bl*Gl*u*ud*t + Bl*Gl*Q*Qd*t + Bl*Gl
      *Gr^2 + Bl*Gl^3 + Bl*Br*L*Ld*t + Bl*Br*ee*ed*t + Bl*Br*d*dd*t + Bl*Br*u*
      ud*t + Bl*Br*Q*Qd*t + Bl*Br*Wl*Wr + Bl*Br*Gl*Gr + Bl^2*Wr^2 + 2*Bl^2*
      Wl^2 + Bl^2*Gr^2 + 2*Bl^2*Gl^2 + Bl^2*Br^2 + Bl^4 + 3*Hd*ee*L^2*Ld*t + 
      Hd*ee^2*ed*L*t + 3*Hd*d*dd*ee*L*t + 3*Hd*ud*d*ed*Ld*t + 2*Hd*ud^2*dd*L*t
       + 2*Hd*u*d^2*Ld*t + 3*Hd*u*ud*ee*L*t + 6*Hd*Qd*ud*L*Ld*t + 3*Hd*Qd*ud*
      ee*ed*t + 6*Hd*Qd*ud*d*dd*t + 3*Hd*Qd*u*d*ee*t + 3*Hd*Qd*u*ud^2*t + 3*Hd
      *Qd^2*d*Ld*t + Hd*Qd^3*ee*t + 6*Hd*Q*d*L*Ld*t + 3*Hd*Q*d*ee*ed*t + 3*Hd*
      Q*d^2*dd*t + 2*Hd*Q*ud^2*ed*t + 6*Hd*Q*u*ud*d*t + 6*Hd*Q*Qd*ee*L*t + 6*
      Hd*Q*Qd^2*ud*t + 3*Hd*Q^2*ud*L*t + 6*Hd*Q^2*Qd*d*t + Hd*Wr*ee*L*t^2 + 2*
      Hd*Wr*Qd*ud*t^2 + Hd*Wr*Q*d*t^2 + Hd*Wr^2*ee*L + 2*Hd*Wr^2*Qd*ud + Hd*
      Wr^2*Q*d + 2*Hd*Wl*ee*L*t^2 + Hd*Wl*Qd*ud*t^2 + 2*Hd*Wl*Q*d*t^2 + 2*Hd*
      Wl^2*ee*L + Hd*Wl^2*Qd*ud + 2*Hd*Wl^2*Q*d + 2*Hd*Gr*Qd*ud*t^2 + Hd*Gr*Q*
      d*t^2 + 2*Hd*Gr*Wr*Qd*ud + Hd*Gr*Wr*Q*d + Hd*Gr^2*ee*L + 3*Hd*Gr^2*Qd*ud
       + 2*Hd*Gr^2*Q*d + Hd*Gl*Qd*ud*t^2 + 2*Hd*Gl*Q*d*t^2 + Hd*Gl*Wl*Qd*ud + 
      2*Hd*Gl*Wl*Q*d + Hd*Gl^2*ee*L + 2*Hd*Gl^2*Qd*ud + 3*Hd*Gl^2*Q*d + Hd*Br*
      ee*L*t^2 + 2*Hd*Br*Qd*ud*t^2 + Hd*Br*Q*d*t^2 + Hd*Br*Wr*ee*L + 2*Hd*Br*

      Wr*Qd*ud + Hd*Br*Wr*Q*d + 2*Hd*Br*Gr*Qd*ud + Hd*Br*Gr*Q*d + Hd*Br^2*ee*L
       + Hd*Br^2*Qd*ud + Hd*Br^2*Q*d + 2*Hd*Bl*ee*L*t^2 + Hd*Bl*Qd*ud*t^2 + 2*
      Hd*Bl*Q*d*t^2 + 2*Hd*Bl*Wl*ee*L + Hd*Bl*Wl*Qd*ud + 2*Hd*Bl*Wl*Q*d + Hd*
      Bl*Gl*Qd*ud + 2*Hd*Bl*Gl*Q*d + Hd*Bl^2*ee*L + Hd*Bl^2*Qd*ud + Hd*Bl^2*Q*
      d + Hd^2*ee^2*L^2 + Hd^2*ud*d*t^3 + Hd^2*ud*d*L*Ld + Hd^2*Qd*ud*ee*L + 2
      *Hd^2*Qd^2*ud^2 + 2*Hd^2*Q*d*ee*L + 2*Hd^2*Q*Qd*ud*d + 2*Hd^2*Q^2*d^2 + 
      Hd^2*Wr*ud*d*t + Hd^2*Wl*ud*d*t + Hd^2*Gr*ud*d*t + Hd^2*Gl*ud*d*t + Hd^2
      *Br*ud*d*t + Hd^2*Bl*ud*d*t + 3*H*ed*L*Ld^2*t + H*ee*ed^2*Ld*t + 3*H*d*
      dd*ed*Ld*t + 2*H*ud*dd^2*L*t + 3*H*u*dd*ee*L*t + 3*H*u*ud*ed*Ld*t + 2*H*
      u^2*d*Ld*t + 6*H*Qd*dd*L*Ld*t + 3*H*Qd*dd*ee*ed*t + 3*H*Qd*d*dd^2*t + 6*
      H*Qd*u*ud*dd*t + 2*H*Qd*u^2*ee*t + 3*H*Qd^2*u*Ld*t + 3*H*Q*ud*dd*ed*t + 
      6*H*Q*u*L*Ld*t + 3*H*Q*u*ee*ed*t + 6*H*Q*u*d*dd*t + 3*H*Q*u^2*ud*t + 6*H
      *Q*Qd*ed*Ld*t + 6*H*Q*Qd^2*dd*t + 3*H*Q^2*dd*L*t + 6*H*Q^2*Qd*u*t + H*
      Q^3*ed*t + 2*H*Wr*ed*Ld*t^2 + 2*H*Wr*Qd*dd*t^2 + H*Wr*Q*u*t^2 + 2*H*Wr^2
      *ed*Ld + 2*H*Wr^2*Qd*dd + H*Wr^2*Q*u + H*Wl*ed*Ld*t^2 + H*Wl*Qd*dd*t^2
       + 2*H*Wl*Q*u*t^2 + H*Wl^2*ed*Ld + H*Wl^2*Qd*dd + 2*H*Wl^2*Q*u + 2*H*Gr*
      Qd*dd*t^2 + H*Gr*Q*u*t^2 + 2*H*Gr*Wr*Qd*dd + H*Gr*Wr*Q*u + H*Gr^2*ed*Ld
       + 3*H*Gr^2*Qd*dd + 2*H*Gr^2*Q*u + H*Gl*Qd*dd*t^2 + 2*H*Gl*Q*u*t^2 + H*
      Gl*Wl*Qd*dd + 2*H*Gl*Wl*Q*u + H*Gl^2*ed*Ld + 2*H*Gl^2*Qd*dd + 3*H*Gl^2*Q
      *u + 2*H*Br*ed*Ld*t^2 + 2*H*Br*Qd*dd*t^2 + H*Br*Q*u*t^2 + 2*H*Br*Wr*ed*
      Ld + 2*H*Br*Wr*Qd*dd + H*Br*Wr*Q*u + 2*H*Br*Gr*Qd*dd + H*Br*Gr*Q*u + H*
      Br^2*ed*Ld + H*Br^2*Qd*dd + H*Br^2*Q*u + H*Bl*ed*Ld*t^2 + H*Bl*Qd*dd*t^2
       + 2*H*Bl*Q*u*t^2 + H*Bl*Wl*ed*Ld + H*Bl*Wl*Qd*dd + 2*H*Bl*Wl*Q*u + H*Bl
      *Gl*Qd*dd + 2*H*Bl*Gl*Q*u + H*Bl^2*ed*Ld + H*Bl^2*Qd*dd + H*Bl^2*Q*u + 4
      *H*Hd*L*Ld*t^3 + 2*H*Hd*L^2*Ld^2 + 2*H*Hd*ee*ed*t^3 + 2*H*Hd*ee*ed*L*Ld
       + H*Hd*ee^2*ed^2 + 2*H*Hd*d*dd*t^3 + 2*H*Hd*d*dd*L*Ld + H*Hd*d*dd*ee*ed
       + H*Hd*d^2*dd^2 + H*Hd*ud^2*dd*ed + 2*H*Hd*u*ud*t^3 + 2*H*Hd*u*ud*L*Ld
       + H*Hd*u*ud*ee*ed + 2*H*Hd*u*ud*d*dd + H*Hd*u^2*d*ee + H*Hd*u^2*ud^2 + 
      2*H*Hd*Qd*dd*ee*L + 4*H*Hd*Qd*ud*ed*Ld + 2*H*Hd*Qd*u*d*Ld + 4*H*Hd*Qd^2*
      ud*dd + H*Hd*Qd^2*u*ee + 2*H*Hd*Qd^3*Ld + 2*H*Hd*Q*d*ed*Ld + 2*H*Hd*Q*ud
      *dd*L + 4*H*Hd*Q*u*ee*L + 4*H*Hd*Q*Qd*t^3 + 5*H*Hd*Q*Qd*L*Ld + 2*H*Hd*Q*
      Qd*ee*ed + 4*H*Hd*Q*Qd*d*dd + 4*H*Hd*Q*Qd*u*ud + H*Hd*Q^2*ud*ed + 4*H*Hd
      *Q^2*u*d + 3*H*Hd*Q^2*Qd^2 + 2*H*Hd*Q^3*L + 6*H*Hd*Wr*L*Ld*t + 2*H*Hd*Wr
      *ee*ed*t + 2*H*Hd*Wr*d*dd*t + 2*H*Hd*Wr*u*ud*t + 6*H*Hd*Wr*Q*Qd*t + 2*H*
      Hd*Wr^2*t^2 + H*Hd*Wr^3 + 6*H*Hd*Wl*L*Ld*t + 2*H*Hd*Wl*ee*ed*t + 2*H*Hd*
      Wl*d*dd*t + 2*H*Hd*Wl*u*ud*t + 6*H*Hd*Wl*Q*Qd*t + 2*H*Hd*Wl*Wr*t^2 + 2*H
      *Hd*Wl^2*t^2 + H*Hd*Wl^3 + 2*H*Hd*Gr*d*dd*t + 2*H*Hd*Gr*u*ud*t + 4*H*Hd*
      Gr*Q*Qd*t + H*Hd*Gr^2*t^2 + H*Hd*Gr^3 + 2*H*Hd*Gl*d*dd*t + 2*H*Hd*Gl*u*
      ud*t + 4*H*Hd*Gl*Q*Qd*t + H*Hd*Gl*Gr*t^2 + H*Hd*Gl^2*t^2 + H*Hd*Gl^3 + 4
      *H*Hd*Br*L*Ld*t + 2*H*Hd*Br*ee*ed*t + 2*H*Hd*Br*d*dd*t + 2*H*Hd*Br*u*ud*
      t + 4*H*Hd*Br*Q*Qd*t + 2*H*Hd*Br*Wr*t^2 + H*Hd*Br*Wr^2 + H*Hd*Br*Wl*t^2
       + H*Hd*Br^2*t^2 + 4*H*Hd*Bl*L*Ld*t + 2*H*Hd*Bl*ee*ed*t + 2*H*Hd*Bl*d*dd
      *t + 2*H*Hd*Bl*u*ud*t + 4*H*Hd*Bl*Q*Qd*t + H*Hd*Bl*Wr*t^2 + 2*H*Hd*Bl*Wl
      *t^2 + H*Hd*Bl*Wl^2 + H*Hd*Bl*Br*t^2 + H*Hd*Bl^2*t^2 + 6*H*Hd^2*ee*L*t^2
       + 6*H*Hd^2*Qd*ud*t^2 + 6*H*Hd^2*Q*d*t^2 + 2*H*Hd^2*Wr*Qd*ud + 2*H*Hd^2*
      Wl*ee*L + 2*H*Hd^2*Wl*Q*d + H*Hd^2*Gr*Qd*ud + H*Hd^2*Gl*Q*d + H*Hd^2*Br*
      Qd*ud + H*Hd^2*Bl*ee*L + H*Hd^2*Bl*Q*d + H*Hd^3*ud*d*t + H^2*ed^2*Ld^2
       + H^2*u*dd*t^3 + H^2*u*dd*L*Ld + 2*H^2*Qd*dd*ed*Ld + 2*H^2*Qd^2*dd^2 + 
      H^2*Q*u*ed*Ld + 2*H^2*Q*Qd*u*dd + 2*H^2*Q^2*u^2 + H^2*Wr*u*dd*t + H^2*Wl
      *u*dd*t + H^2*Gr*u*dd*t + H^2*Gl*u*dd*t + H^2*Br*u*dd*t + H^2*Bl*u*dd*t
       + 6*H^2*Hd*ed*Ld*t^2 + 6*H^2*Hd*Qd*dd*t^2 + 6*H^2*Hd*Q*u*t^2 + 2*H^2*Hd
      *Wr*ed*Ld + 2*H^2*Hd*Wr*Qd*dd + 2*H^2*Hd*Wl*Q*u + H^2*Hd*Gr*Qd*dd + H^2*
      Hd*Gl*Q*u + H^2*Hd*Br*ed*Ld + H^2*Hd*Br*Qd*dd + H^2*Hd*Bl*Q*u + 3*H^2*
      Hd^2*t^4 + 4*H^2*Hd^2*L*Ld*t + H^2*Hd^2*ee*ed*t + H^2*Hd^2*d*dd*t + H^2*
      Hd^2*u*ud*t + 4*H^2*Hd^2*Q*Qd*t + 2*H^2*Hd^2*Wr*t^2 + 2*H^2*Hd^2*Wr^2 + 
      2*H^2*Hd^2*Wl*t^2 + 2*H^2*Hd^2*Wl^2 + H^2*Hd^2*Gr^2 + H^2*Hd^2*Gl^2 + 
      H^2*Hd^2*Br*t^2 + H^2*Hd^2*Br*Wr + H^2*Hd^2*Br^2 + H^2*Hd^2*Bl*t^2 + H^2
      *Hd^2*Bl*Wl + H^2*Hd^2*Bl^2 + H^2*Hd^3*ee*L + H^2*Hd^3*Qd*ud + H^2*Hd^3*
      Q*d + H^3*Hd*u*dd*t + H^3*Hd^2*ed*Ld + H^3*Hd^2*Qd*dd + H^3*Hd^2*Q*u + 2
      *H^3*Hd^3*t^2 + H^4*Hd^4;

D=8 operators

993 of them
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Conclusions

• Nailed the question of classifying effective 
operators in a given Lorentz-inv theory

• Connections to amplitudes?
• perturbation around non-free theories?
• EFT important in many other contexts
• condensed matter physics
• nuclear physics
• cosmological density fluctuations


