

LHC SUSY探索

Junichi Tanaka ICEPP, UTokyo

基研研究会素粒子物理学の進展2017

ヒッグスからSUSYへ

2016,12 \$21,0102 1 dinner シシュラン みんみしストラン SUSY is tàil (k は有る(陣 BSM 33! (PQ あるに決まってある、田中心 2012.12.12 山藤,田村礼 中分 下手内 田

データ解析の現状: 2015+2016の約36fb⁻¹のデータを用いた解析 → Preliminaryな結果(EPS2017 etc)や論文

2017年も稼働しています!→ ATLASの運転手は石野さん(東大ICEPP) (目標:今年だけで45fb⁻¹)

基研研究会素粒子物理学の進展2017

LHCでのSUSY探索(1)

LHCでのSUSY探索(2)

LHCでなかなかSUSYが見えない。

- 観測できないのは実験屋のせい? 努力不足?
- やっぱり重い?

ー方、「観測されているDM relic density(27%)→DM~O(100GeV)」

- ③ Wino & Higgsino
 - あくまでも「Naturalness」(Gaugino mass ~ Higgs mass)
 - これがLSP! → 直接生成(他のSUSYは重いから…)
 - 生成断面積 Wino/Higgsino LSP ~ O(10fb)@300GeV

④ RPV

- ここも。(東京グループは全くやっていませんが...)

Typical event topology (Strong生成できたなら)

ICEPP

Missing E_T Measurement

MET of SUSY signal is larger than the SM background.

Z-> $\mu\mu$ candidate with 25 proton-proton collisions (ATLAS)

"a few mm" between vertices $(\pm 10 \text{ cm in } z, \sim 15 \mu \text{ m for } x, y)$

1 bunch has $\sim 10^{11}$ protons.

Number of pileup (パイルアップ数)

80mb x 2 x 10^{34} cm⁻² s⁻¹ / 40MHz = \sim 40 collisions/bunch crossing

Inelastic scattering cross section (非弾性衝突の生成断面積) Instantaneous Luminosity (瞬間ルミノシティ)

Rate of bunch crossing (LHCの1秒間でのバンチ衝突回数)

- 解析におけるPileupの問題点
 - トリガー条件を厳しくせざるおえない。
 - Hard scattering以外のContribution
 - → Resolutionの悪化(下の"誤り"も効く)
 - → 本来考えなくていいJet、Tracksなどを解析に使ってしまう。
- Hard scattering自体
 - → 使うべきものを誤ってRejectしてしまう。
 - (アルゴリズムを導入することは、成功率と失敗率のバランス)

グルイーノとスクォーク生成の探索

p₀=0.07, Z=1.45

§g 全成でTopが多い場合

ICEPP

Njet > 4jets うち、b-jetが3本以上 Large Missing ET (>200GeV)

分類方法

- Low $m_{eff} \sim low \, \Delta m$
- High $m_{eff} \sim high \Delta m \rightarrow boosted top$

Olepton

ICEPP The University of Tokyo

基研研究会素粒子物理学の進展2017

16

Scalar top生成

Scalar top解析

Stop結果(1lep)

現データでは「stop → top chi0を狙った信号領域で約1.5σ」が最大

前回3.3σあった信号領域(DMサーチ領域)は 今回1.5σとなり、成長しなかった...

Events / 30 GeV

Stop探索: Bino LSP

Stop探索: Higgsino LSP

ATLAS SUSY summary web CMS SUSY summary web CMS SUSY summary web Stop探索: ATLAS vs CMS

1TeVに軽い超過(1-2o)

基研研究会素粒子物理学の進展2017

Electroweak SUSY

3lep+0jets解析

81.2<m_{II}<101.2, MET>60GeV, njet=0, m_T^{min} >110GeV

ATLAS-CONF-2017-039

3lep+≧1jets解析

基研研究会素粒子物理学の進展2017

Mass Limit (3lep via W/Z)

EW "lep via slep": ATLAS SUSY summary web CMS SUSY summary web EXPERIMENT

Slepton経由の場合、1TeV程度のリミットがかかっている。

基研研究会素粒子物理学の進展2017

ICEPP

27

EW "lep via W/Z/h": ATLAS vs CMS SUSY summary web

W/Z/h経由なら、まだまだ。 特に「縮退」している場合は、これからが本番

基研研究会素粒子物理学の進展2017

ICEPP

ATLAS SUSY summary web

CMS-PAS-SUS-17-004

CMS EW SUSY Search

Wino LSP (degenerated)

Ex) AMSB

チャージーノは縮退しているため、比較的長寿命(0.2ns)

電荷をもつチャージーノはトラッキング検出器で検出可能 ただし、途中で崩壊してニュートラリーノになるため、検出できなくなる。 (Soft charged pionもlow p_Tのため(今のところ)検出できない。)

→ トラッキング検出器の中で、途中で消えたような荷電粒子を探す。

430GeV for 0.2ns lifetime

DM search

High pT jets (>250GeV) Large MET (>250GeV)

基研研究会 素粒子物理学の進展2017

- グルイーノ生成過程の探索
 - 「初志貫徹」
 - <u>LHCのリーチ内にあれば、これが最強</u>
 - 解析の改善: q/g separation
 - LSPと縮退している積極的な理由ありますか?
- EW生成過程の探索
 - <u>ダークマターはある。→ O(100GeV)の可能性大</u>
 - − LSP=DM \rightarrow EW SUSY direct production
 - 縮退している可能性大 → LHCではこれからが本番
 - 解析の改善: Soft lepton (or soft track) → low p_T
 Disappearing track → 使うPixel数を減らしてもっと短い寿命。Slow pion ID
- Stop生成過程の探索
 - ナチュラルネスからは遠くなっていますが、実験屋は(>)1TeVでも受け入れます!
 - 解析の改善: Track jets for b-tagging (top由来のHigh p_Tジェット ATL-PHYS-PUB-2014-013)
 Boosted hadronic decay top tagging (W→ggもそうですが)

LHC Schedule → Plan this project **until** ~2037

チェス、将棋、囲碁などを見ていると …計算機の方が賢い?

Tensor Processing Unit (Google)

Machine Learning (機械学習), Deep Learning (深層学習), AI (人工知能) 基研研究会素粒子物理学の進展2017

8.3Tの強力な超伝導dipole magnet

(実際は6.5TeVなので、7.7Tです。)

(15m x 1232台 = 18.5km)

を維持できなければならない.

この磁石の強さがLHCのエネルギーを決めている

LHC = 「超伝導線材 NbTi」

→ 16T実現のための線材 Nb₃Sn まだまだ技術的な問題が残っている.

	NbTi	Nb₃Sn
相転移温度	10K	18K
臨界磁場(Hc) @4.2K	~12T	~25T

大きな磁場を得るためには、大電流 が必要(だからこそ超伝導)

しかし、臨界磁場より大きな磁場が 線材にかかると、超伝導が破れる.

> 鉄系超電導体(細野さん@東エ大) → 56K, 50T可能?

基研研究会素粒子物理学の進展2017

超伝導磁石

FCC-hh (陽子・陽子コライダー)は、 High-Energy LHC (HE-LHC)も含む。

CERNが中心となって、

Future Circular Collider (FCC)建設に向けた 基礎研究が始まっている。

→ FCC MoUはすでに33か国、116機関で締結

→ 2018年秋にCDR(Conceptual Design Report)出版予定

→ FCC week@ベルリンの参加者は約500人

(我々の業界では最大級の国際会議並み)

parameter	FCC-hh		HE-LHC	(HL) LHC
collision energy cms [TeV]	100		27	14
dipole field [T]	16		16	8.33
circumference [km]	100		27	27
straight section length [m]	1400		528	528
#IP	2 main & 2		2 & 2	2 & 2
beam current [A]	0.5		1.12	(1.12) 0.58
bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	(2.2) 1.15
bunch spacing [ns]	25	25 (5)	25 (5)	25
rms bunch length [cm]	7.55		7.55	(8.1) 7.55
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1
events/bunch crossing	170	1k (200)	~800 (160)	(135) 27
stored energy/beam [GJ]	8.4		1.3	(0.7) 0.36
beta* [m]	1.1-0.3		0.25	(0.20) 0.55
norm. emittance [µm]	2.2 (0.4)		2.5 (0.5)	(2.5) 3.75

Conclusion

SUSY今のところありませんが、データ出る限り諦めません。

- (データを増やす)
- 解析手法の改善
- 新しい手法の導入
 - ある程度事象選択するとSignalとBGはかなり似てくる。(当然と言えば当然ですが)
 → MLをもっと積極的に
- → Run2(100-120fb⁻¹)にSUSYの証拠を!

- 是非、アイデアをください。
 - 解析の改善や新手法:まだ使っていない情報
 - 縮退している場合のSoft trackは検証中
 - 面白いモデル、期待できるモデル

リファレンス

- ATLAS SUSY Summary web
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults</u>
 - https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/
- CMS SUSY Summary web
 - <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS</u>

バックアップ

基研研究会素粒子物理学の進展2017

Squark (simplified model)

Stop (Wino NLSP)

Stop (Bino/Higgsino mix LSP)

