新奇加速器技術を用いた 将来の加速器への夢

2016/9/7

Mitsuhiro Yoshida

High energy accelerator organization (KEK)

Alternative for Energy Frontier

• 電子

- 円形加速器:輻射で限界?
 - いやまだ限界でない → 100 km の FCC
 - シンクロトロン放射のエネルギー回収 → ERR
- リニアコライダー: 高電界 L= V/E と効率
 - Nb超伝導(2K運転, < 40MV/m) → <u>高温超伝導</u> 薄膜超伝導
 - 誘電体: <u>誘電体フォトニック</u> <u>DLA(Laser, THz)</u>
 - ・ <u>周波数重畳</u>
 - ・プラズマ加速
 - <u>レーザープラズマアフターバーナー</u>
 - <u>陽子ビームプラズマ</u> ← J-PARC の Energy Frontier への転用の可能性
- 陽子:輻射が無い
 - 強磁場 p(GeV/c)=0.3 B(T) ρ(m) LHC 7TeV=0.3x8.4Tx2804m → HE-LHC
 - <u>スーパーフェリック</u>
 - Crystal Accelerator
- ミュオン:輻射が無いが冷却が問題
 - MICE(FERMI)
 - Ultra Slow Muon : $\mu^+ \mathcal{O} \xrightarrow{} \rightarrow \mu^+ e^- \underline{collider}$
 - <u>45 GeV e</u>⁺

Alternative for High Intensity

- 電子陽電子コライダー -ビーム寿命 → エミッタンスコンバーター - 電力消費 → ERR ・陽子 / イオン 大強度加速器 - パルス磁場 → FFAG – インダクション → 超高速半導体スイッチ Photoconductive Semiconductor Switch (PCSS) Semiconductor Opening Switch (SOS)
- イオン蓄積リング
 - <u>Relic Neutrino との衝突: 低閾値β崩壊核</u>
 - -ECビーム
 - 励起イオン

e+e- Collderの歴史

Beam Sizeの歴史

ムーアの法則に沿うには 何が見込みがあるか?

- ・ 大型化=金/製造コスト

 → 金が指数的に増えるわけが無いので (バブル世代の人の問題)
 - 穴堀+磁石、高周波加速等のコストダウン → スーパーフェリック
 → 超伝導はコスト的に???
- •磁場 → VLHC
- ・電場+ビームサイズ → リニアコライダー
- 回収効率 → ERL / ERR

Microwave accelerator

Limit of metal wall microwave accelerator

 $E_{\rm s, max} \approx 195 {\rm MV/m} [\nu {\rm (GHz)}]^{1/2}.$

Current limit of microwave accelerator

- RF source
 - X-band (11.424GHz) LC Klystron
 Failure of 100MW klystron development
 + RFvPulse compressor
 - CLIC

Drive beam

• Quench ILC(Superconductor)

 \rightarrow High Tc material : NbN, MgB2 etc,.

加速器の電界を大幅に上げるには

- <u>耐圧の高い媒質</u> ×金属 $\bigcirc プラズマ$ 〇プラズマ 〇誘電体 $K(蓄積エネルギー) = \int \frac{\varepsilon E^2 + \mu H^2}{2} dV$ $E = \sqrt{\frac{2W}{\varepsilon V}} - f\sqrt{W}$ F : 電界、H: 磁界 V: 体積f: 周波数
- <u>体積を小さくする</u> or <u>蓄積エネルギーを上げる</u> $Q = \frac{\omega W}{p}$

P_{wall}

周波数の高い加速器:THz Q値の高い材料

- 従来のGHz帯加速方式 - 常伝導Cu:Q~10,000

→ 20GHz以上の高周波源が無い - 超伝導Nb:Q~10¹⁰しかし電界<40MV/m

- 100 fs 程度の超短パルスと - 誘電体 :Q~10⁶

ブラズマ or 誘電体による変換

・レーザー駆動 レーザー高強度化は著しく速い
・電子ビーム駆動 SLAC/KEK等で可能&世界最高電圧の実績

・陽子ビーム駆動

CERN/J-PARC等で可能→バンチ圧縮が問題

Cryogenic cavity :

R. L. Powell and F. R. Fickett, Cryogenic Properties of Copper, International Copper Research Association, Dec. 1979. *N. Ashcroft & N. Mermin: Solid State physics, p.526 (W. B. Saunders Co., 1976).

Cryogenic cavity / Anomalous skin effect

誘電体アシスト型加速管

特徴:

- 1m 辺り5 MW で 100 MV/m が達成可能
- ロングパルス ~100µs (⇔常伝導 数100ns)
- パルスコンプレッサー不要 ⇒ 高システム効率

開発の現状

- 高電界試験中
- 科研費 若手A → 基盤A
- 三菱重エとの共同研究締結
- 国内特許出願済、国際特許申請準備中

Energy recovery

Energy Recovery Ring (ERR)

$$P = \frac{2}{3} \frac{e^2 c}{4\pi\varepsilon_0} \frac{\beta^4 \gamma^4}{\rho^2} = \frac{2}{3} \frac{e^2 r_e}{m_e^3} E^2 B^2, \ r_e = 2.82 \times 10^{-15}, \ m_e = 0.511 MeV$$
$$p = eB\rho, \ E = cp$$
$$T_0 = \frac{2\pi\rho}{c}$$

$$W_{1turn} = PT_0 = \frac{2}{3} \frac{e^2 r_e}{m_e^3} E^2 \frac{E^2}{e^2 c^2 \rho^2} \frac{2\pi\rho}{c} = \frac{4\pi}{3} \frac{r_e}{\left(m_e c\right)^3} \frac{E^4}{\rho}$$
$$W_{1turn}[eV] = 8.85 \times 10^4 \frac{E^4 [GeV]}{\rho[m]} = 2.65 \times 10^4 E^3 [GeV] B[T]$$

$$P_{total} = \frac{W_{1turn}N_e}{T_0} = W_{1turn}[eV]I_{beam}$$

Energy Recovery Ring (ERR)

	SuperKEKB	LEPII	FCC	KEKB-Higgs	ERL-Higgs
Energy(GeV)	7	100	120	120	120
Circumference(km)	3	27	100	3	15
Bending Radius(km)	0.4	3.026	11	0.4	2
Ibeam(A)	2.6	0.008	0.03	0.03	0.03
W1turn(MeV)	0.53122125	2924.653	1668.305	45878.4	9175.68
Psynchrotron(MW)	1.38117525	23.39722	50.04916	1376.352	275.2704

SR → RF recovery • Klystron : DC → RF の効率で 50%

• Lasertron : Buncher e- \rightarrow DC加速 \rightarrow RF

Muon collider

• 2 TeV in KEKB ring (8.3T magnet same as LHC) $p = (0.3GeV/c) \rho(=400m)B(=8.3T) = 1TeV/c$

 σ (fb)

Parameter (including Higgs Factory)

CoM energy (TeV)	3	0.4		0.1	
p energy (GeV)	16	16		16	
p's/bunch	$2.5 imes 10^{13}$	2.5×10^{13}		5×10^{13}	
Bunches/fill	4	4		2	
Repetition rate (Hz)	15	15		15	
p power (MW)	4	4		4	
μ /bunch	2×10^{12}	2×10^{12}		4×10^{12}	
μ power (MW)	28	4		1	
Wall power (MW)	204	120		81	
Collider circumference (m)	6000	1000		350	
Average bending field (T)	5.2	4.7		3	
rms $\Delta p/p\%$	0.16	0.14	0.12	0.01	0.003
6D $\epsilon_{6,N}$ $(\pi m)^3$	$1.7 imes 10^{-10}$	$1.7 imes 10^{-10}$	$1.7 imes 10^{-10}$	1.7×10^{-10}	$1.7 imes 10^{-10}$
rms ϵ_n (π mm mrad)	50	50	85	195	290
β^* (cm)	0.3	2.6	4.1	9.4	14.1
σ_z (cm)	0.3	2.6	4.1	9.4	14.1
$\sigma_r \text{ spot } (\mu \text{m})$	3.2	26	86	196	294
σ_{θ} IP (mrad)	1.1	1.0	2.1	2.1	2.1
Tune shift	0.044	0.044	0.051	0.022	0.015
$n_{\rm turns}$ (effective)	785	700	450	450	450
Luminosity cm ⁻² s ⁻¹	$7 imes 10^{34}$	1033	$1.2 imes 10^{32}$	2.2×10^{31}	1031
Higgs/year			\rightarrow 1.9 \times 10 ³	4×10^{3}	3.9×10^{3}
$n_b N_{\mu}^{2} (\sigma_z) n_b N_{\mu} \xi (\sigma_z)$					
$L \sim - n $			Λ		

 $\sigma(\mu\mu \rightarrow H) = 5 \times 10^4 \text{ fb}$

 $\mathcal{E} = \frac{\varepsilon_{\perp}\beta^{*}}{\varepsilon_{\perp}N_{\mu}} \beta^{*} \beta$

Other muon generation method

- Decay $\pi \rightarrow 6D$ Cooling
- Surface $\mu \rightarrow Ultra Cold$
- J/Ψ
- $e^+e^-(\gamma) \rightarrow Pair Production$

Ultra Cold Muon

Ultra Slow Muon

非対称 µ⁺e⁻ Collider

・ メリット / デメリット

OUltra Cold μ^+ 1TeV で e⁻の emittance とオーダーで合う O τ_{μ} が伸びる O e⁻ 側で数が稼げる × T-channel (W/Z-fusion)

- KEKB(TRISTAN) Ring : ECM ~300 GeV
 - 1 TeV (μ⁺): γ = 10,000(τ~20ms), ρ=400m, 8.3T(LHCと同じ)

e

- 20 GeV (e⁻) : γ = 40,000
- Emittance
 - 5 nm / 150pm (µ⁺) $\,\times\,\beta$ =3.2 /0.3mm $\rightarrow\,\sigma$ = 4 / 0.2 µm
 - 1 nm / 4 pm (e⁻)
- Luminosity $L = \frac{N_+ N_-}{4\pi\sigma_x \sigma_y} f_{rep} = 10^{31} cm^{-2} s^{-1} @ 1MHz(10bunch), 10^8 \mu^+, 10^{10} e^-$

µe Cross Section

T-channelのeeよりかなり小さい?

 $\mathbf{e} \ \boldsymbol{\mu} \rightarrow \ \boldsymbol{\nu} \ \boldsymbol{\nu} \ \mathbb{W} + \ \mathbb{W} -$

Muon Pair Creation

$e^++e^- \rightarrow \mu^++\mu^-$

$$\begin{split} &2m_e + T_1 + T_2 = 2m_\mu + T_3 + T_4 \\ &p_1 + p_2 = p_3 + p_4 \sim 600 \ MeV \ / \ c \\ &T_{CM} \sim 2\sqrt{T_1 T_2} = 2m_\mu \\ &T_2 = 18.7 \ MeV \end{split}$$

Cross section:

$$\sigma = \frac{e^4 \sqrt{|k|^2 - m^2} \left(2|k|^2 + m^2\right)}{96\pi |k|^5}$$
$$= \left(\hbar c\right)^2 \frac{4\pi\alpha^2}{3s} = 8 \ \mu barn$$
$$\alpha = \frac{e^2}{4\pi\varepsilon_0 \hbar c}, \ \left(\hbar c\right)^2 \approx 0.4 \ GeV^2 m barn$$

 $\beta_{IP} = 10mm(h) / 0.1mm(v)$ (ATFのFinal Focusを仮定) Positron DR(1.1GeV): $\varepsilon_{x,v} = 42.5nm(h) / 3.15nm(v), \ \sigma_{x,v} = 20\mu m(h) / 0.5nm(v)$ KEKATF (1.54GeV): $\varepsilon_{x,v} = 1nm(h) / 0.01nm(v), \quad \sigma_{x,v} = 3.4 \mu m(h) / 37nm(v)$ $L = \frac{N_+ N_-}{4\pi\sigma_x \sigma_y} f_{rep}$ $N_{\mu} = \sigma L = 6.3$ (低エネルギーElectronは絞れない) $f_{rep} = 1, N_{\mu} = 10000$ $\sigma_{x,y} = \sqrt{\frac{N_{+}N_{-}}{4\pi L}} = \sqrt{\frac{\sigma N_{+}N_{-}}{4\pi N_{-}}} = 2.5nm$

@ 0.212 GeV Nplasma = 10^{20} /cm³, Npositron = 10^{11} /bunch => N(µ) = 10^{6} / bunch

Luminosity

- 63 GeV ring : r = 25m @ 8T => C = 300m ? (1μs)
- ILCのビーム: 3.2nC (2 x 10¹⁰)
 - x 1312 bunch (727µs/554ns) x 5Hz
 - => $2 \times 10^5 \mu$ /bunch => $1.3 \times 10^8 \mu \times 2$ bunch (ring)

$$L = \frac{N_{+}N_{-}}{4\pi\sigma_{x}\sigma_{y}}f_{rep}h\left(\frac{\sigma_{z}}{\beta^{*}}\right) = \frac{N_{\mu}^{2}}{4\pi\varepsilon_{\perp}\beta^{*}}f_{rep}h\left(\frac{\sigma_{z}}{\beta^{*}}\right)$$

Muon collider for Higgs factory

• 45 GeV e⁺ beam x Plasma(e⁻) => $\mu^+\mu^-$ pair

対生成の場合のLuminosity

対生成なので、単一の Z/γ からµ+µ- が生成している ⇒ 単一粒子同士の衝突を考えられる可能性

• Macro 粒子
$$L = \frac{N_+ N_-}{4\pi\sigma_x \sigma_y} f_{rep} h\left(\frac{\sigma_z}{\beta^*}\right)$$

• 単一粒子

$$L = N \frac{1}{4\pi\sigma_x \sigma_y} f_{rep}$$

Novel Accelerator R&D

• R&D for ultra high field accelerator (1GV/m)
Novel accelerators

Direct Laser/THz Acceleration(DLA)

Laser driven accelerator

THzのプラズマ振動による加速

• 何故プラズマが必要か?

- 電磁波(レーザー)は横波なので進行方向の電界が無く加速できない
- ビームも相対論的になると後続のビームにエネルギーを渡せない (後続のビームが駆動ビームを減速しないと変換できない)

エネルギー源と電界

	常伝導	超伝導	電子ビーム 駆動	レーザー 駆動	陽子ビーム駆動
	6/12GHz	1.3GHz	5THz (50fs)	5THz (50fs)	? THz (後述)
駆動 エネルギー	20J [/m] = 40MW × 500ns	200J [/m] = 300kW × 700μs	70J (SLAC) =23GeV × 3nC 35J (KEK) =7GeV × 5nC	40J (→ 1kJ)	15kJ (SPS) = 450GeV × 30nC 150kJ (LHC) = 7TeV × 20nC 300kJ (J-PARC MR) = 40GeV × 8μC
電界	40/80MV/m 放電限界	40MV/m クエンチ	20GV/m × 2m = 40 GV	10 GV/m	?
繰り返し	50Hz	5Hz	50Hz	10Hz	1/18 Hz (SPS) 0.3 Hz (J-PARC MR)
ビーム電力 /駆動/AC	400W / 1 kW / 8 kW (1m辺り)	10 MW / 23 MW / 150 MW (ILC)	? / 3.5 kW / 70 kW	4 W ? /400W /4kW(LD)	? / 833W/75MW (SPS) / 300kW/25MW (J-PARC)
効率	5% ?	8% ?	5%(電子生成) ×η(e→e)	現状 0.1 % ?	4 %(陽子ビーム生成) × η(p→e)

Proton beam driven electron accelerator

陽子ビーム駆動電子加速・陽子ビーム駆動

Oリング加速器で放射損失が無くエネルギーが高い O粒子が重くプラズマ中の電子との衝突による損失小 ×バンチ圧縮が難しい

– 独自のシミュレーションコードの開発

- Awake Collaboration として展開
 - SPS (450GeV)での実験を計画

A PROPOSED EXPERIMENT ON THE PROTON DRIVEN PLASMA WAKEFIELD ACCELERATION

G. Xia¹, A. Caldwell¹, K. Lotov^{2,3}, A. Pukhov⁴, R. Assmann⁵, F. Zimmermann⁵
1. Max Planck Institute for Physics, 80805, Munich, Germany
2. Budker Institute for Nuclear Physics, 630090, Novosibirsk, Russia
3. Novosibirsk State University, 630090 Novosibirsk, Russia
4. Institute for Theoretische Physics I, Heinrich-Heine-University Duesseldorf, 40225, Germany
5. CERN, Geneva, Switzerland

陽子ビーム駆動電子加速の最初のアイデア

プラズマ加速にはトランス比の限界がある (DW_e < W_d). TeV に行くには

- 多段の電子ビーム駆動
- 陽子駆動

駆動エネルギーは

<40 J (laser), <120 J (electrons) 20 kJ (SPS), >150kJ (LHC)

1 TeV 陽子ビームで sub-TeV まで電子加速が可能だが・・・ プラズマ波長程度に sub-mm まで陽子ビームを圧縮できれば

駆動ビーム: p⁺ E=1 TeV, N_p=10¹¹ σ_z =100 μ m σ_r =0.42 mm σ_e =0.024 mrad, Δ E/E=10% 加速ビーム:e⁻ E₀=10 GeV

Plasma: n_p=10¹⁵cm⁻³

マルチバンチ駆動のウェーク場を使う

② バンチトレイン

 1バンチを圧縮
 LHC beam: 7.6 cm, energy spread = 0.01%
 位相空間の保存 0.1mm (300fs)に圧縮するには → エネルギー分散 = 7.6%
 ≈ 500 GeV (7 TeV ビームに対して)
 ILCスケールの加速器が圧縮のために必要!

10バンチにするにはエネルギー分散も 1/10 で良くなる バンチ長:10mm エネルギー分散: 0.076% * 2 * 4 (for bunching) = 0.6% = 42 GeV できない事は無いが依然大変

③ 自己バンチング 圧縮器無、チョッパー無 外部モジュレーションによるプラズマの自己モジュレーション

AWAKE Collaboration

AWAKE collaboration (>60 物理屋、~25 機関) SPS からの 450GeV 陽子ビームを利用した実験を行う

J-PARCの Energy Frontier への転用は?

Photoconductive switch accelerator

Electric field concentrator using ultra fast switch

Dielectric accelerator using photo conductive switch

Blumlein accelerator by inverting the voltage of transmission line using phyoconductive switch

Semiconductor for photoconductive switch

300 MV/m

				1		
	Si	GaAs	InP	4H-SiC	GaN	GaP
Bandgap(eV)	1.11	1.424	1.34	3.23	3.37	2.26
Wavelength(nm)	1116.06306	869.964888	924.5	383.5387	367.605341	548.154867
Insulation voltage(kV/cm)	300	250(600?)	200	3000	3300	
Relative permittivity	11.8	12.8		10	9.5	
Dark registance(Ωcm)	2×10 ³	2×10 ⁷	3.6×10 ⁷	>10 ¹¹		
Electron mobility(cm ² /Vs)	1500	8500	6500	1000	1200	200
Hole movility(cm ² /Vs)	600	420		115	10	
Saturation electron velocity(10 ⁷ cm/s)	1	2		2	2.5	
Thermal conductivity(W/cm/K)	1.4	0.55	0.7	4.9	2.1	1.1
Expansion coefficient($10^{-5}/K$)	2.4	6	4.5	4.2/4.68	5.58/3.17	5.3~5.81
Lattice constant(Å)	5.43	5.6535	5.45	3.073/10.05	3.189/5.178	5.45

Ideal material for photoconductive switch

- High mobility / High withstanding voltage
- Small dielectric loss
- Cost of wafer

Field Concentrator Microtron

58ns = 8.7m / n=3 (Al2O3)

Muon phase rotaion is possible in last turn.

Blumlein DWA Microtron

	放医研	群馬大	Blumlein Microtron	J-PARC RCS	J-PARC MR	Blumlein Microtron
Energy (MeV/iu)	430	400	400	3000	50000	50000
Injection Energy(MeV/u)			0	400	3000	3000
Particle per bunch				4.15E+13	4.13E+13	4.15E+13
Particle per spill	1.15E+08	2.40E+09		8.30E+13	3.30E+14	4.15E+13
Particle per second	2.30E+08	1.20E+09		2.08E+15	9.90E+13	2.08E+14
Repetition	2	0.5		25	0.3	5
Numer of Bunch				2	8	1
Bunch Length(ns)				58	58	58
Bunch Spacing(ns)					598	
Charge per bunch(nC)				6.65E+03	6.61E+03	6.65E+03
Charge per spill (nC)	1.84E-02	3.84E-01	0.00E+00	1.33E+04	5.29E+04	6.65E+03
Current (nA)	3.68E-02	1.92E-01	0.00E+00	3.32E+05	1.59E+04	3.32E+04
Peak Current(A)				1.15E+02	1.14E+02	1.15E+02
Revolution (MHz)	1.697	4,761905		0.8333333333	0.188679245	
Revolution (us)	0.589275	0.21		1.2	5.3	
Circumference(m)	176.7826	63		348.333	1567.5	
Bending Radius(m)					89.381	
Bending Magnetic Field(T)					1.9	
Injection(s)				0 0005	0 17	
Acceleration(s)				0.02	1.96	
Acceleration Gradient(MV/m)			20		0.03	20
Accelerator Length(m)			0.5		1.846	1
Number of Acceleration Unit			1		6	50
Acceleration Voltage(MV)			10		0.28	1000
Q value					20	
Number of Turns			40		167857.1429	47
Real Acceleration(s)					0.889642857	
Delay Line Length(m)						17.4
Injection Emittance(π mm•mrad)				4	54	
Painting Emittance(T mm mrad)				216		
Extraction Emittance(π mm•mrad)				54		
Power Consumption(W)						
Beam Power (W)	1.58E-02	7.69E-02	0.00E+00	9.97E+05	7.93E+05	1.66E+06

Experimental plan for <u>stageing</u> laser plasma acceleration at KEK

LWFA (linear region)

$$\begin{split} E &= -\frac{\partial A}{\partial t} - \nabla \phi, \quad B = \nabla \times A, \quad \nabla \cdot A = 0 \text{ (coulomb gauge)} \\ \frac{1}{\mu} \nabla \times \nabla \times A &= j + \varepsilon \frac{\partial}{\partial t} \left(-\frac{\partial A}{\partial t} - \nabla \phi \right) \\ \frac{\partial \rho}{\partial t} + \nabla \cdot j &= 0, \quad j = \rho v, \quad \rho = \rho_0 + \delta \rho \rightarrow \nabla \cdot v = -\frac{1}{\rho_0} \frac{\partial \delta \rho}{\partial t} \\ \frac{dp}{dt} &= m \left(\frac{\partial v}{\partial t} + (v \cdot \nabla) v \right) = -e \left(E + v \times B \right) = e \left(\frac{\partial A}{\partial t} + \nabla \phi + v \times (\nabla \times A) \right) \\ v_0 &= \frac{e}{m} A = ca, \quad F_p = m \frac{\partial \delta v}{\partial t} = -mc^2 \left((a \cdot \nabla) a + a \times (\nabla \times a) \right) = -mc^2 \nabla \left(\frac{a^2}{2} \right) \end{split}$$

div

$$\begin{split} m\frac{\partial\nabla\cdot v}{\partial t} + mc^{2}\Delta\left(\frac{a^{2}}{2}\right) &= -e\nabla\cdot E = \frac{e}{\varepsilon}\delta\rho \\ \left(\frac{\partial^{2}}{\partial t^{2}} + \frac{e\rho_{0}}{m\varepsilon}\right)\frac{\delta\rho}{\rho_{0}} &= c^{2}\Delta\left(\frac{a^{2}}{2}\right) \rightarrow \omega_{p} = \sqrt{\frac{e\rho_{0}}{m\varepsilon}} \\ \left(\frac{\partial^{2}}{\partial t^{2}} + \omega_{p}^{2}\right)\phi &= \frac{\rho_{0}c^{2}a^{2}}{2\varepsilon} = \omega_{p}^{2}\frac{mc^{2}a^{2}}{2e} \leftarrow \Delta\phi = \frac{\delta\rho}{\varepsilon} \\ \left(\frac{\partial^{2}}{\partial \zeta^{2}} + k_{p}^{2}\right)\phi &= k_{p}^{2}\frac{mc^{2}a^{2}}{2e} \leftarrow \zeta = z - ct \end{split}$$

Possible experimental region for LWFA

Stageing laser plasma acceleration

Facility concept of Ultra High Intense Beam-Laser Complex using existing7 GeV KEK LINAC

Beam Quality

Maximum Current : $5 \text{ nC} \times 200 \text{ bunch} \times 50 \text{ Hz} = 50 \mu \text{A}$

Beam-Laser complex at KEK

- Beam driven accelerator
 - Stable PW beam 7 GeV x 7 nC/50fs
 - Reliable path to MW average power (FLAST Forward is on going.)
 - Resonant DWA for the energy multiplification

- PWFA for High brilliance X-ray source Betatron oscillation with offset witness bunch injection Beta matching using Laser Plasma Focussing
- Laser plasma after burner
 - Synchronization : PLL between photocathode drive laser and LWFA laser.
 - Focus to Linear regime (no LWFA injection)
 - Precise beam diagnostics with beam optics
 - $\epsilon = 1.5$ nm, $\beta = 1$ m => $\sigma = 40$ µm, $\eta = 100$ mm
 - < 1 MeV / 7 GeV resolution is possible
- Direct Laser / THz acceleration
 - 1 GV/m

8 GeV LINAC Third Switch Yard

Experimental area for laser plasma after burner

Experimental area for laser plasma after burner

Ti:Sapphire Laser from U-Tokyo Uesaka-lab

THALES α -10 + Oscillator

=> 25 TW (upgrade compressor and Nd:YAG pump) in FY2013 => ??? TW (Yb:YAG pump)

Schedule (FY2011-2019)

		FY2011 2012 FY2012			Y2012 2013 FY2013		013	3 2014 FY20			14	4 2015			FY2015		2016	FY20	016		2017	7 FY2017		2018		FY2018			2019				
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
aser	Thales α 10 installation (3SY) Oscillator Precise synchronization Compressor chamber								<		*			10TW					1	1				20TW	V								
	Yb Disk Laser Thales α 10 Upgrade																											Four	main a	nplifie	r III		
	Vacuum chamber			_			-	-	-			-												-	-		-						
<u>e</u> a	Plasma discharging circuit												1								1												
Plasr Chanr	Plasma waveguide												Å																				
	Long Plasma waveguide																							1									
	Plasma diagnostics																																
			_	_																													
/	Advanced RF-Gun					RF-0	aun in:	stallati	ion																								
∆fte um	Bunch compressor Beamline									-											Bunc	n cor	ompression									↓ _	
—	Beam diagnostics																							100N	1eV			1Ge\	/			∼a fe	ew Ge'
																								(1GV	/m×1	0cm)		(5GV	// m × 2	0cm)			
																						J											
₹,	DWA structure & equipments																					T 11											
2	DWA experiment at AIS I									IHz	Radia	tion										THZ	Accel	eratior	1			Reso	nant I	Hz ac	celera	tion	
							-				-																-						
DLA	DLA structure & equipments DLA offline experiment																																
	DLA installation		_		-				-	_	_	_	_				-						_					1	-		-		
												Desi	gn																				
												Deve	elopmei	nt																			
	• Complete	4										Insta	allation																				
		u										Ope	ration																				

- Oscillator and synchronization
- Ti:Sapphire laser already installed
- High charge & low emittance RF gun installed
- 4-stage bunch compressor
- Under development
 - Laser upgrade
 - Transmission grating compressor
 - High energy Yb:YAG disk laser
 - Long plasma waveguide
 - Beam diagnostics

Direct Laser / THz acceleration

Direct Laser / THz acceleration

THz DLA structure

Test Bench for DLA

Diagnostic tools

Vacuum chamber Quadrupole

Laser development toward high energy sub-picosecond LWFA afterburner experiment

Yb:YAG regenerative amplifier: Experimental setup

10kW = 6J LD pump 50 pps

 \rightarrow 38 ϕ Yb:YAG Disk + 10kW x 8

Novel Accelerator / THz-DLA
Direct Laser / THz acceleration

THz DLA structure

Test Bench for DLA

Diagnostic tools

Vacuum chamber Quadrupole

Alternative for Energy Frontier

• 電子

- 円形加速器:輻射で限界?
 - いやまだ限界でない → 100 km の FCC
 - シンクロトロン放射のエネルギー回収 → ERR
- リニアコライダー: 高電界 L= V/E と効率
 - Nb超伝導(2K運転, < 40MV/m) → <u>高温超伝導</u> 薄膜超伝導
 - 誘電体: <u>誘電体フォトニック</u> <u>DLA(Laser, THz)</u>
 - ・ <u>周波数重畳</u>
 - ・プラズマ加速
 - <u>レーザープラズマアフターバーナー</u>
 - <u>陽子ビームプラズマ</u> ← J-PARC の Energy Frontier への転用の可能性
- 陽子:輻射が無い
 - 強磁場 p(GeV/c)=0.3 B(T) ρ(m) LHC 7TeV=0.3x8.4Tx2804m → HE-LHC
 - <u>スーパーフェリック</u>
 - Crystal Accelerator
- ミュオン:輻射が無いが冷却が問題
 - MICE(FERMI)
 - Ultra Slow Muon : $\mu^+ \mathcal{O} \xrightarrow{} \rightarrow \mu^+ e^- \underline{collider}$
 - <u>45 GeV e</u>⁺