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Introduction & Summary
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FIRST DECECTION OF GWS

LIGO announcement @ 2016/2/11

    - Black hole binary 

              36M⊙ + 29M⊙ →62M⊙

      with 3.0M⊙ radiated in GWs

    - Frequency ~ 35 to 250 Hz

    - Significance > 5.1σ
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The era of 

Gravitational wave

has come
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重力波天文学のロードマップ

原始重力波シンポ (日本物理学会 2014年秋季大会, 2014年9月19日, 佐賀大学) 58
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Inflationary quantum fluctuations (“Primordial GWs”)

Preheating

Cosmic strings, domain walls

First-order phase transition

6

GRAVITATIONAL WAVES
AS A PROBE TO HIGH-ENERGY PHYSICS



/ 34

Inflationary quantum fluctuations (“Primordial GWs”)

Preheating

Cosmic strings, domain walls

First-order phase transition  can occur in many physics models
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- Electroweak symmetry breaking

- SUSY breaking

- Peccei-Quinn symmetry breaking

- Breaking of GUT group   ... and so on

GRAVITATIONAL WAVES
AS A PROBE TO HIGH-ENERGY PHYSICS



How (first order) phase transition occurs
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- High temperature

false vacuum

- Low temperature

true vacuum

Φ

V

Φ

V

Φ

V

Trapped at symmetry 
enhanced point

Another extreme 
appears

Another extreme 
becomes stable

Time

GRAVITATIONAL WAVES
AS A PROBE TO PHASE TRANSITION
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How thermal first order phase transition produces GWs

9

Quantum tunneling

- Field space - Position space

Bubble formation & GW production

GRAVITATIONAL WAVES
AS A PROBE TO PHASE TRANSITION

false

x3

(“nucleation”)true

true

true
false vacuum true vacuum

Φ

V
released 
energy
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How thermal first order phase transition produces GWs

10

Quantum tunneling

- Field space - Position space

Bubble formation & GW production

Bubble walls
source GWs true

true

true

GWs
false vacuum true vacuum

Φ

V
released 
energy

GRAVITATIONAL WAVES
AS A PROBE TO PHASE TRANSITION
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GWs propagates until the present without losing information

    because of the Planck-suppressed interaction of gravitions

present

t

propagation
GWs

Phase transition
& GW production

NO scattering = NO information loss

GRAVITATIONAL WAVES
AS A PROBE TO PHASE TRANSITION
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GWs propagates until the present without losing information

    because of the Planck-suppressed interaction of gravitions

present

t

propagation
GWs

Phase transition
& GW production

NO scattering = NO information loss

GWs can be a unique probe
to unknown high-energy particle physics

GRAVITATIONAL WAVES
AS A PROBE TO PHASE TRANSITION
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We must fix theoretical prediction for GW spectrum

GW spectrum from bubble collisions is usually calculated

    by NUMERICAL SIMULATION

13

THEORETICAL PREDICTION 
FOR GW SPECTRUM

/ f�1 ? f�2 ?

∝frequency

∝GW energy density

Statistical 
   error

fall-off？

[Huber et al., ‘08]

computer

→
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GW spectrum from bubble collisions is

14

SUMMARY

Exactly
determined by analytic calculation 

         in the same setup as in numerical simulations
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TALK PLAN

0. Introduction & Summary

1. GWs produced in first-order phase transition

   (We define the setup here)

2. Analytic derivation of the GW spectrum 

3. Future applications & Summary

15
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1. GWs produced in 
first-order phase transition

16
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Tij is determined by

- Bubble distribution

- Energy-momentum profile around nucleated bubbles

1. GWS PRODUCED IN PHASE TRANSITION

17

What do we need to calculate GW production ?

ds

2 = �dt

2 + a

2(t)(�ij + 2hij)dx
i
dx

j- Definition of GWs : 

⇤hij = 8⇡GKij,klTkl- Propagation of GWs : 

projection to 
tensor mode

Energy-momentum tensor 
(from bubble walls)

We need this
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When first order phase transition occurs

19

-  Transition occurs at Γ ~ H4

nucleation rate per unit vol. & time 

(determined by underlying theory)
Γ : 

c

H-1

H -3vol ~

Γ × vol × t ~ 1

H-1H-3

because         finds one bubble at

(Hubble horizon)

true

1. GWS PRODUCED IN PHASE TRANSITION



How long first order phase transition lasts

20

-  Duration of PT is determined by the changing rate of  Γ  

Γ = Γ  e*
β(t - t  )*

because

( = β )

1. Γ significantly changes

2. So, the first bubble typically collides

with others δt after nucleation

with time interval δt ~ 1/β

~1/β

:    Taylor exp. around transition time t*

1. GWS PRODUCED IN PHASE TRANSITION

� ' d(S3/T )

dt
' H

d(S3/T )

d lnT
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1. GWS PRODUCED IN PHASE TRANSITION
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What do we need to calculate GW production ?
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2 + a
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i
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j- Definition of GWs : 

⇤hij = 8⇡GKij,klTkl- Propagation of GWs : 

projection to 
tensor mode

Energy-momentum tensor 
(from bubble walls)

We need this

Tij is determined by

- Bubble distribution

- Energy-momentum profile around nucleated bubbles



false

true

wall

friction

pressure

scalar+plasma dynamics
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Single bubble profile

- Main players : scalar field & plasma

- Wall (where the scalar field value changes)
  wants to expand (“pressure”)

false true

- Wall is pushed back by plasma (“friction”)

- These dynamics are generally complicated & hard to solve, 
  so, let’s try some qualitative classification

1. GWS PRODUCED IN PHASE TRANSITION



false

true

wall

friction

pressure

scalar+plasma dynamics
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Single bubble profile : Qualitative classification

potential

false
true

(R) Runaway case            :  Pressure dominates friction
                                          → Wall velocity approaches speed of light
                                        Energy is dominated by scalar motion (wall itself)
(T) Terminal velocity case :  Pressure & friction are in balance
                                          → Bubble walls reach a terminal velocity (<c)
                                        Energy is dominated by plasma around walls

- Roughly speaking, 

determines the late-time behavior 

of the bubble wall

1. GWS PRODUCED IN PHASE TRANSITION
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- Usually categorized into 3 classes

(1) Bubble wall collision : Scalar field dynamics

(2) Sound wave : Plasma dynamics after collision

(3) Turbulence : Plasma dynamics after collision

Gravitational-wave sources

- Which is important in (R)Runaway & (T)Terminal vel. cases?

(R) → (1) Bubble wall collision

(T) → (2,3) Sound wave (& Turbulence)

GW

(& also plasma)

1. GWS PRODUCED IN PHASE TRANSITION
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- Usually categorized into 3 classes

(1) Bubble wall collision : Scalar field dynamics

(2) Sound wave : Plasma dynamics after collision

(3) Turbulence : Plasma dynamics after collision

Gravitational-wave sources
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1. GWS PRODUCED IN PHASE TRANSITION
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All energy is assumed to be 
condensed in a thin surface of 
the wall.

false

true thin wall

Thin-wall Envelope

lB

26

EM profile of nucleated bubbles

- Thin-wall & envelope approximations

[Kosowsky, Turner, Watkins, PRD45 (’92)]

Collided walls are neglectedCollided walls are neglected

Fraction     of the released  
energy is localized at
a thin surface of the bubble

Fraction     of the released  
energy is localized at
a thin surface of the bubble



rB(t)

✏⇤
 : fraction of        localized at the wall

: released energy density

: bubble radius

✏⇤

1. GWS PRODUCED IN PHASE TRANSITION

for bubble wall region with width lB

Tij(t,x) =  · 4⇡
3
rB(t)

3✏⇤ ·
1

4⇡rB(t)2lB
· v̂iv̂j

/ 3
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To summarize, GW production of bubble collisions has been 
calculated

- Thin-wall and envelope approximations

⇤hij = 8⇡GKij,klTkl- Propagation of GWs : 

- Nucleation rate : Γ = Γ  e*
β(t - t  )*

EM tensor of bubble walls

1. GWS PRODUCED IN PHASE TRANSITION

in the literature in the following setup

1. GWS PRODUCED IN PHASE TRANSITION
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To have large GW, 
small          and large     are preferred!!

10!4 0.001 0.01 0.1 1 10 100
f!Hz"

10!13

10!11

10!9

10!7

"GW

BBO
DECIGO
LISA
eLISA

Detector sensitivities

: eLISA
: LISA
: DECIGO
: BBO

★Rough estimation of GW amplitude

Present GW amplitude & frequency

are obtained just by redshifting

fpeak ⇠ �

H⇤

T⇤
108GeV

[Hz]

duration time

h2⌦GW,peak ⇠ O(10�2)O(10�5)

✓
�

H⇤

◆2 ✓
↵

1 + ↵

◆2

~radiation fraction today~quadrupole factor

      : temp. just after transitionT⇤
      : H just after transitionH⇤

⌦
GW

= ⇢
GW

/⇢
tot

-

参考までに、、
1. GWS PRODUCED IN PHASE TRANSITION
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2. Analytic derivation of
the GW spectrum

29
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The essence : 

[Caprini et al. ‘08]

Ensemble average

2. ANALYTIC DERIVATION OF  
THE GW SPECTRUM

hT
ij

(t
x

,x)T
kl

(t
y

,y)iens

GW spectrum is determined by

ll
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The essence : GW spectrum is determined by

- Why？

2. ANALYTIC DERIVATION OF  
THE GW SPECTRUM

hT
ij

(t
x

,x)T
kl

(t
y

,y)iens

Formal solution of EOM : ⇤h ⇠ T →

Note : indices omitted below

Energy density of GWs (~ GW spectrum) :

h ⇠
Z t

dt0 Green(t, t0)T (t0)

⇢GW(t) ⇠ h ˙h2iens
8⇡G

⇠
Z

t

dt
x

Z
t

dt
y

cos(k(t
x

� t
y

))hTT iens

same as
massless scalar field

substitute 
the formal solution

Note : ensemble average
because of the stochasticity
of the bubbles
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(t
x

,x)

(ty,y)

32

Estimation of the ensemble average

- Trivial from the definition of ensemble average

hT (t
x

,x)T (t
y

,y)iens

hT (t
x

,x)T (t
y

,y)iens = ⌃ Probability for 
                    ≠ 0

Value of 

in that case
×

ll

Probability that 
bubble walls are 
passing through
(t

x

,x)&(t
y

,y)

0

B@

1

CA

0

B@

1

CA

0

B@

1

CA

0

B@

1

CA

T (t
x

,x)T (t
y

,y)
T (t

x

,x)T (t
y

,y)

0

B@

1

CA

0

B@

1

CA

2. ANALYTIC DERIVATION OF  
THE GW SPECTRUM

(P) Probability part (V) Value part
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3. GWS FROM BUBBLE COLLISION

= (t
x

, ~x)

= (ty, ~y)

||

||

Let consider the conditions where T(x)T(y) is non-zero.

・condition(1): No bubble is nucleated inside

 the light cones of x and y.← envelope approximation
 
・condition(2): Bubbles are nucleated on the surface of 

the light cones of x and y. 
↑thin wall approximation
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(t
x

,x)

(ty,y)

nucleation point

34

Estimation of the ensemble average

- 2 exclusive possibilities for                         to be nonzero

hT (t
x

,x)T (t
y

,y)iens

T (t
x

,x)T (t
y

,y)

1. single nucleation point

2. double nucleation points

(t
x

,x)

(ty,y)

2. ANALYTIC DERIVATION OF  
THE GW SPECTRUM
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single

double

Final expression

contains many polynomials, exponentials, and Bessel functions, but just that

⌦
GW

(k) ⌘ 1

⇢
tot

d⇢
GW

d ln k
�(k/�) ⌘ 3

8⇡G

�2⇢
tot

2✏2⇤
⌦

GW

(k)

contribution to 
from each ln k

⇢GW

2. ANALYTIC DERIVATION OF  
THE GW SPECTRUM
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Result

Peak amplitude
determined

confirmed / f�1 ? f�2 ?

- Consistent with numerical simulation within factor ~2

⌦
GW

(k) ⌘ 1

⇢
tot

d⇢
GW

d ln k

�(k/�) ⌘ 3

8⇡G

�2⇢
tot

2✏2⇤
⌦

GW

(k)

2. ANALYTIC DERIVATION OF  
THE GW SPECTRUM
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3. Future application 
& Summary

37
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Future application

For example - Inclusion of non-envelope part is (probably) possible

→ Check for the enhancement of GWs from sound-waves

(recent hot topic)

3. FUTURE APPLICATION 
& SUMMARY

Extend analytic method to more general setups.
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3. FUTURE APPLICATION 
& SUMMARY

- GWs can be a probe to high-energy particle physics, 

   especially to high-energy first-order PT

- We derived GW spectrum from bubble collisions analytically   

   in the same setup as in numerical simulation literature

   →  Spectrum in this setup has been completely determined

Summary

- To extract particle-physics information, 

  theoretical prediction for the spectrum must be fixed
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Back up

40
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How about？

1. GWS PRODUCED IN PHASE TRANSITION

41

false

true

wall

friction

pressure

scalar+plasma dynamics

potential

false
true

- Roughly speaking, 

determines bubble-wall behavior

(R) Runaway
      case

(T) Terminal velocity
      case

Wall velocity approaches Energy dominated by

speed of light (c)

terminal velocity (< c)

scalar motion
  (wall itself)

plasma around walls
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How good are thin-wall & envelope approximations？

- In (R) Runaway case,

envelope approx. → justified(?)

thin-wall approx. → justified

Φ

r

energy is stored as 
kinetic & gradient 
of the scalar field

no energy sourcing
for collided walls
(just the remaining 
scalar field oscillation)

(N.B. sound wave-enhancement of (T) Terminal velocity case)

- (R) Runaway case is the one where large GW amplitude is expected

1. GWS PRODUCED IN PHASE TRANSITION

n

[Kosowski et al. ‘92]
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When first order phase transition occurs

43

-  Transition occurs at Γ ~ H4

nucleation rate per unit vol. & time 

(determined by underlying theory)
Γ : 

c

H-1

Γ × vol × t ~ 1

H-1H-3

because         finds one bubble at

(Hubble horizon)

true

H -3vol ~

1. GWS PRODUCED IN PHASE TRANSITION
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When first order phase transition occurs

true

44

-  Transition occurs at Γ ~ H4

nucleation rate per unit vol. & time 

(determined by underlying theory)
Γ : 

c

H-1

H -3vol ~

Γ × vol × t ~ 1

H-1H-3

because         finds one bubble at

(Hubble horizon)

1. GWS PRODUCED IN PHASE TRANSITION
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How long first order phase transition lasts

45

-  Duration of PT is determined by the changing rate of  Γ  

Γ = Γ  e*
β(t - t  )*

as  δt (duration time) ~ 1/β because

1. Γ significantly changes

2. So, the first bubble typically collides

with others δt after nucleation

with time interval δt ~ 1/β

~1/β

:    Taylor exp. around transition time t*

1. GWS PRODUCED IN PHASE TRANSITION
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- Ensemble average ?

Justified because bubble collisions

are stochastic sources for GWs

Horizon @ present

    ⊃ many horizons @ PT 

Horizon @ PT

    ⊃ many bubbles (~ (β/H)  )3

46

The essence : GW spectrum is determined by hT
ij

(t
x

,x)T
kl

(t
y

,y)iens

2. ANALYTIC DERIVATION OF  
THE GW SPECTRUM



/ 3447

                When does                has nonzero value ?T (x)T (y)

= (t
x

, ~x)

= (ty, ~y)

||

||

Estimation of the ensemble average hT (t
x

,x)T (t
y

,y)iens

2. ANALYTIC DERIVATION OF  
THE GW SPECTRUM
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   x & y must be in false vac. before          ,  respectivelyt
x

, t
y

Probability for x & y to be in false vacuum

P (x, y) =
Y

i

(1� �dV i
4 ) = e�

R
d4z �(z)

= (t
x

, ~x)

= (ty, ~y)

||

||

dV i
4

                When does                has nonzero value ?T (x)T (y)

Estimation of the ensemble average hT (t
x

,x)T (t
y

,y)iens

2. ANALYTIC DERIVATION OF  
THE GW SPECTRUM
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v = 1
v = 0.1

v = 0.01
Wall velocity dependence

determined

Wall velocity dependence

2. ANALYTIC DERIVATION OF  
THE GW SPECTRUM



2. GWS PRODUCED IN PHASE TRANSITION
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To have large GW, 
small          and large     are preferred!!

10!4 0.001 0.01 0.1 1 10 100
f!Hz"

10!13

10!11

10!9

10!7

"GW

BBO
DECIGO
LISA
eLISA

Detector sensitivities

: eLISA
: LISA
: DECIGO
: BBO

★Rough estimation of GW amplitude

Present GW amplitude & frequency

are obtained just by redshifting

fpeak ⇠ �

H⇤

T⇤
108GeV

[Hz]

duration time

h2⌦GW,peak ⇠ O(10�2)O(10�5)

✓
�

H⇤

◆2 ✓
↵

1 + ↵

◆2

~radiation fraction today~quadrupole factor

cf.  SM with                      → 
�/H ⇠ O(105),

↵ ⇠ O(0.001)mH ⇠ 10 GeV, �/H ⇠ O(105),

↵ ⇠ O(0.001)

      : temp. just after transitionT⇤
      : H just after transitionH⇤

⌦
GW

= ⇢
GW

/⇢
tot

-
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- Single nucleation-point contribution

(V) Value part(P) Probability part

Estimation of the ensemble average hT (t
x

,x)T (t
y

,y)iens

T (tnucl, tx, ty,⌦nucl)(nx

)
i

(n
x

)
j

(n
y

)
k

(n
y

)
l

Summation over 
nucleation points

×

(t
x

,x)

(ty,y)Summation over

nucleation points

hT
ij

(t
x

,x)T
kl

(t
y

,y)i(s) =
Z

dtnucl P (t
x

, t
y

, |x� y|)�(tnucl)

2. ANALYTIC DERIVATION OF  
THE GW SPECTRUM


