東京大国際高等研究所
東京大学国際高等研究所
THE UNIVERSITY OF TOKYO

How to go beyond thè Higgs： effective operâtors

and dark pions

Hitoshi Murayama（Berkeley，Kavli IPMU）
YITP phenomenology workshop，Sep 6， 2016

A tribute to Yoichiro Nambu

passed away July 5, 2015

Dark Pions

as Dark Matter

with Yonit Hochberg and Eric Kuflik
arXiv：I4 I I． 3727 w／Tomer Volansky Jay Wacker， arXiv：I5I2．079｜7，I60x．xxxxx

Cheshire cat

matter

$$
\begin{gathered}
\left\langle\sigma_{2 \rightarrow 2} v\right\rangle \approx \frac{\alpha^{2}}{m^{2}} \\
\alpha \approx 10^{-2} \\
m \approx 300 \mathrm{GeV}
\end{gathered}
$$

"weak" coupling
"weak" mass scale
correct abundance

Miracle ${ }^{2}$

sociology

- We used to think
- need to solve problems with the SM
- hierarchy problem, strong CP, etc
- it is great if a solution also gives dark matter candidate as an option
- big ideas: supersymmetry, extra dim
- probably because dark matter problem was not so established in 80's

recent thinking

- dark matter definitely exists
- naturalness problem is optional?
- need to explain dark matter on its own
- perhaps we should decouple these two
- do we really need big ideas like SUSY?
- perhaps we can solve it with ideas more familiar to us?

dark matter
 mass

> ef
πa
Strongly Interacting Massive Particle (SIMP)

Yonit Hochberg

$$
\begin{gathered}
\left\langle\sigma_{2 \rightarrow 2} v\right\rangle \approx \frac{\alpha^{2}}{m^{2}} \\
\alpha \approx 10^{-2} \\
m \approx 300 \mathrm{GeV} \\
\text { WIMP miracle! }
\end{gathered}
$$

$$
\begin{aligned}
& \left\langle\sigma_{3 \rightarrow 2} v^{2}\right\rangle \approx \frac{\alpha^{3}}{m^{5}} \\
& \quad \alpha \approx 4 \pi \quad \begin{array}{c}
\text { Hochberg, Kuflik, } \\
\text { Volansky,Wacker }
\end{array} \\
& m \approx 300 \mathrm{MeV}^{\text {arXiv:1402.5143 }}
\end{aligned}
$$

SIMP miracle!

$3 \rightarrow 2$
 LEE WEINBERG FREEZE-OUT

Back of the envelope calculation

$$
\left.\Gamma_{\mathrm{ann}} \simeq H\right|_{\text {freezeoput }}
$$

$\Gamma_{\mathrm{ann}} \simeq n_{\mathrm{dm}}^{2}\left\langle\sigma v^{2}\right\rangle_{2 \rightarrow 2}$

$$
H \simeq \frac{T^{2}}{M_{\mathrm{pl}}}
$$

$$
\begin{gathered}
m_{\mathrm{dm}} n_{\mathrm{dm}} \sim m_{p} n_{b} \quad\left\langle\boldsymbol{\sigma} \boldsymbol{v}^{2}\right\rangle_{3 \rightarrow 2} \simeq \frac{\alpha^{2}}{m_{\mathrm{dm}}^{2}} \\
n_{b} \sim \eta_{b} s \\
\eta_{b} \simeq T_{\mathrm{eq}} / m_{p} \quad s \simeq T^{3} \\
\vdots \\
\vdots \\
\Gamma_{\mathrm{ann}} \simeq \frac{T_{\mathrm{eq}}^{2} \alpha^{2}}{x_{F}^{2} \times m_{\mathrm{dm}}}
\end{gathered}
$$

 SIMPlest Mirácle

- Not only the mass scale is similar to QCD
- dynamics itself can be QCD! Miracle ${ }^{3}$
- DM = pions
- e.g. $\operatorname{SU}(4) / S p(4)=S^{5}$

$\mathcal{L}_{\text {chiral }}=\frac{1}{16 f_{\pi}^{2}} \operatorname{Tr} \partial^{\mu} U^{\dagger} \partial_{\mu} U$
+HM
arXiv: I4 I I. 3727

$$
\mathcal{L}_{\mathrm{WZW}}=\frac{8 N_{c}}{15 \pi^{2} f_{\pi}^{5}} \epsilon_{a b c d e} \epsilon^{\mu \nu \rho \sigma} \pi^{a} \partial_{\mu} \pi^{b} \partial_{\nu} \pi^{c} \partial_{\rho} \pi^{d} \partial_{\sigma} \pi^{e}+O\left(\pi^{7}\right)
$$

SIMPlest Miracle

- SU(2) gauge theory with four doublets
- SU(4)=SO(6) flavor symmetry
- $\left\langle q^{i} q^{i}\right\rangle \neq 0$ breaks it to $\operatorname{Sp}(2)=\mathrm{SO}(5)$
- coset space $\mathrm{SO}(6) / \mathrm{SO}(5)=\mathrm{S}^{5}$
- $\Pi_{5}\left(S^{5}\right)=\mathbb{Z} \Rightarrow$ Wess-Zumino term
- $\mathscr{L}_{W Z}=\varepsilon_{\text {abcde }} \varepsilon^{\mu v \rho \sigma} \pi^{\mathrm{a}} \partial_{\mu} \pi^{\mathrm{b}} \partial_{\nu} \pi^{\mathrm{c}} \partial_{\rho} \pi^{\mathrm{d}} \partial_{\sigma} \pi^{\mathrm{e}}$

Wess-Zumino term

- $\operatorname{SU}\left(N_{c}\right)$ gauge theory - $\pi_{5}\left(S U\left(N_{f}\right)\right)=\mathbb{Z}\left(N_{f} \geq 3\right)$
- $\operatorname{Sp}\left(N_{c}\right)$ gauge theory

(a)
(c)
- $\pi_{5}\left(\mathrm{SU}\left(2 N_{f}\right) / \operatorname{Sp}\left(N_{f}\right)\right)=\mathbb{Z}\left(N_{f} \geq 2\right)$

Witten

- $\mathrm{SO}\left(\mathrm{N}_{\mathrm{c}}\right)$ gauge theory
- $\pi_{5}\left(\mathrm{SU}\left(N_{f}\right) / \mathrm{SO}\left(N_{f}\right)\right)=\mathbb{Z}\left(N_{f} \geq 3\right)$

LAGRANGIANS

Quark theory

$$
\mathcal{L}_{\text {quark }}=-\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu a}+\bar{q}_{i} i \not D q_{i}-\frac{1}{2} m_{Q} J^{i j} q_{i} q_{j}+h . c .
$$

Sigma theory

$$
\mathcal{L}_{\text {Sigma }}=\frac{f_{\pi}^{2}}{16} \operatorname{Tr} \partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}-\frac{1}{2} m_{Q} \mu^{3} \operatorname{Tr} J \Sigma+\text { h.c. }-\frac{i N_{c}}{240 \pi^{2}} \int \operatorname{Tr}\left(\Sigma^{\dagger} d \Sigma\right)^{5}
$$

Pion theory

(a)

(b)

(c)

$$
\begin{aligned}
\mathcal{L}_{\text {pion }}= & \frac{1}{4} \operatorname{Tr} \partial_{\mu} \pi \partial^{\mu} \pi-\frac{m_{\pi}^{2}}{4} \operatorname{Tr} \pi^{2}+\frac{m_{\pi}^{2}}{12 f_{\pi}^{2}} \operatorname{Tr} \pi^{4}-\frac{1}{6 f_{\pi}^{2}} \operatorname{Tr}\left(\pi^{2} \partial^{\mu} \pi \partial_{\mu} \pi-\pi \partial^{\mu} \pi \pi \partial_{\mu} \pi\right) \\
& +\frac{2 N_{c}}{15 \pi^{2} f_{\pi}^{5}} \epsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left[\pi \partial_{\mu} \pi \partial_{\nu} \pi \partial_{\rho} \pi \partial_{\sigma} \pi\right]+\mathcal{O}\left(\pi^{6}\right)
\end{aligned}
$$

The Results

Solid curves: solution to Boltzmann eq. $\quad \frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3 / 10}$
Dashed curves: along that solution

$$
\frac{\sigma_{\text {scatter }}}{m_{\pi}} \propto m_{\pi}^{-9 / 5}
$$

Solid curves: solution to Boltzmann eq. $\quad \frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3 / 10}$
Dashed curves: along that solution

$$
\frac{\sigma_{\text {scatter }}}{m_{\pi}} \propto m_{\pi}^{-9 / 5}
$$

The Results

Solid curves: solution to Boltzmann eq. $\quad \frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3 / 10}$
Dashed curves: along that solution

$$
\frac{\sigma_{\text {scatter }}}{m_{\pi}} \propto m_{\pi}^{-9 / 5}
$$

self interaction

- self interaction of $\sigma / m \sim 10^{-24} \mathrm{~cm}^{2} / 300 \mathrm{MeV}$
- flattens the cusps in NFW profile
- actually desirable for dwarf galaxies?

$$
\frac{\sigma}{m} \approx 1.5 \frac{\mathrm{~cm}^{2}}{g}=\frac{0.27 \mathrm{~b}}{100 \mathrm{MeV}}
$$

communication

- 3 to 2 annihilation
- excess entropy must be transferred to $e^{ \pm}, \gamma$
- need communication at some level
- leads to experimental signal

if totally decoupled

- $3 \rightarrow 2$ annihilations without heat exchange is excluded by structure formation, [de Laix, Scherrer and Schaefer, Astrophys. J. 452, 495 (I995)]

vector portal

dark QCD with SIMP

$$
\frac{\epsilon_{\gamma}}{2 c_{W}} B_{\mu \nu} F_{D}^{\mu \nu}
$$

Kinetically mixed U(I)

- e.g., the SIMPlest model

SU(2) gauge group with
$N_{f}=2$ (4 doublets)

- gauge $\mathrm{U}(\mathrm{I})=\mathrm{SO}(2)$
c SO(2) $\times \mathrm{SO}(3)$
c $\operatorname{SO}(5)=\mathrm{Sp}(4)$
- maintains degeneracy of quarks
- near degeneracy of pions for co-annihilation

$$
S U(4) / S p(4)=S^{5}
$$

$$
\left(q^{+}, q^{+}, q^{-}, q^{-}\right)
$$

$$
\left(\pi^{++}, \pi^{--}, \pi_{x}^{0}, \pi_{y}^{0}, \pi_{z}^{0}\right)
$$

$$
\frac{\epsilon_{\gamma}}{2 c_{W}} B_{\mu \nu} F_{D}^{\mu \nu}
$$

Super KEK B \& Belle II

Yonit Hochberg, Eric Kuflik, HM

Holographic QCD

inspired by AdS/CFT from string theory

Conclusion

- surprising an old theory for dark matter
- SIMP Miracle ${ }^{3}$
- mass ~ QCD
- coupling ~ QCD
- theory ~ QCD
- can solve problem with DM profile
- very rich phenomenology
- Exciting dark spectroscopy!

Classification of

Effective Operators

with Brian Henning，Xiaochuan Lu，Thomas Melia
arXiv：I 507．07240，I 5 I2．03433，I 60x．xxxxx

why effective operators

- In the absence of any concrete signal of new particles, we need to discuss effective operators to go beyond Higgs, i.e.probe physics at higher energies or weaker couplings
- precision Higgs
- precision flavor
- B, L violation
- similar to four-fermion operators in weak interactions

Nambu Jona-Lasinio

- $D=6$ four-fermion operator
- can cause fermion bi-linear condensate
- inspired by the BCS theory
- gap equation to solve for the condensate
- Simple but important question:
- In a given field theory, what is the complete set of higher dimension operators?

Effective Operators

- Surprisingly difficult question
- In the case of the Standard Model
- Weinberg (1980) on $D=6 \not \&, D=54$
- Buchmüller-Wyler (I986) on $D=6$ ops
- 80 operators for $N_{f}=1, B, L$ conserving
- Grzadkowski et al (2010) removed redundancies and discovered one missed
- 59 operators for $N_{f}=I, B, L$ conserving
- Mahonar et al (2013) general N_{f}
- Lehman-Martin $(2014,15) D=7$ for general $N_{f}, D=8$ for $N_{f}=1$ (incomplete)

Repeating this at order ϵ^{6} we obtain the Hilbert series for dimension-six operators of the SM EFT:

$$
\begin{align*}
\widehat{H}_{6} & =H^{3} H^{\dagger 3}+u^{\dagger} Q^{\dagger} H H^{\dagger 2}+2 Q^{2} Q^{\dagger 2}+Q^{\dagger 3} L^{\dagger}+Q^{3} L+2 Q Q^{\dagger} L L^{\dagger}+L^{2} L^{\dagger 2}+u Q H^{2} H^{\dagger} \\
& +2 u u^{\dagger} Q Q^{\dagger}+u u^{\dagger} L L^{\dagger}+u^{2} u^{\dagger 2}+e^{\dagger} u^{\dagger} Q^{2}+e^{\dagger} L^{\dagger} H^{2} H^{\dagger}+2 e^{\dagger} u^{\dagger} Q^{\dagger} L^{\dagger}+e L H H^{\dagger 2}+e u Q^{\dagger 2} \\
& +2 e u Q L+e e^{\dagger} Q Q^{\dagger}+e e^{\dagger} L L^{\dagger}+e e^{\dagger} u u^{\dagger}+e^{2} e^{\dagger 2}+d^{\dagger} Q^{\dagger} H^{2} H^{\dagger}+2 d^{\dagger} u^{\dagger} Q^{\dagger 2}+d^{\dagger} u^{\dagger} Q L \\
& +d^{\dagger} e^{\dagger} u^{\dagger 2}+d^{\dagger} e Q^{\dagger} L+d Q H H^{\dagger 2}+2 d u Q^{2}+d u Q^{\dagger} L^{\dagger}+d e^{\dagger} Q L^{\dagger}+d e u^{2}+2 d d^{\dagger} Q Q^{\dagger}+d d^{\dagger} L L^{\dagger} \\
& +2 d d^{\dagger} u u^{\dagger}+d d^{\dagger} e e^{\dagger}+d^{2} d^{\dagger 2}+u^{\dagger} Q^{\dagger} H^{\dagger} G_{R}+d^{\dagger} Q^{\dagger} H G_{R}+H H^{\dagger} G_{R}^{2}+G_{R}^{3}+u Q H G_{L} \\
& +d Q H^{\dagger} G_{L}+H H^{\dagger} G_{L}^{2}+G_{L}^{3}+u^{\dagger} Q^{\dagger} H^{\dagger} W_{R}+e^{\dagger} L^{\dagger} H W_{R}+d^{\dagger} Q^{\dagger} H W_{R}+H H^{\dagger} W_{R}^{2}+W_{R}^{3} \\
& +u Q H W_{L}+e L H^{\dagger} W_{L}+d Q H^{\dagger} W_{L}+H H^{\dagger} W_{L}^{2}+W_{L}^{3}+u^{\dagger} Q^{\dagger} H^{\dagger} B_{R}+e^{\dagger} L^{\dagger} H B_{R} \\
& +d^{\dagger} Q^{\dagger} H B_{R}+H H^{\dagger} B_{R} W_{R}+H H^{\dagger} B_{R}^{2}+u Q H B_{L}+e L H^{\dagger} B_{L}+d Q H^{\dagger} B_{L}+H H^{\dagger} B_{L} W_{L} \\
& +H H^{\dagger} B_{L}^{2}+2 Q Q^{\dagger} H H^{\dagger} \mathcal{D}+2 L L^{\dagger} H H^{\dagger} \mathcal{D}+u u^{\dagger} H H^{\dagger} \mathcal{D}+e e^{\dagger} H H^{\dagger} \mathcal{D}+d^{\dagger} u H^{2} \mathcal{D}+d u^{\dagger} H^{\dagger 2} \mathcal{D} \\
& +d d^{\dagger} H H^{\dagger} \mathcal{D}+2 H^{2} H^{\dagger 2} \mathcal{D}^{2} . \tag{3.16}
\end{align*}
$$

Setting all of the spurions equal to unity gives $\widehat{H}_{6}=84$, the total number of independent local operators at dimension 6 , but more information is contained in eq.(3.16). For instance, the counting can easily be further decomposed by baryon number violation, $76+8$. The perhaps more familiar ' $59+4$ ' counting is one in which hermitian conjugates of fermionic operators are not counted separately (such counting can of course also be obtained from eq. (3.16)).

Repeating this at order ϵ^{6} we obtain the Hilbert series for dimension-six operators of the SM EFT:

$$
\begin{align*}
\widehat{H}_{6} & =H^{3} H^{\dagger}+u^{\dagger} Q^{\dagger} H H^{\dagger 2}+2 Q^{2} Q^{\dagger 2}+\quad+2 Q Q^{\dagger} L L^{\dagger}+L^{2} L^{\dagger 2}+u Q H^{2} H^{\dagger} \\
& +2 u u^{\dagger} Q Q^{\dagger}+u u^{\dagger} L L^{\dagger}+u^{2} u^{\dagger 2}+\quad+e^{\dagger} L^{\dagger} H^{2} H^{\dagger}+2 e^{\dagger} u^{\dagger} Q^{\dagger} L^{\dagger}+e L H H^{\dagger 2}+ \\
& +2 e u Q L+e e^{\dagger} Q Q^{\dagger}+e e^{\dagger} L L^{\dagger}+e e^{\dagger} u u^{\dagger}+e^{2} e^{\dagger 2}+d^{\dagger} Q^{\dagger} H^{2} H^{\dagger}+2 d^{\dagger} u^{\dagger} Q^{\dagger 2}+ \\
& +\quad+d^{\dagger} e Q^{\dagger} L+d Q H H^{\dagger 2}+2 d u Q^{2}+ \\
& +2 d d^{\dagger} u u^{\dagger}+d d^{\dagger} e e^{\dagger}+d^{2} d^{\dagger 2}+u^{\dagger} Q^{\dagger} H^{\dagger} G_{R}+d^{\dagger} Q^{\dagger} H G_{R}+H H^{\dagger} G_{R}^{2}+G_{R}^{3}+u Q H d_{L}^{\dagger} Q Q^{\dagger}+d d^{\dagger} L L^{\dagger} \\
& +d Q H^{\dagger} G_{L}+H H^{\dagger} G_{L}^{2}+G_{L}^{3}+u^{\dagger} Q^{\dagger} H^{\dagger} W_{R}+e^{\dagger} L^{\dagger} H W_{R}+d^{\dagger} Q^{\dagger} H W_{R}+H H^{\dagger} W_{R}^{2}+W_{R}^{3} \\
& +u Q H W_{L}+e L H^{\dagger} W_{L}+d Q H^{\dagger} W_{L}+H H^{\dagger} W_{L}^{2}+W_{L}^{3}+u^{\dagger} Q^{\dagger} H^{\dagger} B_{R}+e^{\dagger} L^{\dagger} H B_{R} \\
& +d^{\dagger} Q^{\dagger} H B_{R}+H H^{\dagger} B_{R} W_{R}+H H^{\dagger} B_{R}^{2}+u Q H B_{L}+e L H^{\dagger} B_{L}+d Q H^{\dagger} B_{L}+H H^{\dagger} B_{L} W_{L} \\
& +H H^{\dagger} B_{L}^{2}+2 Q Q^{\dagger} H H^{\dagger} \mathcal{D}+2 L L^{\dagger} H H^{\dagger} \mathcal{D}+u u^{\dagger} H H^{\dagger} \mathcal{D}+e e^{\dagger} H H^{\dagger} \mathcal{D}+d^{\dagger} u H^{2} \mathcal{D}+d u^{\dagger} H^{\dagger 2} \mathcal{D} \\
& +d d^{\dagger} H H^{\dagger} \mathcal{D}+2 H^{2} H^{\dagger 2} \mathcal{D}^{2} . \quad \text { Hermitian conjugates }
\end{align*}
$$

Setting all of the spurions equal to unity gives $\widehat{H}_{6}=84$, the total number of independent local operators at dimension 6 , but more information is contained in eq.(3.16). For instance, the counting can easily be further decomposed by baryon number violation, $76+8$. The perhaps more familiar ' $59+4$ ' counting is one in which hermitian conjugates of fermionic operators are not counted separately (such counting can of course also be obtained from eq. (3.16)).

Repeating this at order ϵ^{6} we obtain the Hilbert series for dimension-six operators of the SM EFT:

59 operators

$$
\begin{align*}
\widehat{H}_{6} & =H^{3} H^{\dagger 3}+u^{\dagger} Q^{\dagger} H H^{\dagger 2}+2 Q^{2} Q^{\dagger 2}+\quad+2 Q Q^{\dagger} L L^{\dagger}+L^{2} L^{\dagger 2}+ \\
& +2 u u^{\dagger} Q Q^{\dagger}+u u^{\dagger} L L^{\dagger}+u^{2} u^{\dagger 2}+\quad+e^{\dagger} L^{\dagger} H^{2} H^{\dagger}+2 e^{\dagger} u^{\dagger} Q^{\dagger} L^{\dagger}+ \\
& +\quad+e e^{\dagger} Q Q^{\dagger}+e e^{\dagger} L L^{\dagger}+e e^{\dagger} u u^{\dagger}+e^{2} e^{\dagger 2}+d^{\dagger} Q^{\dagger} H^{2} H^{\dagger}+2 d^{\dagger} u^{\dagger} Q^{\dagger}+ \\
& +\quad+\quad+\quad+2 d d^{\dagger} Q Q^{\dagger}+d d^{\dagger} L L^{\dagger} \\
& +2 d d^{\dagger} u u^{\dagger}+d d^{\dagger} e e^{\dagger}+d^{2} d^{\dagger 2}+u^{\dagger} Q^{\dagger} H^{\dagger} G_{R}+d^{\dagger} Q^{\dagger} H G_{R}+H H^{\dagger} G_{R}^{2}+G_{R}^{3}+ \\
& +\quad+H H^{\dagger} G_{L}^{2}+G_{L}^{3}+u^{\dagger} Q^{\dagger} H^{\dagger} W_{R}+e^{\dagger} L^{\dagger} H W_{R}+d^{\dagger} Q^{\dagger} H W_{R}+H H^{\dagger} W_{R}^{2}+W_{R}^{3} \\
& +\quad+H H^{\dagger} W_{L}^{2}+W_{L}^{3}+u^{\dagger} Q^{\dagger} H^{\dagger} B_{R}+e^{\dagger} L^{\dagger} H B_{R} \\
& +d^{\dagger} Q^{\dagger} H B_{R}+H H^{\dagger} B_{R} W_{R}+H H^{\dagger} B_{R}^{2}+ \\
& +H H^{\dagger} B_{L}^{2}+2 Q Q^{\dagger} H H^{\dagger} \mathcal{D}+2 L L^{\dagger} H H^{\dagger} \mathcal{D}+u u^{\dagger} H H^{\dagger} \mathcal{D}+e e^{\dagger} H H^{\dagger} \mathcal{D}+d^{\dagger} u H^{2} \mathcal{D}+
\end{align*}
$$

Setting all of the spurions equal to unity gives $\widehat{H}_{6}=84$, the total number of independent local operators at dimension 6 , but more information is contained in eq.(3.16). For instance, the counting can easily be further decomposed by baryon number violation, $76+8$. The perhaps more familiar ' $59+4$ ' counting is one in which hermitian conjugates of fermionic operators are not counted separately (such counting can of course also be obtained from eq. (3.16)).

redundancies

- effective operators are invariants under the gauge group, Lorentz group, etc
- their classifications go back to Hilbert, Weyl
- applied to superpotentials, Standard Model
- but so far no general discussions on operators with derivatives
- two sources of redundancies
- equation of motion (EOM)
- integration by parts (IBP)

Simple Example

- scalars four-point at $O\left(\partial^{2}\right): 4(4+I) / 2=10$

$$
\left(\partial_{\mu} \partial_{\mu} \varphi_{i}\right) \varphi_{j} \varphi_{k} \varphi_{l} \quad\left(\partial_{\mu} \varphi_{i}\right)\left(\partial_{\mu} \varphi_{j}\right) \varphi_{k} \varphi_{l}
$$

- $\partial^{2} \varphi_{i}=m_{i}^{2}$ removes the first class: 4
- We know only 2 out of 6 are independent - $s, t, u, s+t+u=m_{1}{ }^{2}+m_{2}{ }^{2}+m_{3}{ }^{2}+m_{4}{ }^{2}$
$\left(\partial_{\mu} \varphi_{i}\right)\left(\partial_{\mu} \varphi_{j}\right) \varphi_{k} \varphi_{l}-\varphi_{i} \varphi_{j}\left(\partial_{\mu} \varphi_{k}\right)\left(\partial_{\mu} \varphi_{l}\right)=\frac{1}{2} \partial^{2}\left(\varphi_{i} \varphi_{j}\right)\left(\varphi_{k} \varphi_{l}\right)-\frac{1}{2}\left(\varphi_{i} \varphi_{j}\right) \partial^{2}\left(\varphi_{k} \varphi_{l}\right) \approx 0$
$\partial_{\mu} \varphi_{i} \partial_{\mu} \varphi_{j} \varphi_{k} \varphi_{l}+\partial_{\mu} \varphi_{i} \varphi_{j} \partial_{\mu} \varphi_{k} \varphi_{l}+\partial_{\mu} \varphi_{i} \varphi_{j} \varphi_{k} \partial_{\mu} \varphi_{l}=\partial_{\mu} \varphi_{i} \partial_{\mu}\left(\varphi_{j} \varphi_{k} \varphi_{l}\right) \approx 0$
- In addition, there are only d linearly independent momenta in d-dimensions

Main idea

- Take kinetic terms as the zeroth order Lagrangian $(\partial \phi)^{2}, \bar{\psi} i \not \partial \psi,\left(F_{\mu \nu}\right)^{2}$
- Classically, it is conformally invariant under $\mathrm{SO}(4,2) \simeq \mathrm{SO}(6, \mathrm{C})$
- Operator-State correspondence tells us that operators fall into representations of the conformal group
- equation of motion: short multiplets
- remove total derivatives: primary states

Master formula

- Define a multi-variate Hilbert series
$H\left(p, \phi_{1}, \cdots, \phi_{n}\right)=\int d \mu_{\text {conformal }} d \mu_{\text {gauge }} \sum_{n=1}^{\infty} p^{n} \chi_{[n ; 0]}^{*} \prod_{i} P E\left[\phi_{i} \chi_{i}(q, \alpha, \beta)\right.$.
- PE are (anti-)symmetric products of characters for each field ϕ_{i} of dimension d_{i}
- integration over the gauge groups pick up gauge invariants
- integration over the conformal group picks only the primary states and Lorentz scalars
- expand it in power series in ϕ_{i} and p to find
*There are corrections for operators $\mathrm{d} \leq 4$ due to lack of orthonormality among characters for short multiplets

Hilbert series

- ring freely generated by φ :
- $I, \varphi, \varphi^{2}, \varphi^{3}, \varphi^{4}, \ldots$
- mod out by ideal, e.g. $\varphi^{2}=0$

$$
H(\varphi)=\frac{1-\varphi^{2}}{1-\varphi}=1+\varphi
$$

- convenient way to encode all possible operators in a given theory
- basically a "generating function"

characters

- character $X\left(x_{1}, x_{2}, \ldots, x_{r}\right)=\operatorname{Tr}_{R} g$
- e.g., SU(2)

$$
\begin{gathered}
e^{i \theta T_{3}}=\operatorname{diag}\left(e^{i j \theta}, e^{i(j-1) \theta}, \cdots, e^{i(-j) \theta}\right)=\left(y^{2 j}, y^{2 j-2}, \cdots y^{-2 j}\right) \\
y=e^{i \theta / 2}
\end{gathered}
$$

$$
\chi=y^{2 j}+y^{2 j-2}+\cdots+y^{-2 j}=y^{2 j} \frac{1-y^{-4 j-2}}{1-y^{-2}}=\frac{y^{2 j+1}-y^{-2 j-1}}{y-y^{-1}}
$$

- orthonormality on Haar measure
$\delta_{R_{i}, R_{j}}=\int d \mu_{S U(2)} \chi_{R_{i}}^{*} \chi_{R_{j}}=\oint_{|y|=1} \frac{d y}{2 \pi i} \frac{\left(1-y^{2}\right)\left(1-y^{-2}\right)}{y} \chi_{R_{i}}^{*} \chi_{R_{j}}$

conformal characters

- Primary field characterized by its spin $s=\left(j 1, j_{2}\right)$ and conformal weight Δ

$$
\chi_{[\Delta, s]}(q, \alpha, \beta)=q^{\Delta} P(q ; \alpha, \beta) \chi_{s}(\alpha, \beta)
$$

$$
P(q ; \alpha, \beta)=\frac{1}{(1-q \alpha \beta)\left(1-q \alpha \beta^{-1}\right)\left(1-q \alpha^{-1} \beta\right)\left(1-q \alpha^{-1} \beta^{-1}\right)}
$$

- For $\Delta=I+j_{1}+j_{2}$ which saturates the unitarity bound, there are "short multiplets" for EoM
$\chi_{0}(\alpha, \beta)=1-t^{2}$
$\chi_{\left(\frac{1}{2}, 0\right)}(\alpha, \beta)=\alpha+\alpha^{-1}-t\left(\beta+\beta^{-1}\right)=\chi_{\left(0, \frac{1}{2}\right)}(\beta, \alpha) \quad \psi_{\alpha} \quad F_{\mu \nu}$
$\chi_{(1,0)}(\alpha, \beta)=\alpha^{2}+1+\alpha^{-2}-t\left(\alpha+\alpha^{-1}\right)\left(\beta+\beta^{-1}\right)+t^{2}=\chi_{(0,1)}(\beta, \alpha)$

Plethystic Exponential

- symmetric tensor product R^{n} of R

$$
\begin{gathered}
P E\left[u \chi_{R}\right]\left(x_{1}, x_{2}, \cdots, x_{r}\right) \equiv \frac{1}{\operatorname{det}_{R}(1-u g)} \\
=\sum_{n} u^{n} \chi_{R^{n}}=\exp \left[-\operatorname{Tr}_{R} \log (1-u g)\right] \\
=\exp \left[\sum_{n=1}^{\infty} \frac{u^{n}}{n} \chi_{R}\left(x_{1}^{n}, \cdots, x_{r}^{n}\right)\right] \\
P E\left[u \chi_{1 / 2}\right]=\frac{1}{\operatorname{det}\left(\begin{array}{c}
1-u y \\
0
\end{array} 0_{1-u y^{-1}}^{0}\right)} \\
=\frac{1}{(1-u y)\left(1-u y^{-1}\right)}=1+u\left(y+y^{-1}\right)+u^{2}\left(y^{2}+1+y^{-2}\right)+u^{3}\left(y^{3}+y+y^{-1}+y^{-3}\right)+\cdots
\end{gathered}
$$

Plethystic Exponential

- anti-symmetric tensor product R^{n} of R

$$
\begin{gathered}
P E\left[u \chi_{R}\right]\left(x_{1}, x_{2}, \cdots, x_{r}\right) \equiv \operatorname{det}_{R}(1+u g) \\
=\sum_{n} u^{n} \chi_{R^{n}}=\exp \left[\operatorname{Tr}_{R} \log (1+u g)\right] \\
=\exp \left[-\sum_{n=1}^{\infty} \frac{(-u)^{n}}{n} \chi_{R}\left(x_{1}^{n}, \cdots, x_{r}^{n}\right)\right] \\
P E\left[u \chi_{1 / 2}\right]=\operatorname{det}\left(\begin{array}{cc}
1+u y & 0 \\
0 & 1+u y^{-1}
\end{array}\right) \\
=(1+u y)\left(1+u y^{-1}\right)=1+u\left(y+y^{-1}\right)+u^{2}
\end{gathered}
$$

```
\chiH[t_, , _, 阷, x_, y_, z1_, z2_] := \chiscal[t, , , \beta] *u1[3, x] * su2f[y];
\chiHd[t_, \alpha_, 的, x_, y_, z1_, z2_] := \chiscal[t, \alpha, \beta] *u1[-3, x] * su2fb[y];
\chiQ[t_, \alpha_, 和, x_, y_, z1_, z2_] := \chifermL[t, \alpha, \beta] *u1[1, x] * su2f[y] * su3f[z1, z2];
\chiQd[t_, 的, 腺, x], y_, z1_, z2_] :=
    \chifermR[t, \alpha, \beta] *u1[-1, x] * su2fb[y] * su3fb[z1, z2];
\chiu[t_, \alpha_, 的, x_, y_, z1_, z2_] := \chifermL[t, \alpha, \beta] *u1[-4, x] * su3fb[z1, z2];
\chiud[t_, \alpha_, 降, x_, y_, z1_, z2_] := \chifermR[t, \alpha, \beta] *u1[4, x] * su3f[z1, z2];
\chid[t_, 和, 陊, x_, y_, z1_, z2_] := \chifermL[t, \alpha, \beta] *u1[2, x] * su3fb[z1, z2];
\chidd[t_, \mp@subsup{\alpha}{-}{},\mp@subsup{\beta}{-}{\prime},\mp@subsup{x}{-}{\prime},\mp@subsup{y}{-}{\prime},z1_,z2_] := \chifermR[t, \alpha, \beta] *u1[-2, x] * su3f[z1, z2];
\chiL[t_, \alpha_, 降, x_, y_, z1_, z2_] := \chifermL[t, \alpha, \beta] *u1[-3, x] * su2f[y];
\chiLd[t_, \mp@subsup{\alpha}{-}{\prime},\mp@subsup{\beta}{-}{\prime},\mp@subsup{x}{-}{\prime},\mp@subsup{y}{-}{\prime},z1_,z\mp@subsup{2}{-}{\prime}]:= \chifermR[t, \alpha, \beta] *u1[3, x] * su2fb[y];
\chie[t_, \mp@subsup{\alpha}{-}{\prime},\mp@subsup{\beta}{-}{\prime},\mp@subsup{x}{-}{\prime},\mp@subsup{y}{-}{\prime},z\mp@subsup{1}{-}{\prime},z\mp@subsup{2}{-}{\prime}]:=\chifermL[t, \alpha, \beta] *u1[6, x];
\chied[t_, \alpha_, 的, x_, y_, z1_, z2_] := \chifermR[t, \alpha, \beta] *u1[-6, x];
\chiB1[t_, \alpha_, 陊, x_, y_, z1_, z2_] := \chifsL[t, \alpha, \beta];
\chiBr[t_, \mp@subsup{\alpha}{-}{\prime},\mp@subsup{\beta}{-}{\prime},\mp@subsup{x}{-}{\prime},\mp@subsup{y}{-}{\prime},z\mp@subsup{1}{_}{\prime},z\mp@subsup{2}{2}{\prime}]:=\chifsR[t,\alpha,\beta];
\chiW1[t_, \alpha_, 阬, x_, y_, z1_, z2_] := \chifsL[t, \alpha, \beta] * su2ad[y];
\chiWr[t_, \mp@subsup{\alpha}{-}{\prime},\mp@subsup{\beta}{-}{\prime},\mp@subsup{x}{-}{\prime},\mp@subsup{y}{-}{\prime},z1_, z2_] := \chifsR[t, \alpha, \beta] * su2ad[y];
\chiG1[t_, \mp@subsup{\alpha}{-}{\prime},\mp@subsup{\beta}{-}{\prime},\mp@subsup{x}{-}{\prime},\mp@subsup{y}{-}{\prime},z1_, z2_] := \chifsL[t, \alpha, \beta] * su3ad[z1, z2];
```


Master formula

- Define a multi-variate Hilbert series
$H\left(p, \phi_{1}, \cdots, \phi_{n}\right)=\int d \mu_{\text {conformal }} d \mu_{\text {gauge }} \sum_{n=1}^{\infty} p^{n} \chi_{[n ; 0]}^{*} \prod_{i} P E\left[\phi_{i} \chi_{i}(q, \alpha, \beta)\right.$.
- PE are (anti-)symmetric products of characters for each field ϕ_{i} of dimension d_{i}
- integration over the gauge groups pick up gauge invariants
- integration over the conformal group picks only the primary states and Lorentz scalars
- expand it in power series in ϕ_{i} and p to find
*There are corrections for operators $\mathrm{d} \leq 4$ due to lack of orthonormality among characters for short multiplets

```
Terminal - tcsh - ttys001
```

C Hitoshi-no-MacBook-Pro.local 35: form hssm6.frm

Hitoshi-no-MacBook-Pro.local 27: form hssm8.frm

D=8 operators

 dd*ee

 $+W r * L \wedge 2 * L d \wedge 2+W r * e e^{*} e d * L * L d+W r * d * d d * L * L d+W r * u^{*} u d^{*} L * L d+W r * Q d * d d$ ee*L + 3*Wr*Qd*ud*ed*Ld +Wr*Qd*u*d*Ld + 3*Wr*Qd^2*ud*dd+Wr*Qd^2*u*ee $+2^{* W r} r^{*} Q d \wedge 3^{*} L d+W r^{*} Q^{*} d^{*} e d * L d+W r^{*} Q^{*} u d * d d * L+3^{*} W^{*} * Q^{*} Q d * L * L d+W r * Q^{*} Q d$

 $W L u^{*} u d^{* L L d}+W L * Q d * d d^{*} e e^{*}+W L * Q d * u^{*} d * L d+W L * Q^{*} d^{*} e d * L d+W L * Q^{*} u d^{*} d d$
 $+2 * W l * W r * L * L d * t+W l * W r * e e e^{*} d * t+W l * W r * d * d d * t+W l * W r * u^{*} u d * t+2 * W l *$ Wr*Q*Qd*t W1^2*L*Ld*t W1ヘ2*0*0d*t $+2 * W 1 \wedge 2 * W r \wedge 2+2 * W 1 \wedge 4+G r^{*} d d^{*} d$

 $+G r^{*} Q^{*} d^{*} e d^{*} L d+2^{*} G r^{*} Q^{*} u d^{*} d d^{*} \mathrm{~L}+2^{*} \mathrm{Gr} r^{*} Q^{*} Q d^{*} \mathrm{~L}^{* L d}+G r^{*} Q^{*} \mathrm{Qd}^{*}$ ee ${ }^{*} \mathrm{ed}+4^{*} \mathrm{Gr}$ $* Q^{*} Q d^{*} d^{*} d d+4^{*} G r * Q^{*} Q d^{*} u^{*} u d+G r * Q^{\wedge} 2^{*} u d^{*} e d+2 * G r * Q^{\wedge} 2^{*} Q d \wedge 2+G r * W r * Q^{*} Q d *$ $t+G r * W 2 * Q^{*} Q d^{*} t+G r \wedge 2^{*} d * d d^{*} t+G r \wedge 2^{*} u^{*} u d^{*} t+G r \wedge 2 * Q^{*} Q d^{*} t+2 * G r \wedge 2^{*} W r \wedge 2$

 *Q^3*L + Gl*Wr*Q*Qd*t + Gl*Wl*Q*Qd*t + Gl*Gr*L*Ld*t + Gl*Gr*ee*ed*t + 3*

 ed $+B r^{*} u^{*} u d^{*} L^{*} L d+B r^{*} *^{*} u d^{*} e e^{*} e d+2^{*} \mathrm{Br}^{*} u^{*} u d^{*} d^{*} d d+B r^{*} \mathrm{Od} d^{*} d d^{*} e e^{*} L+3^{*}$
 ${ }^{*} \mathrm{Ld}+\mathrm{Br} \mathrm{Q}^{*} \mathrm{Ld}$

 $B r \wedge 2 * W 1 \wedge 2+2 * B r \wedge 2 * G \wedge 2+B r \wedge 2 * G 1 \wedge 2+B r \wedge 4+B 1 * e^{*} d d^{*} L * d+B l^{*} d^{*} d d^{2}$ $L^{*} L d+B l^{*} d^{*} d d^{*} e^{*} d+B l^{*} u^{*} d^{*} L * L d+B l^{*} u^{*} u d^{*} e e^{*} d+2^{*} B l^{*} u^{*} d^{*} d * d d$

 $+B l * W r^{*} Q^{*} Q d^{*} t+B l * W l^{*} L^{*} L d^{*} t+B l * W l^{*} Q^{*} 0 d^{*} t+B l * G r^{*} d^{*} d d^{*} t+B l^{*} G r^{*} u^{*}$ $u d^{*} t+B l * G r * Q^{*} Q d * t+B l * G l * d * d d^{*} t+B l * G l * u^{*} u d^{*} t+B l * G l * Q^{*} Q d * t+B l * G l$ $* G r \wedge 2+B l * G l \wedge 3+B l * B r * L * L d * t+B l * B r * e e^{*} e d * t+B l * B r * d^{*} d d * t+B l * B r *{ }^{*}$
 Wl^2 + Bl^2*Gr^2 $+2 * B \backslash \wedge 2 * G l \wedge 2+B l \wedge 2 * B r \wedge 2+B l \wedge 4+3 * H d * e e * L \wedge 2 * L d * t+$ Hd*ee^2*ed*L*t + 3*Hd*d*dd*ee*L*t + 3*Hd*ud*d*ed*Ld*t + 2*Hd*ud^2*dd*L* +2 dran

 $H d^{*} W r^{*} Q d^{*} u d^{*} t \wedge 2+H d^{*} W r^{*} Q^{*} d^{*} t \wedge 2+H d^{*} W r \wedge 2^{*} e e^{*} L+2^{*} H d^{*} W r \wedge 2^{*}$ Qd*ud $+H^{*}{ }^{*}$

Wr*Qd*ud + Hd*Br*Wr*Q*d + 2*Hd*Br*Gr*Qd*ud + Hd*Br*Gr*Q*d + Hd*Br^2*ee* $+H d^{*} B r \wedge 2^{*}$ Od*ud $+H d^{*} B r \wedge 2^{*} Q^{*} d+2^{* H d * B L * e e * L * t \wedge 2 ~}+H^{*} B L^{*}$ Od*ud*t^2 +2 Hd*Bl*Q*d*t^2 + 2*Hd*Bl*WL*ee*L + Hd*BL*WL*Qd*ud + 2*Hd*BL*Wl*Q*d + Hd

 *Hd^2*Qd^2*ud^2 + 2*Hd^2*Q*d*ee*L + 2*Hd^2*Q*Qd*ud*d + 2*Hd^2*Q^2*d^2 + Hd^2*Wr*ud*d*t + Hd^2*WL*ud*d*t + Hd^2*Gr*ud*d*t + Hd^2*G1*ud*d*t + Hd^2 *Br*ud*d*t + Hd^2*BL*ud*d*t + 3*H*ed*L*Ld^2*t + H*ee*ed^2*Ld*t + 3* ${ }^{* *}{ }^{*} d^{*}$

 $H^{*} Q d^{*} u^{*} u d^{*} d d^{*} t+2^{*} H^{*} Q d^{*} u^{\wedge} 2^{*} e e^{*} t+3^{*} H^{*} Q d \wedge 2^{*} u^{*} L d^{*} t+3^{*} H^{*} Q^{*} u d^{*} d d^{*} e d * t$

 ed Ld + 2*
 $+3 * H * G r \wedge 2 * Q d * d d+2 * H * G r \wedge 2 * Q^{*} u+H^{*} G 1 * Q d * d d *+\wedge 2+2 * H * G 1 * Q^{*} u^{*}+\wedge 2+H^{*}$

 $B r^{\wedge} 2^{*} e d * L d+H^{*} B r \wedge 2^{*} O d^{*} d d+H^{*} B r^{\wedge} 2^{*} Q^{*} u+H^{*} B L^{*} e d^{*} L d^{*} t \wedge 2+H^{*} B L^{*} O d^{*} d d^{*}+\wedge 2$

 $+\mathrm{H}^{* H d * d \wedge 2 * d d \wedge 2 ~+~ H * H d * u d \wedge 2 * d d * e d ~+~ 2 * H * H d * u * u d * t \wedge 3 ~+~ 2 * H * H d * u * u d * L * L d ~}$ $+H^{*} H d^{*} u^{*} u d^{*} e e^{*} e d+2^{*} H^{*} H d^{*} u^{*} u d^{*} d^{*} d d+H^{*} H d^{*} u \wedge 2^{*} d^{*}$ ee $+H^{*} H d^{*} u^{\wedge} 2^{*} u d^{\wedge} 2$
 ud*dd + HHd*Qd^2*u*ee + 2 H

 $H d * W r \wedge 2 * t \wedge 2+H^{*} H d * W r \wedge 3+6 * H * H d * W L * L * L d * t+2 * H * H d * W L * e e^{*} e d * t+2 * H * H d *$
 $\mathrm{G}^{*} \mathrm{Q}^{*} \mathrm{Od}^{*} \mathrm{t}$ 2 + Hd $\mathrm{Gr}^{*} \mathrm{Q}^{*} \mathrm{Qd} \mathrm{d}^{*} \mathrm{t}+\mathrm{H} \mathrm{Hd}^{*} \mathrm{G}$ $* H * H d * B r * L * L d * t+2 * H * H d * B r * e e^{*} e d * t+2 * H * H d * B r * d * d d * t+2 * H * H d * B r * u^{*} u d$
 $t+H^{* H d * B r \wedge 2 *+\wedge 2+4 * H * H d * B l * L * L d * t+2 * H * H d * B l * e e * e d * t+2 * H * H d * B l * d * d d ~ d i d ~}$

 $+6^{*} H^{*} H d \wedge 2^{*} Q d * u d^{*} t \wedge 2+6^{*} H^{*} H d \wedge 2^{*} Q^{*} d * t \wedge 2+2^{*} H^{* H} d^{\wedge} 2^{*} W r^{*} O d^{*} u d+2^{*} H^{*} H d^{\wedge} 2^{*}$
 Qd*ud $+H^{*} H d \wedge 2 * B L * e e * L+H^{* H d \wedge 2 * B L *} \mathbf{D}^{*} d+H^{* H d \wedge 3 * u d * d * t+H \wedge 2 * e d \wedge 2 * L d \wedge 2 ~}$ + H^2*u*dd*t^3 + H^2*u*dd*L*Ld $+2 * H \wedge 2 * Q d * d d * e d * L d+2 * H \wedge 2 * Q d \wedge 2 * d d \wedge 2+$

 $+6 * H \wedge 2 * H d * e d * L d^{*} t \wedge 2+6 * H \wedge 2 * H d * Q d * d d * t \wedge 2+6 * H \wedge 2 * H d * Q * u^{*} t \wedge 2+2 * H \wedge 2 * H d$
 Hd*Gl*Q*u + H^2*Hd*Br*ed*Ld + H^2*Hd*Br*Qd*dd + H^2*Hd*Bl *Q*u + 3*H^2* Hd^2*t^4 + 4*H^2*Hd^2*L*Ld*t + H^2*Hd^2*ee*ed*t + H^2*Hd^2*d*dd*t + H^2*
 $2 * H \wedge 2 H d \wedge 2 * W L * t \wedge 2+2 * H \wedge 2 * H d \wedge 2 * W 1 \wedge 2+H^{\wedge} 2^{*} \mathrm{Hd} \wedge 2 * G r \wedge 2+\mathrm{H}^{\wedge} 2^{*} \mathrm{Hd} \wedge 2 * \mathrm{Gl} \wedge 2+$ ${ }^{H \wedge 2 * H Д} \wedge 2 * B r * t \wedge 2+H^{\wedge} \wedge 2 * H d \wedge 2 * B r * W r+H \wedge 2 * H d \wedge 2 * B r \wedge 2+H \wedge 2 * H d \wedge 2 * B L * t \wedge 2+H \wedge 2$
 *H^3*Hd^3*+^2 + H^4*Hd^4

993 of them

Conclusions

- Nailed the question of classifying effective operators in a given Lorentz-inv theory
- Connections to amplitudes?
- perturbation around non-free theories?
- EFT important in many other contexts
- condensed matter physics
- nuclear physics
- cosmological density fluctuations

