任意の模型におけるQCDワインバーグ演算子 (GGG~)の係数と中性子EDM

阿部智広 名古屋大学 高等研究院 素粒子宇宙起源研究機構(KMI)

共同研究者

久野純治 名古屋大, KMI, Kavli IPMU

長井遼 東北大

JHEP 1803 (2018) 175 (arXiv:1712.09503)

PPP2018

Tomohiro Abe (IAR, KMI Nagoya U)

中性子EDM への new physics からの寄与を評価するために必要な

Weinberg operator の wilson係数

を計算するのに必要な

模型によらない公式

を導出しました

内容

- 1. EDM について
- 2. Weinberg operator について
- 3. 公式とその使い方、および実例
- 4. まとめ

EDM (= Electric Dipole Moment)

$$H \supset -d_f \frac{\vec{s}}{|\vec{s}|} \cdot \vec{E}$$

空間反転対称性を破る (Pを破る)
$$\vec{s} \rightarrow \vec{s}, \ \vec{E} \rightarrow -\vec{E}$$

時間反転対称性を破る (CPを破る) $\vec{s} \rightarrow -\vec{s}, \ \vec{E} \rightarrow \vec{E}$

CPの破れに感度がある

- * 標準模型を超える模型の多くは小林益川位相の他にCPを破る項を含む
- * EDM は新物理探索に有用

定義

EDM 測定の現状

中性子EDM

[Pospelov Ritz, hep-ph/0504231]

中性子EDM

[Pospelov Ritz, hep-ph/

 $\frac{g_s^2}{32\pi^2}\theta G^a_{\mu\nu}\tilde{G}^{a\mu\nu}$

θ

 $\frac{\text{EDM and chromo EDM}}{-\frac{d_q}{2} (i\bar{q}\sigma^{\mu\nu}\gamma_5 qF_{\mu\nu})} \\ -\frac{\tilde{d}_q}{2} (i\bar{q}\sigma^{\mu\nu}\gamma_5 qG_{\mu\nu})$

<u>the</u>	Weinberg operator
	$-\frac{w}{3}f^{abc}G^a_{\mu\nu}G^{b\nu}_{\ \rho}\tilde{G}^{c\rho\mu}$

[Weinberg PRL63.2333(1989)]

Weinberg operator (GGG~)

two-loop で初めて現れる

- * カラーを持った粒子が必要
- * P と CP を破る相互作用が必要

計算はやればできるが大変

- * いくつかの模型でしか計算されていない
 - * THDM [Weinberg '89; Dicus '90]
 - * MSSM (quark-squark-gluino) [Dai et.al '90]
 - * LR model [Chang et.al '90; Rothstein '90]
- * これ以外の模型では、自分で 2-loop 計算しないといけない
- * EDM への寄与は無視できない大きさ

我々のやったこと

模型によらない公式を導出した

$$w = -\frac{g_s^3}{(4\pi)^4} 6 \text{Im}(sa^*) m_A m_B$$

$$\times \left\{ \left(XT_A T_A X^{\dagger} \right) f_1(m_A^2, m_B^2, m_S^2) + \left(XX^{\dagger} T_B T_B \right) f_1(m_B^2, m_A^2, m_S^2) \right.$$

$$\left. + \left(XT_A X^{\dagger} T_B \right) \left[f_2(m_A^2, m_B^2, m_S^2) + f_2(m_B^2, m_A^2, m_S^2) \right] \right\}$$
(When you use the same vertex twice, multiply 1/2)

- * 模型は特定しない
- * fermion-fermion-scalar vertex を仮定する
- * QCD gauge invariance も仮定

相互作用

$$\mathcal{L} \supset -\bar{\psi}_B g_{\bar{B}AS} \psi_A S - \bar{\psi}_A g_{\bar{A}B\bar{S}} \psi_B S^*$$

- * ノエルミイン (A ⊂ B) * スカラー (S)
- * QCD invariance を課す

カップリング

$$g_{\bar{B}AS} = X_{\bar{B}AS}(s + \gamma_5 a),$$

 $g_{\bar{A}B\bar{S}} = X_{\bar{A}B\bar{S}}^{\dagger}(s^* - \gamma_5 a^*)$

- ★ "a" と "s" は複素数
- * X は粒子のカラーの表現で決まる (例)

(A, B, S)	$\psi_A \ \psi_B \ S$	$X_{\bar{B}AS}$
(3, 3, 1)	$(\psi_A)^a \ (\psi_B)^b \ S$	δ^b_a
$(3, \overline{3}, 3)$	$(\psi_A)^i \; (\psi_B)_j \; S^k$	ϵ_{ijk}
$(\overline{3},3,6)$	$(\psi_A)_a \ (\psi_B)^b \ S^{ij}$	$\frac{\delta^b_i \delta^a_j + \delta^b_j \delta^a_i}{2}$

公式にでてくる因子

$$w = -\frac{g_s^3}{(4\pi)^4} 6 \text{Im}(sa^*) m_A m_B$$

$$\times \left\{ (XT_A T_A X^{\dagger}) f_1(m_A^2, m_B^2, m_S^2) + (XX^{\dagger}T_B T_B) f_1(m_B^2, m_A^2, m_S^2) + (XT_A X^{\dagger}T_B) f_1(m_A^2, m_B^2, m_S^2) + f_2(m_B^2, m_A^2, m_S^2) f_1(m_B^2, m_A^2, m_S^2) \right\}$$

これが何なのか? ダイアグラム計算を眺めればわかる

group theory factor : XTTTX

(ex.) 粒子A から3つグルーオンのでてくるダイアグラムを評価してみる

$$\propto \left(X_{\bar{B}AS} (T^a T^b T^c)_{AA'} X^{\dagger}_{\bar{A}' B\bar{S}} \right) \left(G^a_{\mu\nu} G^{b\nu}_{\rho} G^c_{\alpha\beta} \epsilon^{\rho\mu\alpha\beta} \right)$$

$$g_{\bar{B}AS} = X_{\bar{B}AS}(s + \gamma_5 a),$$
$$g_{\bar{A}B\bar{S}} = X_{\bar{A}B\bar{S}}^{\dagger}(s^* - \gamma_5 a^*)$$

(example)

$$(XT_AT_AX^{\dagger}) = \frac{1}{2} \text{ for } (A, B, S) \sim (3, 3, 1)$$

$$\mathcal{L} \supset (\bar{\psi}_B)_j \delta_i^j (s + \gamma_5 a) (\psi_A)^i S$$

$$X = \delta_i^j$$

$$X_{\bar{B}AS}(T^a)_{AA'}(T^b)_{A'A''} X_{\bar{A''}B\bar{S}}^{\dagger} = \operatorname{tr}(T^a T^b) = \frac{1}{2} \delta^{ab}$$

カラーの表現で決まる因子 (I/2)

公式にでてくる因子
$$w = -\frac{g_s^3}{(4\pi)^4} 6 \text{Im}(sa^*)m_A m_B$$

 $\times \left((XT_A T_A X^{\dagger}) f_1(m_A^2, m_B^2, m_S^2) + (XX^{\dagger}T_B T_B) f_1(m_B^2, m_A^2, m_S^2) \right)$
 $+ (XT_A X^{\dagger}T_B) \left[f_2(m_A^2, m_B^2, m_S^2) + f_2(m_B^2, m_A^2, m_S^2) \right] \right\}$
その定義
 $\left(X_{\bar{B}AS}(T^a)_{AA'}(T^b)_{A'A''} X_{\bar{A}''B\bar{S}}^{\dagger} \right) \equiv \left(XT_A T_A X^{\dagger} \right) \delta^{ab},$
 $\left(X_{\bar{B}AS}(T^a)_{AA'} X_{\bar{A}'B'\bar{S}}^{\dagger}(T^b)_{B'B} \right) \equiv \left(XT_A X^{\dagger}T_B \right) \delta^{ab},$
 $\left(X_{\bar{B}AS} X_{\bar{A}B'\bar{S}}^{\dagger}(T^a)_{B'B''}(T^b)_{B''B} \right) \equiv \left(XX^{\dagger}T_B T_B \right) \delta^{ab}.$

計算の例 (A, B, S) ~ (3, 3, 1)

$$\mathcal{L} = (\bar{\psi}_B)_j \delta_i^j (s + \gamma_5 a) (\psi_A)^i S$$

$$(A, B, S) \sim (3, 3, 1) \text{ Older}$$

$$X_{\bar{B}AS} = \delta_i^j$$

$$(XT_A T_A X^{\dagger}) = \frac{1}{2}$$

$$X_{\bar{B}AS}(T^a)_{AA'}(T^b)_{A'A''} X_{\bar{A}''B\bar{S}}^{\dagger} = \operatorname{tr}(T^a T^b) = \frac{1}{2} \delta^{ab}$$

カラーの表現で決まる因子 (2/2)

いろいろな表現における因子

(A, B, S)	$\psi_A \; \psi_B \; S$	$X_{\bar{B}AS}$	$XT_AT_AX^{\dagger}$	$XT_A X^{\dagger}T_B$	$XX^{\dagger}T_BT_B$
(3,3,1)	$(\psi_A)^a \ (\psi_B)^b \ S$	δ^b_a	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$(3,1,\overline{3})$	$(\psi_A)^a \; (\psi_B) \; S_i$	δ^i_a	$\frac{1}{2}$	0	0
(1,3,3)	$(\psi_A) \; (\psi_B)^b \; S^i$	δ^b_i	0	0	$\frac{1}{2}$
$(\bar{6}, 1, 6)$	$(\psi_A)_{ab} \; (\psi_B) \; S^{ij}$	$\frac{\delta^a_i \delta^b_j + \delta^a_j \delta^b_i}{2}$	$\frac{5}{2}$	0	0
(6, 6, 1)	$(\psi_A)^{ij} \; (\psi_B)^{kl} \; S$	$\frac{\delta_i^k \delta_j^l + \delta_j^k \delta_i^l}{2}$	$\frac{5}{2}$	$\frac{5}{2}$	$\frac{5}{2}$
$\boxed{(3,\bar{3},3)}$	$(\psi_A)^i \; (\psi_B)_j \; S^k$	ϵ_{ijk}	1	$\frac{1}{2}$	1
$(\bar{3}, 3, 6)$	$(\psi_A)_a \ (\psi_B)^b \ S^{ij}$	$\frac{\delta^b_i \delta^a_j + \delta^b_j \delta^a_i}{2}$	1	$-\frac{1}{4}$	1
(3,3,8)	$(\psi_A)^i \ (\psi_B)^j \ (S^a T^a)$	$\overline{(T^a)^j}_i$	$\frac{2}{3}$	$-\frac{1}{12}$	$\frac{2}{3}$

$$\begin{split} w &= -\frac{g_s^3}{(4\pi)^4} 6 \text{Im}(sa^*) m_A m_B \\ &\times \left\{ \left(X T_A T_A X^\dagger \right) f_1(m_A^2, m_B^2, m_S^2) + \left(X X^\dagger T_B T_B \right) f_1(m_B^2, m_A^2, m_S^2) \right. \\ &\left. + \left(X T_A X^\dagger T_B \right) \left[f_2(m_A^2, m_B^2, m_S^2) + f_2(m_B^2, m_A^2, m_S^2) \right] \right\} \\ &\left. \text{ (When you use the same vertex twice, multiply 1/2)} \end{split}$$

$$\mathcal{L} \supset -\frac{w}{3} f^{abc} G^a_{\mu\nu} G^{b\nu}_{\ \rho} \tilde{G}^{c\rho\mu}$$

$$\begin{split} g_{\bar{B}AS} = & X_{\bar{B}AS} \left(s + \gamma_5 a\right), \qquad f_1(m_A^2, m_B^2, m_S^2) \equiv \int_0^\infty d\ell_E^2 \int_0^1 dz \frac{-\ell_E^4 z (1-z)}{\left(m_S^2 z + m_B^2 (1-z) + \ell_E^2 z (1-z)\right) \left(\ell_E^2 + m_A^2\right)^4} \\ g_{\bar{A}B\bar{S}} = & X_{\bar{A}B\bar{S}}^{\dagger} \left(s^* - \gamma_5 a^*\right) \qquad f_2(m_A^2, m_B^2, m_S^2) \equiv \int_0^\infty d\ell_E^2 \int_0^1 dz \frac{\ell_E^4 (1-z)}{\left(m_S^2 z + m_B^2 (1-z) + \ell_E^2 z (1-z)\right) \left(\ell_E^2 + m_A^2\right)^4} \end{split}$$

公式の使用例

中性子EDM と Weinberg operator の関係

$$d_N(w) = \pm e \Lambda_{nEDM} w(1 \text{ GeV}), \quad (N = n, p),$$

$$\Lambda_{nEDM} = 10 - 30 \text{ MeV}$$

[Demir-Pospelov-Ritz '03, …]

wのくりこみ群 [Degrassi-Franco-Marchetti-Silvestrini '05]

$$\frac{d}{d\ln\mu}w(\mu) = \frac{g_s^2(\mu)}{16\pi^2}(N_C + 2N_f)w(\mu)$$

$$Im(sa^*) = 0.25$$

current bound [Barker et.al. hep-ex/0602020]

prospect 1

[Altarev et al. Nucl. Instrum. Meth. A 611, 133 (2009)]

prospect 2

[Lehrach et al. 1201.5773]

まとめ

まとめ

EDM

- * P と CP の破れに感度がある
- * 見つかったら標準模型を超える物理の存在が確定
- * 中性子EDMの計算に Weinberg operator (GGG~)の係数が必要

我々のしたこと

- * GGG~の係数を求める公式を導出
- * 皆さん是非お使いください

$$\begin{split} w &= -\frac{g_s^3}{(4\pi)^4} 6 \text{Im}(sa^*) m_A m_B \\ &\times \left\{ \left(X T_A T_A X^\dagger \right) f_1(m_A^2, m_B^2, m_S^2) + \left(X X^\dagger T_B T_B \right) f_1(m_B^2, m_A^2, m_S^2) \right. \\ &\left. + \left(X T_A X^\dagger T_B \right) \left[f_2(m_A^2, m_B^2, m_S^2) + f_2(m_B^2, m_A^2, m_S^2) \right] \right\} \\ &\left. \text{ (When you use the same vertex twice, multiply 1/2)} \end{split}$$