LHCでのExotics探索

素粒子物理学の進展2017 2017年7月31日

寺師 弘二 東大 ICEPP

> Run: 302393 Event: 738941529

EXPERIMENT

Outline

SUSY以外の新物理探索の結果(36 fb⁻¹ at 13 TeV)

- High-mass領域での新粒子探索
 - Diphoton
 - Diboson
 - Dijet
 - Dilepton

Low-mass領域での新粒子探索

Dijet + ISR jet

暗黒物質の探索

まとめ (に代えて)

Open Eyes Wide!!

.. and Look Carefully!!

Diboson Resonance

ZZ→IIII Search

CONF-2017-058

ZZ→4e/2e2µ/4µ

Ζ

- **z** $p_T^{e/\mu} > 7(5) \text{ GeV}$ • $p_T^{11(2,3)} > 20(15,10) \text{ GeV}$ • $50 < m_{\odot} < 106 \text{ CoV}$
 - 50 < m₁₂ < 106 GeV
 - $X < m_{34} < 115$ GeV, where
 - $X = 12 (m_{4l} < 140 \text{ GeV})$
 - X = 12→50 (m_{4l}=140→190 GeV)
 - $X = 50 (m_{4l} > 190 \text{ GeV})$

- ▶Non-reso ZZ BGはSherpa+(NLO QCD+NLO EW)で評価
- ▶2箇所にmodest excess:
 - local(global) 3.6σ (2.2σ) at m_X~240 & 700 GeV, NWA
 - mostly 4e for 240 GeV
 - all channels/categories for 700 GeV

ZV→llqq Search

Z+jets BGはmass sidebandで決定。Top BGはeµ事象, DibosonはMCで評価。 **事象の超過はなし…**

11

m_x (GeV)

pQCD予想 (NLO QCD+EW) との比較

Dilepton

1 e(μ) : p_T > 65(55) GeV, loose isolation
 E_T^{miss} > 65(55) GeV, m_T > 130(110) GeV

W BGはPowheg+Pythia with mass-dep. k-factor (NNLO QCD, NLO EW)で評価 13

- Jet, E_T^{miss} at low mass
- Non-DY BG extrapolation, muon resolution, PDF at high mass

W' _{SSM} limit [Tev]	Exp.	Obs.
eν	5.1	5.2
μν	4.7	4.5
Ιν	5.2	5.1

- ▶ CRのm_{jet}分布をSR/CR比でスケールして SR中の背景事象分布を評価
- ▶ 探索領域:m_{jet} = 50-300 GeV

ISRジェット+ Resonance

CMS Preliminary 35.9 fb⁻¹ (13 TeV) **CMS** Preliminary 35.9 fb⁻¹ (13 TeV) တိ Data Observed UA2 400 p_: 900-1000 GeV coupling, Multijet pred. Expected CDF Run 1 Total SM pred. 350 ± 1 std. deviation CDF Run 2 – W→ qq+jets 0.4 ± 2 std. deviation $Z \rightarrow qq+jets$ 0.3 300 Z'(qq), g_=1/6, m_=135 GeV 0.2 250 200 0.1 150 ATLAS13, 15.5 fb⁻¹, ISR γ 100 0.04 ATLAS13, 15.5 fb⁻¹, ISR jet 0.03 CMS8, 18.8 fb⁻¹, Scouting 50 Z Width (indirect) 0.02 50 60 100 200 300 400 1000 Z' mass (GeV) 1.2

▶ W/Zピークを使って, N₂^{β=1}カット効率, m_{jet}スケール等をconstrain

200

250

300

AK8 m^{PUPPI}_{SD} (GeV)

- Iocal 2.9σ (global 2.2σ) at m_{Z'}~115 GeV
 - ちょっと幅が狭い?

150

GeV

Number of events/5

Data/Predictior

0.8

100

ISR photon+Dijetと組み合わせて, 30 GeV<m_{Z'}<~1 TeV領域をカバーできる (1 TeV以上はHigh-mass Dijetが担当)

EXO-17-001

→ Vector mediator (DM simplified model) への制限

▶ 加速器実験での暗黒物質の探索

LHCでは何が可能か?

- ▶ カスケード崩壊からの暗黒物質の探索 例) SUSY (Neutralino), UED (KK photon)
- ▶ 暗黒物質(WIMP)と媒介粒子の直接探索
- ▶より軽い媒介粒子の探索 (Dark Sector)

DM mass excluded up to

340-480 GeV

- γ+jets (low E_T^{miss}) CRで決定
- ▶ 棄却のためにMulti-E_T^{miss} binを設定 20

Mono-top

EXO-16-051

- ▶ ttbar, W/Z+jets BGを1L b-tag, 1L no-btag, 2L CRでETmissにFitして決定
- ▶ CR→SRはMCで求めたtransfer factorを使用

Mediator mass vs g_{Vq} or $g_{V\chi}$ (fixed m_{χ}) での棄却領域も出している

23

MET [GeV]

- 2 OS leptons p_T>30/20 GeV
- $76 < m_{II} < 106 \text{ GeV}, \Delta R_{II} < 1.8$
- E_T^{miss}>90 GeV, E_T^{miss}/H_T>0.6
- $\Delta \phi(II, E_T^{miss}) > 2.7, N_{b-jets} = 0$
- ZZはNNLO QCD+NLO EW MCで
 評価 (誤差~10%)
- ▶ WZは3-lep CRからのSFで評価 (誤差~5%)

Exotics Summary plots

Under the coupling assumptions, collider searches
 are sensitive at low DM (<~5 GeV) for SI DM-nucleon cross section
 have ~3 orders of magnitude better sensitivity for SD DM-nucleon cross section

Vectorポータル

- SM photonとDark photonの間の kinetic mixing (strength ~ *ɛe*)
- ▶ kinetic mixingでSM粒子に崩壊する
- Small mixing → 長寿命
- ▶ Scalar ϕ or fermion χ (DM候補)

カラーを持つ媒介粒子

Mono-jet, Dijet+Ermiss

Future Exotics Search (まとめに代えて) Post/pre-dictions for ex

High-mass探索はKinematicsの限界へ → 今後の発見はHL-LHCのみ?!

- より難しいPhase spaceへ
- Resonance + "X" (= jet, lepton, E_T^{miss}, b-jet, ...)
- Low-mass resonances
- Long-lived signature
- Multi-objects, Complex topologies
- HL-LHCでは何を目指すべきか?
 - HL-LHC (& HE-LHC) physics workshops (<u>kick-off</u> on 10/31-11/1, 2017)

より高いエネルギーへ?

→ Mass reach ∝ log(Lumi) 1 TeV改善に~10倍のデータが必要

each for m_{q*} [TeV]

FCC (HE-LHCを含めて)

Minimal DM (Disappearing track)

- Wino LSP leads meta-stable chargino ($\tau = 0.2$ nsec)
- c $\tau \sim$ 6 cm \rightarrow directly detectable
 - chargino tracks disappear in the tracker.

ATLAS-CONF-2017-0

DM from $H \rightarrow inv$

We are studying if the disappearing trac Higgefinitivisition of the disappearing trac

scalarへの制限 (P. Harris et al.)

▶ 高統計のデータ

 $N_{100}^{20ab^{-1}}/N_{14}^{3ab^{-1}} = 110(120, 420)$ for ggF (VH, ttH)

▶ W/Z p_Tの(超)精密測定

Competitive with the best direct detection experiments

Excesses?

H → ZZ → 4I (HIGG-2016-19): 3.7(2.6)σ local(global) excess at 700 GeV? CMS : 4I at 13.9 fb ⁻¹ , 4 events at ~660 GeV, ~1.5-2σ local (HIG-16-033)	2.6σ
 VH → qqbb (EXOT-2016-12): 3.3(2.2)σ local(global) at ~3 TeV (mostly ZH) CMS : 2.6(0.9)σ local (global) at 2.6 TeV (B2G-17-002) 	2.2σ
ZH → IIbb (EXOT-2016-10): • 3.6(2.4) σ local(global) excess at ~450 GeV, mostly in dimuon 3+ tag region • CMS : high-mass only at 3.2 fb ⁻¹ in 13 TeV (B2G-16-003)	2.4σ
Dijet+ISR in CMS (EXO-17-001): ~2.9(2.2)σ local(global) at ~115 GeV ATLAS : on-going	2.2σ
Inclusive squark/gluino (<u>susy-2016-12</u>): 1-lepton in 2J b-veto SRs	-

Dilepton

2e or 2µ: p_T > 30 GeV, loose isolation
 m_{II} > 80 GeV (OS for 2µ)

Z/γ* BGはPowheg+Pythia with mass-dep. k-factor (NNLO QCD, NLO EW)で評価 36

- PDF, energy scale for ee channel
- Reco eff., PDF, resolution for μμ channel

Z' _{SSM} limit [TeV]	Exp.	Obs.
ee	4.3	4.3
μμ	3.9	4.0
I	4.5	4.5

Mono-jet

stop → charm + neutralino stop mass excluded up to 430 GeV $(m_{\tilde{t_1}} - m_{\tilde{\chi_1}_0} > 5 \text{ GeV})$

37 DM mass excluded up to 600 GeV