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physical ud

where is the physical ud mass point ?

ud quark のみの世界の話です

もし現実世界がこうであったら
宇宙初期に一次相転移

axion window が閉じる…
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もくじ
• QCD相図: 理解の現状    (μ=0:  zero chemical potential)


• 格子作用のいろいろ


• axion との関係


• Nf=2    JLQCD の結果を中心に


• topological susceptibility


• fate of the UA(1) symmetry


• Nf=2+1 


• review of topological susceptibility



現在でも: Columbia Plot = 大方の人の理解 || 期待
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Nf=2+1相図
• 連続極限で分かっていること


• Nf=0: 一次転移


• 右上隅はよく分かっている


• Nf=2+1 物理点: cross-over


• staggered  (YA, Endrodi, 
Fodor, Katz, Szabo: Nature 
2006)


• 他の正則化でも反証なし


• 厳密なカイラル対称性を持つ
アプローチでは未踏


• その他の領域は未確定
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QCD 有限温度相転移の理論: Nf=2+1 Lattice

• Nf=2+1 相図が完成すれば


• QCD の理解


• 物理点の相転移の存在、次数が分かる。


• 遠回りだが確実な方法


• 相境界(μ=0)の μ>0 への伸び方を調べる→(T,μ)臨界終点の研究へつなげる

• 大変重要／有用である → ポスト京 重点課題9 のプロジェクトのひとつ
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まずは Nf=2

• Nf=2+1 physical pt. から遠い？


• ms ~100 MeV → ∞


• T=0 では s のあるなしは微細効果


• boundary の情報としては有用


• Nf=2


• Wilson, staggered: 未確定


• 厳密な格子カイラル対称性


➡U(1)A 回復を示唆[JLQCD16]


➡一次転移の可能性 → χt(m)に飛び? 
[Pisarski&Wilczek]
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一次転移だとどうなるか？
• 0 ≤ mf < mc : 一次転移


• 一つの可能性として: 左下(Nf=3)の一次転移領域と繋がる


• 物理点への影響も考えられる


• 現状では staggered → 連続極限の結果のみ
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Columbia plot: direct search of  PT / scaling

• 2nd order 
• improved Wilson 

• WHOT-QCD Lat2016  (O(4) scaling) 
• Ejiri et al PRD 2016 [heavy many flavor] 

• 1st oder 
• imaginary μ → 0 

• staggered   Bonati et al  PRD 2014 
• Wilson        Phillipsen et al PRD 2016 
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By using this expression we can, for each value of the
bare quark mass amu;d, find the corresponding critical
value ðaμcÞ2. An example from our data is shown in Fig. 8,
where (at fixed bare mass amu;d ¼ 0.005) we scanned in
imaginary chemical potential using up to four different
volumes in order to identify the critical point and in all
cases we reached lattice sizes such thatmπL≳ 3 (in fact for
all but the lightest mass used we arrived to mπL≳ 4).
The fit is performed simultaneously on all the data
at different volumes and bð0Þ4 is fixed to its infinite volume
limit.
This procedure was carried out for six different values of

the quark mass and the results are shown Fig. 9. The quark
mass axis is rescaled with the appropriate critical exponent

in order to display the scaling and extrapolation more
clearly, as a straight line. Four data points accurately follow
the tricritical scaling curve, which can then be used to
estimate the position of the tricritical point “B” in the chiral
limit, for which we find the large positive value

!
μ
T

"
2

tric
¼ 0.85ð5Þ: ð8Þ

This definitely implies a first order behavior for the
two-flavor chiral phase transition on Nt ¼ 4 lattices. A
crude estimate (obtained by using the interpolating formula
for the masses of Ref. [58]) puts the critical pion mass
corresponding to the second order point at μ ¼ 0
to mc

π ∼ 60 MeV.

V. CONCLUSIONS

We have presented a new approach for the determination
of the order of the chiral transition for Nf ¼ 2 QCD, based
on the investigation of the phase diagram extended to
imaginary chemical potential. In this approach, the chiral
limit extrapolation is controlled and constrained by scaling
considerations which follow from the universal behavior
around a tricritical point. Present results show that, for
QCD discretized onNt ¼ 4 lattices with standard staggered
fermions, the transition is first order in the chiral limit. This
is consistent with some earlier lattice investigations [18]
and with expectations from the fate of the Uð1ÞA anomaly
using overlap fermions [59].
It should be stressed that the explored Nt ¼ 4 lattice is

quite coarse, corresponding to a ∼ 0.3 fm, and that results
for mcðμÞ on finer lattices are needed before a continuum
limit can be taken. For μ ¼ 0 it is known that the three-flavor
chiral first order region inFig. 1 (left) shrinks significantlyon
finer lattices [60] or with improved actions [61]. Therefore,
the issue about the presence of a first order chiral transition
for Nf ¼ 2 QCD in the continuum remains nontrivial.
We have shown that the proposed approach is able to

provide definite answers and constitutes a solid framework
for future studies on the subject.

O. P. is supported by the German BMBF, Grant
No. 06FY7100, and the Helmholtz International Center
for FAIR within the LOEWE program launched by the
State of Hesse. F. S. has received funding from the
European Research Council under the European
Community’s Seventh Framework Programme (FP7/
2007-2013) ERC Grant Agreement No. 279757. We thank
the Scientific Computing Center at INFN-Pisa, INFN-
Genoa, the HLRS Stuttgart, and the LOEWE-CSC at
University of Frankfurt for providing computer resources.
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FIG. 8 (color online). Binder cumulant for fixed quark mass
(amu;d ¼ 0.005) as a function of imaginary chemical potential
and volume. The intersection signals the critical point.
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FIG. 9 (color online). Data corresponding to the calculated
critical points, the line is a fit according to tricritical scaling Eq. (4).
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• either 

• no PT found 
• 1st order region 
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with both staggered and Wilson 

• or even disappear ? 
• for more information see eg 

• Meyer  Lattice 2015 
• Ding    Lattice 2016 
• de Forcrand  

“Surprises in the Columbia plot”  
(Lapland talk 2018)
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• or even disappear ? 
• for more information see eg 

• Meyer  Lattice 2015 
• Ding    Lattice 2016 
• de Forcrand  

“Surprises in the Columbia plot”  
(Lapland talk 2018)

Understanding of the diagram being changed a lot



格子作用いろいろ

現状良く行われる改良 
• Wilson      → improved version 
• staggered → improved version 
• domain wall fermion → “reweighting” to overlap [JLQCD]

U(1)B SU(Nf)V SU(Nf)A simulation 
cost

Wilson ✓ ✓ × moderate

staggered ✓ × U(1) cheep

domain wall ✓ ✓ almost 
exact expensive

overlap ✓ ✓ ✓ almost 
impossible



QCD and Lattice QCD

• Lattice QCD = QCD defined on discretized Euclidian space-time 
• discreteness:   lattice spacing = a    ( ~0.1 fm ~ (2 GeV)-1 )

• eventually continuum limit:    a → 0       needed
• put the system in finite 4d box :          V = Ls3 x Lt 

• eventually:                           V → ∞     needed
• able to put on the computer as a statistical system 

• Z = Σ exp( −S )  →  Monte Carlo simulation
• some symmetry is lost 

• infinitesimal translation and rotation 
• chiral: partially or completely lost 

• expected to recover in the continuum lim. a → 0
• exact symmetry 

• gauge ! 
• “chiral” for special discretization 

• (close to) exact chiral symmetry crucial for some applications

Lattice Gauge Theory

• Analysis of Quantum Field Theory such as Quantum Chromo Dynamics, needs non-
perturbative calculation.

�(x), Aµ(x), x ⌅ R4: continuous infinity
quantum divergences: needs regularization and renormalization

⇥(n + µ̂)⇥(n)

Uµ(n)

a

• Discretize Euclidean space-time

• lattice spacing a ⇤ 0.1 fm
(UV cut-off |p| ⇥ ⇥/a)

• ⇤(n) : Fermion field (Grassmann number)

• Uµ(n) : Gauge field

1. Accumulate samples of vacuum, typically O(100) ⇥ O(1, 000) files o f gauge
configuration Uµ(n) on disk.

2. Then measure physical observables on the vacuum ensemble.

⇧O⌃ =
�
DUµ Prob[Uµ]�O[Uµ]

Taku Izubuchi, Wako, Mini Workshop on Lattice QCD at RIKEN, Decmber 22, 2009 7
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• Lattice QCD = QCD defined on discretized Euclidian space-time 
• discreteness:   lattice spacing = a    ( ~0.1 fm ~ (2 GeV)-1 )
• continuum limit is needed:         a → 0 

• near the continuum limit 
• lattice operators can be expanded in powers of a

Lattice Gauge Theory

• Analysis of Quantum Field Theory such as Quantum Chromo Dynamics, needs non-
perturbative calculation.
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quantum divergences: needs regularization and renormalization
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• ⇤(n) : Fermion field (Grassmann number)

• Uµ(n) : Gauge field

1. Accumulate samples of vacuum, typically O(100) ⇥ O(1, 000) files o f gauge
configuration Uµ(n) on disk.

2. Then measure physical observables on the vacuum ensemble.

⇧O⌃ =
�
DUµ Prob[Uµ]�O[Uµ]

Taku Izubuchi, Wako, Mini Workshop on Lattice QCD at RIKEN, Decmber 22, 2009 7O|LQCD = O|QCD + ac1O1 + a2c2O2 . . .

• for some operators in some lattice discretizations 
• c1 = 0  automatically → effectively close to cont. lim. 
• c1 = 0  by engineering = “improvements”

• most of the lattice actions used now → c1 = 0  or c1 ≃ 0
• However, the size of c2 term wildly varies among different actions



Nf=4:  stout improved staggered     [LatKMI collab.]

• t0  from Symanzik flow:


• a2(β=3.7)/a2(β=3.8) ≃ 1.3


• taste symmetry violation 0 0.01 0.02 0.03 0.04
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Nf=4   topological susceptibility       [LatKMI collab.]

• normalized with t0 • x-axis: NG pion → taste singlet
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Nf=2+1  domain wall fermion

[JLQCD: S.Aoki et al  2017, Nf=2+1 DWF]
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FIG. 7: mud dependence of topological susceptibility obtained from the slab sub-volume method.

If the observables suffer from long auto-correlation, and the Monte Carlo trajectory is not

long enough, on the other hand, the above procedure may underestimate the auto-correlation

time, since some very slow decay modes can be hidden in the error of ρ(∆τ). This problem is

similar to that of hadron spectroscopy with a short temporal extension, where one does not

have long enough fitting range to disentangle the ground state from excited states, which

leads to over-estimation of the mass.

The ALPHA collaboration [10] carefully studied the effect of slow modes, and proposed

an improved estimate of the auto-correlation time,

τimp = τ ′int + τexpρ(W
′), (8)

where τ ′int is the same summation as (7) but with a smaller upper bound W ′ where ρ(W ′)

becomes lower than 3/2 standard deviations. τexp is the auto-correlation of the slowest

mode. The proposal is equivalent to considering a continuation of ΓO(∆τ) at ∆τ = W ′ to

the slowest possible exponential function ΓO(W ′) exp(−(∆τ −W ′)/τexp).

In lattice QCD simulations, it is natural to assume that τexp is equal to the auto-

correlation of the global topological charge. In our simulations, τexp is estimated by τint(W )

of Q2
lat, except for β = 4.47 where we choose τexp = 1700 MD time by hand, which is a

rough order estimate from the first zero-crossing point of Qlat. Then we compute the auto-

14

O(a2) error 制御可
ChPT matching 良好

DWF を使うべき!



転移はともかく、U(1)A 回復すると… 

• (  U(1)A broken case:  χt(T) ∝ m2  : m=u,d quark mass )


➡ χt ~ O(m4)    Cohen 


➡ χt |m=0 = 0  & dnχt / dmn|m=0 = 0    Aoki-Fukaya-Tanigchi


➡ χt = 0  for 0 ≤ m < mc  → 実現？ →

• physical u,d で χt = 0 の可能性
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topological susceptibility and axion mass

• Peccei Quinn mechanism for a solution to strong CP problem


• new complex pseudo scalar field to remedy the fine tuning problem of θ


• U(1) symmetry is spontaneously broken → axion


• effective potential tilted by chiral anomaly


•  → gets mass through χ = topological susceptibility at θ=0


• Axion is a candidate of dark matter


• axion mass as a function of temperature mA(T) is a crucial information


• χ(T) of QCD @ θ=0    is the target quantity!



U(1)A 回復すると…

• axion cosmology scenario may fail for U(1)A restoration 
due to vanishing / suppressed topological susceptivility 

• χt |m=0 = 0  & dnχt / dmn|m=0 = 0       Aoki-Fukaya-Tanigchi 
➡ χt = 0   for  small non-zero m      OR
➡ exponential decay for T>Tc

• axion mass and decay constant:   
➡ axion window can possibly be closed  


Kitano-Yamada JHEP [1506.00370] 
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χt above T = 2 Tc or even 1.5 Tc depending on the lattice volume, which immediately

indicates the difficulty in dynamical simulations. Even if much faster computers were used,

this upper bound will not change significantly. Thus, to estimate the T dependence of χt

at O(10Tc), we have to make a long extrapolation using those obtained in such a rather

limited range of T . To push the limit upward as high as possible, it is crucial to explore

the HMC parameters or improve the algorithm.

Inspired by refs. [36, 37], we tried, as an attempt, to enhance the number of configu-

rations with nonzero Q by inserting

X = det

(

H2
W + µ2

H2
W + ϵ2

)Nφ

, (3.1)

to the path integral, where Nφ is a positive integer. Then, χt is calculated through

χt =
⟨(Q2/V )XX−1⟩

⟨XX−1⟩
=

⟨(Q2/V )X−1⟩X
⟨X−1⟩X

, (3.2)

where ⟨· · · ⟩X denotes the average over the configurations generated with the extra reweight-

ing factor X. For µ > ϵ, the insertion of X enhances the eigenvalue density in the small

eigenvalue region, whereas eigenmodes with eigenvalues λ ≫ µ are left untouched. Since,

when the topology changes, the smallest eigenvalue of HW passes through zero, the above

factor is expected to increase such opportunities. However, after we performed some trial

calculations, we realized that this method does not always work and the fine tuning of µ,

ϵ and Nφ are required. Further investigations to improve the situation is in progress.

4 Effects of dynamical quarks

Let us discuss what would happen when we include the dynamical quarks. The naive guess

would be that χt in the Yang-Milles theory is multiplied by a factor of m
Nf
q /Λ

Nf

QCD since

χt should vanish when one of the quark masses goes to zero.

There can be more drastic possibilities. If we accept the claims of the axial U(1)

restoration in two-flavor QCD [16, 17], the O(m2
q) contributions to χt is forbidden in two-

flavor QCD. Therefore, the possibility of just multiplying by m
Nf
q /Λ

Nf

QCD is not consistent.

The results of ref. [17] even forbid contributions with any power of mq for a small mq. An

extreme possibility one can consider is

χt(T ) ∼

{

mqΛ3
QCD, T < Tc,

m2
qΛ

2
QCDe

−2c(mq)T 2/T 2
c , T > Tc,

(4.1)

with c(mq) → ∞ as mq → 0, so that χt cannot be expanded around mq = 0. Note that the

results of ref. [17] is contained as a special case of eq. (4.1). Since no unquenched result

of χt is available at high temperatures, we take c(mq) as a free parameter in the following

discussion.
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1 Introduction

It is widely believed that the instanton calculus in QCD [1] makes sense at high temper-

atures. The asymptotic freedom ensures the perturbative expansion sensible and, most

importantly, the infrared divergences from the large instanton contributions are cut-off by

the Debye length, providing finite results after the integration over the instanton size [2].

In the semi-classical instanton picture, physics becomes θ-parameter dependent by

the instanton contributions to the path integral [3]. The instanton calculus indicates that

such a dependence is proportional to the product of the quark masses, m
Nf
q and Λb

QCD,

where b is the beta-function coefficient, b = 11Nc/3 − 2Nf/3. For example, the topo-

logical susceptibility, χt = (∂2/∂θ2)Veff(θ), is proportional to m
Nf
q Λb

QCDT
4−Nf−b by the

dimensional analysis.

In the QCD axion model to solve the strong CP problem, the θ angle is promoted

to the axion field a(x)/fa, where fa is the axion decay constant [4–11]. The topological

susceptibility is directly related to the mass of the axion as χt = m2
af

2
a . Therefore, the

temperature dependence of χt discussed above represents that of the axion mass, which is

important for the calculation of the axion abundance in the Universe. In the misalignment

mechanism for the axion generation in the early Universe, the axion number density is

proportional to the axion mass at the temperature at which the axion field starts coherent

oscillations [12–14]. The instanton based estimation of the temperature dependence is

commonly used in the literature, and predicts that the axion can naturally be dark matter

of the Universe when ma ∼ 10−5 eV, whereas the astrophysical bound on ma is ma !

10−2 eV. (See, e.g., [15].) The allowed region, 10−5 eV ! ma ! 10−2 eV, is called the

“axion window.”

– 1 –



topological susceptibility, U(1)A: 

• QCD相図の理解 
• axion の可能性 

に重要。 
それらを順に見ていく。 

得に断りの無いものは JLQCD による仕事 (最新結果はpreliminary)



topological susceptibility 



Method

• DWF ensemble → reweighted to overlap


• Möbius DWF: almost exact chiral symmetry: mres = 0.05(3) MeV  (β=4.3, Ls=16)


• Overlap:         exact chiral symmetry


• Qt measurements 


• global sum of the gluonic charge density (clover) after Wilson Flow (t≃t0)


• Overlap Index


• reweighting: before / after and above 2 meas. yield  4  χt values


• current main focus: 1/a = 2.6 GeV　*** PRELIMINARY ***

�t =
hQ2i
V

susceptibility
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χt(mf)  for Nf=2   T=220 MeV, 323

GL-DW gluonic charge on DW 
ensembleGL-OV gluonic charge on OV 
ensembleOV-DW OV index on DW ensemble

OV-OV OV index on OV ensemble
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χt(m)   T=~220 MeV   discretization effect
comparing 1/a=1.7 GeV and 1/a=2.6 GeV;    ( (3.6fm)3 and (2.4fm)3 )

• OV-OV:  better scaling

• GL-DW: large scaling violation   for smaller m

• OV-OV:  χt = 0    (within error)  for 0 ≤ m ≲ 10 MeV
• GL-DW: χt > 0,    but, may well decrease as a

➡ (consistent with OV-OV with large error of OV-OV)
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χt(m)   T=220 MeV   a2 scaling: m=6.6 MeV

continuum scaling in 1st region

• m=6.6 MeV

• vanishing towards continuum limit

• caveat: physical volume is different → needs further invest.

( V=(3.6fm)3 and (2.4fm)3 )
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χt(m)   T=~220 MeV, 323x12
1/a=2.6 GeV

suggesting 2 regions

1: χt  is very small (may vanish in a→0): 0 ≤ m ≲ 10 MeV

     (→ consistent w/ Aoki-Fukaya-Tanigchi for U(1)A symm.)

2: sudden growth of χt                       : 10 MeV ≲ m


• physical ud mass point:  m≃4 MeV

physical ud
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Next step: Volume Study

In addition to 323,  243 & 483 are studied

from both GL-DW & OV-OV

a→0
GL-DW is precise, maybe useful



323 m=2.6 MeV history and histogram
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resolution of susceptibility (ex: m=2.6 MeV)

null measurement of topological excitation after reweighting

• does not readily mean χt=0:   


(this case <Q2>=4(4) x10-6 ↔ 6(3) x10-3 @m=13MeV)

• there must be a resolution of χt under given statistics


• [resolution of <Q2>] = 1/Neff

• shall take the “statistical error” of <Q2> = max(Δ<Q2>, 1/Neff)

Effective number of statistics

• decreases with reweighting

• Neff=Nconf <R>/Rmax

• Nconf=1326 → Neff = 32
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Results of χt(m)  at T=220 MeV; multiple volume

• Statistics in trajectory 
         ~30k, 30k, 10k
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Results of χt(m)  at T=220 MeV; multiple volume
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         ~30k, 30k, 10k

• V dependence at m=10 MeV is strange 
• non-monotonic:  cannot take thermodynamic limit 
• important region, where a phase boundary was suggested w/ 323

• Let’s look at the histogram of Q



summary of histogram: T=220 MeV,
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competing scenarios with multiple volumes for 
χt  given  Δπ-δ (UA(1) oder parameter) @ T=220 MeV

• AFK scenario: χt= 0   for 0<m<mc

• KY scenario:   χt= 2 fA m2

• There are no strong tensions

• Neither scenario is excluded
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Kanazawa-Yamamoto

• assume fA≠ 0 (breaking param) 

• expansing free energy in m


• discussing

• finite m and V effect
• in each topological sector



U(1)A



U(1) axial

• violated by quantum anomaly 

up to contact terms 
• at T=0, responsible for η’ mass 

• non-trivial topology of gauge field 

• at high T,  this Ward-Takahashi identity is still valid 

• however,  if configurations that contribute to RHS is suppressed……… 
➡ the symmetry effectively recovers 

๏ here Nf=2                 (including Nf=2+1 with “2” driven to chiral limit)

@µJ
µ
5 =

Nf

32⇡2
FF̃

h@µJµ
5 (x) ·O(0)i = Nf

32⇡2
hFF̃ (x) ·O(0)i



Why bother ?

• Because it is unsettled problem !  
• fate of U(1)A - analytic 

• Gross-Pisarski-Yaffe (1981)           restores in high temperature limit 
• Dilute instanton gas 

• Cohen (1996)    
• measure zero instanton effect → restores 

• Lee-Hatsuda (1996)    
• zero mode  does contributes  → broken 

• Aoki-Fukaya-Tanigchi (2012)   
• QCD analysis (overlap)           → restores w/ assumption (lattice) 

• Kanazawa-Yamamoto (2015)   
• EFT  case study                  how  restore / break 

• Azcoiti (2017) 
• case study                         how  restore / break



Why bother ?

• Because it is unsettled problem !  
• fate of U(1)A lattice  

• HotQCD (DW, 2012)                                           broken 
• JLQCD (topology fixed overlap, 2013)                restores 
• TWQCD (optimal DW, 2013)                               restores ? 
• LLNL/RBC (DW, 2014)                                       broken 
• HotQCD (DW, 2014)                                           broken 
• Dick et al.  (overlap on HISQ, 2015)                    broken 
• Brandt et al. (O(a) improved Wilson 2016)           restores 
• JLQCD (reweighted overlap from DW, 2016)       restores 
• JLQCD (current:  see Suzuki et al Lattice 2017)  restores 
• Ishikawa et al (Wilson, 2017)                       at least Z4 restores



U(1)A restoration or not

• need to make sure if not comparing apples and oranges… 
• key points 

• systematics effects of lattice discretization under control ? 
• finite V, a, m… 

• ud chiral limit of  
• Nf=2     QCD      or  
• Nf=2+1 QCD      →   strange quark mass effect ! 

• discussing mud→0  or just around physical ud mass 
• discussing  X = 0 ?   or   X ≃ 0 ?



a U(1)A order parameter

• symmetry in switching flavor non-singlet  pseudoscalar and 
scalar  

• order parameter: 

➡   0    for U(1)A restoration 

• as a result, screening masses for these channel will degenerate 
• not a sufficient condition for U(1)A restoration 

Evidence of effective axial Uð1Þ symmetry restoration
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We study the axial Uð1Þ symmetry at a finite temperature in two-flavor lattice QCD. Employing the
Möbius domain-wall fermions, we generate gauge configurations slightly above the critical temperature Tc

with different lattice sizes L ¼ 2–4 fm. Our action allows frequent topology tunneling while keeping good
chiral symmetry close enough to that of overlap fermions. This allows us to recover full chiral symmetry by
an overlap/domain-wall reweighting. Above the phase transition, a strong suppression of the low-lying
modes is observed in both overlap and domain-wall Dirac spectra. We, however, find a sizable violation of
the Ginsparg-Wilson relation in the Möbius domain-wall Dirac eigenmodes, which dominates the signals of
the axialUð1Þ symmetry breaking near the chiral limit. We also find that the use of the overlap fermion only
in the valence sector is dangerous since it suffers from the artifacts due to partial quenching. Reweighting the
Möbius domain-wall fermion determinant to that of the overlap fermion, we observe the axial U(1) breaking
to vanish in the chiral limit, which is stable against the changes of the lattice volume and lattice spacing.

DOI: 10.1103/PhysRevD.96.034509

I. INTRODUCTION

The action of quantum chromodynamics (QCD) with
two massless quark flavors has a global SUð2ÞL ×
SUð2ÞR ×Uð1ÞV ×Uð1ÞA symmetry. The flavor (or iso-
spin) nonsinglet part SUð2ÞL × SUð2ÞR is spontaneously
broken to the vectorlike subgroup SUð2ÞV below the
critical temperature Tc by the presence of the chiral
condensate hψ̄ψi ≠ 0. The axial Uð1ÞA symmetry is, on
the other hand, violated by anomaly. Namely, the flavor-
singlet axial current is not conserved due to the topological
charge density operator appearing in the axial Ward-
Takahashi identity. Since this anomalous Ward-Takahashi
identity is valid in any environment, theUð1ÞA symmetry is
supposed to be violated at any temperature. Taking account
of the gluonic dynamics, on the other hand, how much the
topological charge density contributes to the low-energy
physics may depend on the amount of topological activity
in the background gauge field. In fact, at a high temperature
T ≫ Tc [1], the instanton density is exponentially sup-
pressed, and the Uð1ÞA symmetry, as probed by physical
observables, would be restored.
Just above the transition temperature Tc, topological

fluctuations are not well understood theoretically, due to

nonperturbative nature of QCD dynamics, and the question
remains open about whether the Uð1ÞA symmetry is
effectively restored or not. It is related to the important
question on the order and the critical exponents of the two-
flavor QCD chiral phase transition, since the symmetry
determines the properties of the transition as discussed in
[2,3]. The fate of the Uð1ÞA symmetry is also of phenom-
enological interest, since the topological susceptibility in
the hot early Universe gives a strong constraint on the axion
dark matter scenario [18–22].
One of the possible observables for the Uð1ÞA symmetry

breaking is the difference of flavor nonsinglet meson
susceptibilities,

Δπ−δ ¼
Z

d4x½hπaðxÞπað0Þi − hδaðxÞδað0Þi%; ð1Þ

where πa ¼ ψ̄τaγ5ψ and δa ¼ ψ̄τaψ represent the isospin
triplet pseudoscalar and scalar operators, respectively.
Here, τa denotes one of the SUð2Þ generators. The
measurement of (1) is relatively easy as it does not involve
disconnected diagrams. Decomposing the quark propagator
into the eigenmodes of the Dirac operator, Δπ−δ may be
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!" ! !# ¼ !disc ¼ !5;disc; for T # Tc; ml ! 0:

(39)

Hence, in the chirally symmetric phase (in the chiral limit)
the disconnected chiral susceptibility itself can be used to
probe the restoration of the Uð1ÞA symmetry.

This conclusion exemplifies the importance of the
disconnected chiral susceptibility as a probe of the char-
acter of the QCD phase transition. If Uð1ÞA symmetry is
broken above Tc and the transition belongs to the Oð4Þ
universality class, then we expect singular behavior for
!disc as T ! Tþ

c :

!disc ' ðT ! TcÞ!$ (40)

for mq ¼ 0 and T > Tc where $ ¼ 1:453 [56]. If instead
Uð1ÞA symmetry is essentially restored above Tc, i.e. all
anomaly-related breaking effects can be neglected, then
!disc must vanish for T > Tc while for T < Tc it must
diverge as mq ! 0 because of the existence of massless
pions. Thus, !disc must again show singular behavior at Tc.

Further information about !" ! !# can be obtained
by comparing to the topological charge, Qtop. Qtop is
defined as

Qtop ¼
g2

32"2

Z
d4xFa

%&ðxÞ ~Fa
%&ðxÞ: (41)

On a smooth gauge configuration, if lattice artifacts are
small, the topological charge and the integrated pseudo-
scalar bilinear can be related:

Qtop ¼ ml

Z
d4x !c lðxÞ$5c lðxÞ: (42)

If this relation is squared, averaged over the gauge field and
divided by the space-time volume V, we obtain a relation
between the topological susceptibility and the discon-
nected pseudoscalar susceptibility:

!top ¼
hQ2

topi
V

¼ m2
l!5;disc: (43)

This equation can be obtained in the continuum theory by
integrating the anomalous conservation law for the axial
current over space-time, squaring the result, dividing
by the space-time volume and ignoring possible ambigu-
ities in the operator product appearing in Q2

top. If we

assume SUð2ÞL ( SUð2ÞR symmetry and substitute
Eq. (39) into Eq. (43), we can directly relate the measure
of Uð1ÞA symmetry breaking !" ! !# and the topological
susceptibility:

!" ! !# ¼ 1

m2
l

!top: (44)

Finally, the eigenvalue spectrum of the Dirac operator is
also intimately connected with the chiral and anomalous
axial symmetry. The symmetry-breaking quantities h !c c i
and !" ! !# can both be expressed in terms of the eigen-
value spectrum of the Dirac operator in the following way:

h !c lc li ¼
Z 1

0
d'

2ml(ð'Þ
m2

l þ '2 ; (45)

!" ! !# ¼
Z 1

0
d'

4m2
l(ð'Þ

ðm2
l þ '2Þ2 : (46)

Equation (45) is the basis of the Banks-Casher relation [57]
which connects the chiral condensate to the density of zero
eigenvalues limml!0h !c lc li ¼ "(ð0Þ. While in the chirally
broken phase a nonzero value of the chiral condensate
demands (ð0Þ ! 0, in the chirally symmetric phase a
vanishing chiral condensate leads to (ð0Þ ¼ 0. However,
Eq. (46) shows that a nonzero anomalous symmetry-
breaking difference !" ! !# in the limit of massless
quarks requires complex behavior for (ð'Þ as ' approaches
zero [58]. This required behavior is very different, for
example, from that found in the case of a free field at finite
temperature. For the free field case there is a gap in the
spectrum between zero and the Matsubara frequency "T:
(ð'Þ ¼ 0 for 0 ) '< "T. This question is studied in
detail in Sec. VI.

V. SUð2ÞL ( SUð2ÞR RESTORATION

We now turn to a discussion of SUð2ÞL ( SUð2ÞR chiral
symmetry restoration. We will first discuss the chiral
transition using conventional observables such as the
chiral condensate and the related chiral susceptibility.

π

δ

τ
2:  q γ

5
q

:  q τ
2 q

:  q

:  q γ5

σ

η
L RSU(2)   x SU(2)

SU(2)   x SU(2)L R

U(1)AU(1)A

q

q

χχ

χχcon

con

5,con

5,con + χ

− χ 5,disc

disc

FIG. 5 (color online). Symmetry transformations relating sca-
lar and pseudoscalar mesons in flavor singlet and nonsinglet
channels.

TABLE XI. Summary of screening correlator measurements.
All measurements are with a point source and point sink with the
source located at ðx; y; z; tÞ ¼ ð0; 0; 0; 0Þ.

Label T (MeV) Trajectories Step

1 139 200–2990 10
3 149 300–7000 5
4 159 300–3650 10
5 168 300–3410 10
6 177 300–1780 10
7 186 300–4360 10
8 195 302–2447 5

2450–6000 5

CHIRAL TRANSITION AND Uð1ÞA SYMMETRY . . . PHYSICAL REVIEW D 86, 094503 (2012)
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screening mass from O(a) improved Wilson f Nf=2

• mass difference between π and δ
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Figure 13. Chiral extrapolation of ∆MPS in physical units in comparison to the zero temperature
pendant estimated as explained in the text. The red line and the associated red point at mud = 0
indicate the result from a linear chiral extrapolation.

where the factor 2 comes from the fact that we need to send the masses of two quarks

to zero. Using the numbers from the PDG [109] we obtain the final estimate mmud=0
a0 =

945(41)MeV. The error estimate follows from the uncertainties associated with the masses

of the a0 and the K∗
0 mesons. This is a rather crude estimate, but it is unlikely that it

underestimates the effect by an order of magnitude (even then mmud=0
a0 ≈ 600MeV, which

does not change the picture dramatically). Our final estimate for the chiral limit is

∆MT=0,mud=0
PS = −945(41) MeV . (3.9)

The width of the transition region must be taken into account when we extract an

estimate for ∆MPS from our simulations. We thus compute the difference from a fit to a

constant to the data points in the grey bands in figure 11. The spread of the results in

the region is taken as a systematic uncertainty on top of the statistical uncertainty of the

average. The results from this procedure are listed in table 5. Here we have also included

a result for scan B1κ to be able to perform a sensible chiral extrapolation. Unfortunately,

B1κ is not at fixed quark mass and thus remains longer in the vicinity of TC , since the

latter increases with the quark mass. This accounts for the rather large error bars for the

associated ∆MPS .

To perform the chiral extrapolation for ∆MPS we need to deduce its quark mass

dependence. Since the pion is a Goldstone boson, its mass is expected to be proportional

to
√
mud, at least at small temperatures, T < TC . On the other hand, the mass of the

scalar should depend linearly on the quark mass which might also be the case for the pion

at TC , where chiral perturbation theory breaks down. Given that we have only three data

points at our disposal with relatively large uncertainties, our data clearly does not allow

for a detailed investigation of the quark mass dependence of ∆MPS . We thus perform two

types of fits; (i) linear in mud, (ii) proportional to
√
mud. The results for the two different

types of fits including all three data points are listed in table 5. We see that both results

are consistent with zero within the relatively large error bars. As our final estimate we will

thus use the linear fit. The associated result is shown in figure 13. We have also checked

– 26 –

• Nt = 1/(aT) = 16      -  quite fine lattice

• T=Tc                       -  on top of transition temperature
only one existing study for Nf=2 

• ΔMPS = 0   (with a sizable error)  →  consistent with U(1)A  restoration

Brandt et al JHEP [1608.06882]



relation with Dirac eigenmode spectrum ρ(λ)

• chiral condensate :  order parameter of  SU(2)A   : Banks-Casher rel. 

• U(1)A:   

very roughly speaking 
• very sensitive to the spectrum near λ=0 
• overlap fermion, able to distinguish zero/nonzero modes, is ideal

�hqqi = lim
m!0

Z 1

0
d�⇢(�)

2m

�2 +m2
= ⇡⇢(0)

�⇡�� =

Z 1

0
d�⇢(�)

2m2

(�2 +m2)2
!⇠ ⇢0(0)



JLQCD 16: Hov, HDW spectrum: above Tc  Nf=2

[JLQCD 2016 Tomiya et al]

As will be shown below, our target of this work, Uð1ÞA
sensitive quantities, are sensitive to the overlap/Domain-
wall reweighting. However, the reweighting does not affect
those insensitive to the Uð1ÞA symmetry. For example, we
find that the plaquette changes only by less than 0.3%,which
is much smaller than its statistical error (of reweighted
plaquettes). Table II is a comparison of the Polyakov loop
with and without the reweighting. This table shows that for
Uð1ÞA insensitive quantities, the overlap fermions and
Möbius domain-wall fermions are essentially the same.

III. DIRAC SPECTRUM

In this section, we study the Dirac spectrum ρðλÞ, which
is tightly related to both of the SUð2ÞL × SUð2ÞR and
Uð1ÞA symmetries [68]. We compute the eigenvalues λðmÞ

k
of the massive operators H4D

DWðmÞ and HovðmÞ, and
evaluate those of the massless operators using

λk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλðmÞ

k Þ2 −m2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

p : ð18Þ

When the Ginsparg-Wilson relation is satisfied, λk is
exactly the same as the corresponding eigenvalue of the

massless Dirac operator. We apply the same formula to the
Möbius domain-wall Dirac eigenvalues, though the
Ginsparg-Wilson relation is not exact. We confirm that
jλðmÞ

k j > m is always satisfied, and the effect of mres is
invisible with our resolution of the Dirac eigenvalue density
explained below.
Figure 6 shows the eigenvalue histograms of the Möbius

domain wall (top panels), partially quenched overlap with
Möbius domain-wall sea quarks (middle), and (reweighted)
overlap (bottom) Dirac operators. Data at β ¼ 4.10
(T ∼ 217 MeV) on the 163 × 8 lattice are shown on the
left panels, and those on the 323 × 8 lattice are shown on
the right panels. Here, we count the number of eigenvalues
in a bin ½λ − 4MeV; λþ 4MeV& and rescale them by 1=V to
obtain the eigenvalue density ρðλÞ in the physical unit.
When the data for different sea quark masses are plotted
together, the heavier mass data are shown by shaded
histograms. When there are exactly chiral zero modes,
they are included in the lowest bin.
The Möbius domain-wall Dirac operator spectrum shows

a mild slope towards zero at the lightest quark masses near
the chiral limit. This slope is consistent with λ3, which was
also reported in [28] employing the optimal domain-wall
fermions. The reweighted overlap Dirac operator

FIG. 7. Same as Fig. 6 but at β ¼ 4.07 (T ∼ 203 MeV).

A. TOMIYA et al. PHYSICAL REVIEW D 96, 034509 (2017)
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• DW: Domain wall fermion sea 
• OV:  Overlap valence 

• exact “chiral symmetry” 
• reweighting to OV



JLQCD 16: Hov, HDW spectrum: above Tc  Nf=2

FIG. 9. The quark mass dependence of the eigenvalue density at the first bin [0,8] MeV. The data of the Möbius domain wall (left
panel) and those of the overlap (right) Dirac operators are shown. All the data for m < 5 MeV are consistent with zero.

FIG. 10. Violation of the Ginsparg-Wilson relation gi as measured for individual eigenmodes. Data for β ¼ 4.07 on a L3 × Lt ¼
163 × 8 lattice (top panel), those for β ¼ 4.10 and L3 × Lt ¼ 323 × 8 (middle), and those for β ¼ 4.24 and L3 × Lt ¼ 323 × 12
(bottom) are shown. Results for all the measured configurations are plotted.

A. TOMIYA et al. PHYSICAL REVIEW D 96, 034509 (2017)
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Lowest bin→0 
consistent with SUA(2) 
restoration

[JLQCD 2016 Tomiya et al]

As will be shown below, our target of this work, Uð1ÞA
sensitive quantities, are sensitive to the overlap/Domain-
wall reweighting. However, the reweighting does not affect
those insensitive to the Uð1ÞA symmetry. For example, we
find that the plaquette changes only by less than 0.3%,which
is much smaller than its statistical error (of reweighted
plaquettes). Table II is a comparison of the Polyakov loop
with and without the reweighting. This table shows that for
Uð1ÞA insensitive quantities, the overlap fermions and
Möbius domain-wall fermions are essentially the same.

III. DIRAC SPECTRUM

In this section, we study the Dirac spectrum ρðλÞ, which
is tightly related to both of the SUð2ÞL × SUð2ÞR and
Uð1ÞA symmetries [68]. We compute the eigenvalues λðmÞ

k
of the massive operators H4D

DWðmÞ and HovðmÞ, and
evaluate those of the massless operators using

λk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλðmÞ

k Þ2 −m2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

p : ð18Þ

When the Ginsparg-Wilson relation is satisfied, λk is
exactly the same as the corresponding eigenvalue of the

massless Dirac operator. We apply the same formula to the
Möbius domain-wall Dirac eigenvalues, though the
Ginsparg-Wilson relation is not exact. We confirm that
jλðmÞ

k j > m is always satisfied, and the effect of mres is
invisible with our resolution of the Dirac eigenvalue density
explained below.
Figure 6 shows the eigenvalue histograms of the Möbius

domain wall (top panels), partially quenched overlap with
Möbius domain-wall sea quarks (middle), and (reweighted)
overlap (bottom) Dirac operators. Data at β ¼ 4.10
(T ∼ 217 MeV) on the 163 × 8 lattice are shown on the
left panels, and those on the 323 × 8 lattice are shown on
the right panels. Here, we count the number of eigenvalues
in a bin ½λ − 4MeV; λþ 4MeV& and rescale them by 1=V to
obtain the eigenvalue density ρðλÞ in the physical unit.
When the data for different sea quark masses are plotted
together, the heavier mass data are shown by shaded
histograms. When there are exactly chiral zero modes,
they are included in the lowest bin.
The Möbius domain-wall Dirac operator spectrum shows

a mild slope towards zero at the lightest quark masses near
the chiral limit. This slope is consistent with λ3, which was
also reported in [28] employing the optimal domain-wall
fermions. The reweighted overlap Dirac operator

FIG. 7. Same as Fig. 6 but at β ¼ 4.07 (T ∼ 203 MeV).
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• exact “chiral symmetry” 
• reweighting to OV



Comparison:  unitary <-> partially quench

As will be shown below, our target of this work, Uð1ÞA
sensitive quantities, are sensitive to the overlap/Domain-
wall reweighting. However, the reweighting does not affect
those insensitive to the Uð1ÞA symmetry. For example, we
find that the plaquette changes only by less than 0.3%,which
is much smaller than its statistical error (of reweighted
plaquettes). Table II is a comparison of the Polyakov loop
with and without the reweighting. This table shows that for
Uð1ÞA insensitive quantities, the overlap fermions and
Möbius domain-wall fermions are essentially the same.

III. DIRAC SPECTRUM

In this section, we study the Dirac spectrum ρðλÞ, which
is tightly related to both of the SUð2ÞL × SUð2ÞR and
Uð1ÞA symmetries [68]. We compute the eigenvalues λðmÞ

k
of the massive operators H4D

DWðmÞ and HovðmÞ, and
evaluate those of the massless operators using

λk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλðmÞ

k Þ2 −m2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

p : ð18Þ

When the Ginsparg-Wilson relation is satisfied, λk is
exactly the same as the corresponding eigenvalue of the

massless Dirac operator. We apply the same formula to the
Möbius domain-wall Dirac eigenvalues, though the
Ginsparg-Wilson relation is not exact. We confirm that
jλðmÞ

k j > m is always satisfied, and the effect of mres is
invisible with our resolution of the Dirac eigenvalue density
explained below.
Figure 6 shows the eigenvalue histograms of the Möbius

domain wall (top panels), partially quenched overlap with
Möbius domain-wall sea quarks (middle), and (reweighted)
overlap (bottom) Dirac operators. Data at β ¼ 4.10
(T ∼ 217 MeV) on the 163 × 8 lattice are shown on the
left panels, and those on the 323 × 8 lattice are shown on
the right panels. Here, we count the number of eigenvalues
in a bin ½λ − 4MeV; λþ 4MeV& and rescale them by 1=V to
obtain the eigenvalue density ρðλÞ in the physical unit.
When the data for different sea quark masses are plotted
together, the heavier mass data are shown by shaded
histograms. When there are exactly chiral zero modes,
they are included in the lowest bin.
The Möbius domain-wall Dirac operator spectrum shows

a mild slope towards zero at the lightest quark masses near
the chiral limit. This slope is consistent with λ3, which was
also reported in [28] employing the optimal domain-wall
fermions. The reweighted overlap Dirac operator

FIG. 7. Same as Fig. 6 but at β ¼ 4.07 (T ∼ 203 MeV).
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As we emphasized earlier, the KS algorithm allowed us
to distinguish the zero modes from the near-zero modes
using the chirality properties of the corresponding eigen-
vectors. In general, the eigenvalue distribution has three
distinct features—the zero mode peak, a near-zero mode
accumulation and the bulk eigenvalue region. The low-
mode structure seen in the overlap eigenvalue spectrum is
more pronounced than what has been found in the HISQ
eigenvalue spectrum calculated on similar lattice volumes
[31]. This may be due to the fact that for the staggered
fermion operator the index theorem is very subtle. The
differences are expected to disappear in the continuum limit
which needs to be checked in future work. Near Tc, the first
bin contains a large contribution from zero modes which
are omitted in Fig. 2 to focus on the infrared physics of only
the near-zero eigenvalues. At this temperature, we do not
observe any gap in the infrared part of the eigenvalue
spectrum. The near-zero modes and the bulk modes appear
to overlap significantly and the near-zero modes tend to
develop a peak towards the infrared region. This peak
becomes sharper as the light sea quark mass is lowered
from ml ¼ ms=20 to ml ¼ ms=40 at fixed lattice spacing
1=6T. The lattice volume has been increased as one goes
fromml ¼ ms=20 toms=40 such that Lmπ is kept fixed. At
ml ¼ ms=20, the aspect ratio is Ns=Nτ ¼ 4, which is

sufficient for calculating many thermodynamic quantities
close to the thermodynamic limit. However at present, no
systematic analysis of the volume effects on eigenvalue
spectrum has been performed. We cannot explicitly dis-
tinguish the finite volume effect from the chiral effect in
shaping the near-zero peak. The near-zero peak also
becomes sharper when we go to a finer lattice, from Nτ ¼
6 to Nτ ¼ 8 at a fixed pion mass of 160 MeV. This trend
suggests that the near-zero mode accumulations will remain
as the chiral and the continuum limits are approached.
At temperatures 1.2Tc and 1.5Tc, both the zero modes

denoted by the red bar and the near-zero and bulk modes
are shown in Fig. 3 and Fig. 4. The separation between the
near-zero mode accumulation and the bulk eigenvalue
region becomes even more evident with increasing temper-
ature. At 1.2Tc, we study the eigenvalue spectrum at two
different lattice spacings to estimate whether the infrared
part of the spectrum is strongly affected by the lattice cutoff
effects at higher temperatures. Keeping the physical bin
size the same in units of λ=T for comparison, we observe
that the infrared region of the eigenvalue density remains
practically unchanged when the lattice spacing goes from
1=6T to 1=8T at a fixed temperature T. This gives us
confidence that the near-zero modes are not due to

FIG. 3 (color online). The eigenvalue density for HISQ con-
figurations using the overlap operator at 1.2Tc. The lattice sizes
are 323 × 8 and 243 × 6, respectively. The red line marks the
range of validity.

FIG. 4 (color online). The eigenvalue density for 323 × 8 HISQ
configurations using the overlap operator for 1.5 Tc for all values
of Q and also separately for the Q ¼ 0 sector. The red line marks
the range of validity.

DICK et al. PHYSICAL REVIEW D 91, 094504 (2015)

094504-6

Δ>0

Δ~0

range of JLQCD

OV on DW

OV on HISQ

OV on OV

Dick et al PRD [1502.06190]

Partially quench effect 
needs to be investigated



JLQCD 16: UA(1) susceptibility:  T=190-220 MeV

The results for Δdirect
π−δ and Δev

π−δ are presented in Table III.
The saturation of the low-mode approximation is demon-
strated in Fig. 11 for two typical configurations.
Next, let us separate the contribution coming from the

violation of the Ginsparg-Wilson relation. As we already
discussed in [34], Δev

π−δ can be decomposed into the chiral
symmetric part ΔGW

π−δ and violating part ΔGW
π−δ as

Δev
π−δ ¼ ΔGW

π−δ þ ΔGW
π−δ; ð20Þ

ΔGW
π−δ ≡

1

Vð1 −m2Þ2
X

i

2m2ð1 − λðmÞ2
i Þ2

λðmÞ4
i

; ð21Þ

ΔGW
π−δ ≡

1

Vð1 −mÞ2
X

i

!
hi
λðmÞ
i

− 4
gi
λðmÞ
i

"
; ð22Þ

where gi was already defined in Eq. (19) and

hi ≡ 2ð1 −mÞ2

ð1þmÞ
ψ†
i γ5ðH4D

DWðmÞÞ−1γ5ΔGWðH4D
DWðmÞÞ−1ψ i

þ 2

1þm

#
1þ m

λðmÞ2
i

$
gi ð23Þ

is another measure of the violation of Ginsparg-Wilson
relation. Both of these quantities must be zero if the
Ginsparg-Wilson relation is satisfied.

Figure 12 shows the quark mass dependence of the ratio
ΔGW

π−δ=Δev
π−δ. The Ginsparg-Wilson relation violating part

ΔGW
π−δ dominates the signal as the quark mass decreases. For

data points less than m ¼ 5 MeV (at lower β), more than
60%–98% of the signal is the contribution from ΔGW

π−δ.
Thus, we need a careful control of the chiral symmetry on
the low-lying eigenmodes in taking the chiral limit of the
Uð1ÞA breaking observables.
Finally, let us examine the Uð1ÞA susceptibility with

overlap fermions. Here we do not use the partially
quenched overlap as we have shown its significant lattice
artifacts. We observe that the partially quenched overlap
Δπ−δ overshoots the Möbius domain-wall data. We confirm
that gi and hi for the overlap Dirac eigenmodes are
negligible (see Fig. 10), so that we can safely use ΔGW

π−δ
together with the OV/DW reweighting to estimate the
Uð1ÞA susceptibility (let us denote it as Δov

π−δ).
Taking the advantage of good chirality, we can subtract

the effect of the chiral zero-mode effects [73],

Δ̄ov
π−δ ≡ Δov

π−δ −
2N0

Vm2
: ð24Þ

FIG. 11. Low-mode saturation of Δπ−δ. The horizontal axis
shows the threshold of the eigenvalue, below which Δev

π−δ is
computed. The data for two typical configurations generated with
β ¼ 4.10, ma ¼ 0.001 on the 323 × 8 lattice are shown. The
dotted lines are the results for the direct computation Δdirect

π−δ .

FIG. 12. Quark mass dependence of the ratio ΔGW
π−δ=Δπ−δ. The

contribution from the chirality violating terms dominates the
signal near the chiral limit.

FIG. 13. The lattice size L dependence of hN0=Vi. The results
at Lt ¼ 8 are shown.

A. TOMIYA et al. PHYSICAL REVIEW D 96, 034509 (2017)
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zero mode effect

The expectation value of N2
0 is expected to be an OðVÞ

quantity, as shown in [26], so that these chiral zero-mode’s
effects should not survive in the large volume limit, as
N0=V is vanishing as Oð1=

ffiffiffiffi
V

p
Þ. We numerically confirm

the monotonically decreasing volume scaling of hN0=Vi as
shown in Fig. 13. Therefore, Δ̄ov

π−δ and Δov
π−δ are guaranteed

to have the same thermodynamical limit. We also confirm
that the 5–15 lowest modes are enough to saturate the
reweighing for Δ̄ov

π−δ on 323 × 8 lattices.
Our results for Δ̄ov

π−δ (solid symbols) and Δov
π−δ (dashed)

are plotted in Fig. 14. We confirm that our data for Δ̄ov
π−δ are

stable against the change of the lattice size and lattice
spacing, and their chiral limits are all consistent with zero.
Precisely, all our data are well described (with
χ2=d:o:f ≲ 1) by a simple linear function, which becomes
consistent with zero “before” the chiral limit. We list the
linear extrapolation of Δ̄ov

π−δ at mud ¼ 4 MeV [74] in
Table IV. We observe neither strong volume dependence
nor β dependence of this behavior. Taking the largest value
in the table, we conclude that the chiral limit of Δ̄ov

π−δ is
estimated to be at most 0.0040ð130Þ GeV2. Although our
naive linear extrapolation may simply fail to detect higher
order mass dependence, the smallness of Δ̄ov

π−δ itself
compared to the data around mud ¼ 20 MeV is significa-
tive and has a phenomenological importance.

V. CONCLUSION

In this work, we have examined the Uð1ÞA anomaly in
two-flavor lattice QCD at a finite temperature with chiral
fermions. On the configurations generated by the Möbius
domain-wall Dirac quarks, we have measured the Dirac
eigenvalue spectrum of both the Möbius domain-wall and
overlap quarks, with or without OV/DW reweighting.
We have also examined the meson susceptibility difference
Δπ−δ, that directly measures the violation of the Uð1ÞA
symmetry. Our ensembles are generated at slightly above
the critical temperature of the chiral phase transition
(T ∼ 190–220 MeV) on different physical volume sizes
(L ¼ 2–4 fm), where frequent topology tunnelings
occur.
Our results for the histograms of the Möbius domain wall

and (reweighted) overlap Dirac operators both show a
strong suppression of the near zero modes as the quark
mass decreases. This behavior is stable against the change
of the lattice size and lattice spacing.
If we do not perform the reweighting of their determi-

nants, the overlap Dirac spectrum shows unphysical peaks
near zero. We have identified them as partially quenched
lattice artifacts, due to the strong violation of the Ginsparg-
Wilson relation in the low-lying eigenmodes of the Möbius
domain-wall operator. Our analysis indicates a potential
danger in taking the chiral limit of any observables with
domain-wall type fermions even when the residual mass is
small. If the observable target is sensitive to the low-lying
modes and their chiral properties, its chiral limit can be
distorted by the lattice artifacts.
After removal of these artifacts by the OV/DW reweight-

ing procedure, we have found that the Uð1ÞA susceptibility
is consistent with zero in the chiral limit. From these
evidences, we conclude that Uð1ÞA symmetry breaking in
two-flavor QCD is consistent with zero above the critical
temperature around 200 MeV in the vanishing quark
mass limit.

FIG. 14. The quark mass dependence of Δ̄ov
π−δ (solid symbols) and Δov

π−δ (dashed). Data for coarse (left panel) and fine (right) lattices
are shown.

TABLE IV. Linear extrapolation of Δ̄ov
π−δ to mmd ¼ 4 MeV. It

becomes consistent with zero before the chiral limit.

L3 × Lt β T (MeV)
Δ̄ov

π−δ½GeV2%
at mud ¼ 4 MeV χ2=d:o:f:

323 × 12 4.23 191(1) 0.0037(099) 0.002
323 × 12 4.24 195(1) −0.0199ð033Þ 0.2
163 × 8 4.10 217(1) 0.0025(017) 1.0
323 × 8 4.10 217(1) 0.0040(130) 0.01
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Figure 3: Temperature dependences of SUL(2)⇥ SUR(2) (cp � cs ) and U(1)A (cp � cd ) susceptibilities.
Two plots on the left: Simulations carried out in Nf = 2 QCD using Domain Wall fermions on Nt = 8 lattices
with mp = 200 and 135 MeV [48, 49, 50]. Two plots on the right: Studies performed in Nf = 2 QCD using
the Optimal Domain Wall fermions on 163 ⇥4⇥16 lattices [51].

that U(1)A symmetry is restored at T & 200 MeV in the chiral limit. This is consistent with the
findings in Ref. [48, 49, 50, 51].
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Other than chiral fermions the fate of the axial U(1) symmetry has also been studied using
staggered [57, 58, 54] as well as Wilson fermions [56]. The most recent results are shown in Fig. 5.
Based on simulations of Nf =2+1 QCD using HISQ fermions with mp ⇡160 MeV, the results
on cp � cd [54] and screening masses [55] in various channels are shown in the left and middle
panels, respectively. The U(1)A susceptibility shown in the middle panel suggests that the axial
U(1) symmetry starts to get restored at T & 1.4 Tpc. From the perspective of screening masses
the degeneracy between pseudo-scalar and scalar channels only shows up till ⇠ 1.2 Tc while as
expected the screening masses in the vector and axial-vector channels become degenerate already
in the chiral cross over temperature Tc region (shown as yellow band in the middle panel). On the
other hand, the differences of screening masses between pseudo-scalar and scalar channels, DMPS,
obtained from lattice computations using the Wilson fermions with 200 MeV< mp < 540 MeV,
does not vanish at the chiral symmetry restoration temperature [56].

As a short summary, while the fate of the U(1)A symmetry in the chiral limit remains elusive
as much more needs to be understood, e.g. detailed temperature and quark mass dependences of
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!" ! !# ¼ !disc ¼ !5;disc; for T # Tc; ml ! 0:

(39)

Hence, in the chirally symmetric phase (in the chiral limit)
the disconnected chiral susceptibility itself can be used to
probe the restoration of the Uð1ÞA symmetry.

This conclusion exemplifies the importance of the
disconnected chiral susceptibility as a probe of the char-
acter of the QCD phase transition. If Uð1ÞA symmetry is
broken above Tc and the transition belongs to the Oð4Þ
universality class, then we expect singular behavior for
!disc as T ! Tþ

c :

!disc ' ðT ! TcÞ!$ (40)

for mq ¼ 0 and T > Tc where $ ¼ 1:453 [56]. If instead
Uð1ÞA symmetry is essentially restored above Tc, i.e. all
anomaly-related breaking effects can be neglected, then
!disc must vanish for T > Tc while for T < Tc it must
diverge as mq ! 0 because of the existence of massless
pions. Thus, !disc must again show singular behavior at Tc.

Further information about !" ! !# can be obtained
by comparing to the topological charge, Qtop. Qtop is
defined as

Qtop ¼
g2

32"2

Z
d4xFa

%&ðxÞ ~Fa
%&ðxÞ: (41)

On a smooth gauge configuration, if lattice artifacts are
small, the topological charge and the integrated pseudo-
scalar bilinear can be related:

Qtop ¼ ml

Z
d4x !c lðxÞ$5c lðxÞ: (42)

If this relation is squared, averaged over the gauge field and
divided by the space-time volume V, we obtain a relation
between the topological susceptibility and the discon-
nected pseudoscalar susceptibility:

!top ¼
hQ2

topi
V

¼ m2
l!5;disc: (43)

This equation can be obtained in the continuum theory by
integrating the anomalous conservation law for the axial
current over space-time, squaring the result, dividing
by the space-time volume and ignoring possible ambigu-
ities in the operator product appearing in Q2

top. If we

assume SUð2ÞL ( SUð2ÞR symmetry and substitute
Eq. (39) into Eq. (43), we can directly relate the measure
of Uð1ÞA symmetry breaking !" ! !# and the topological
susceptibility:

!" ! !# ¼ 1

m2
l

!top: (44)

Finally, the eigenvalue spectrum of the Dirac operator is
also intimately connected with the chiral and anomalous
axial symmetry. The symmetry-breaking quantities h !c c i
and !" ! !# can both be expressed in terms of the eigen-
value spectrum of the Dirac operator in the following way:

h !c lc li ¼
Z 1

0
d'

2ml(ð'Þ
m2

l þ '2 ; (45)

!" ! !# ¼
Z 1

0
d'

4m2
l(ð'Þ

ðm2
l þ '2Þ2 : (46)

Equation (45) is the basis of the Banks-Casher relation [57]
which connects the chiral condensate to the density of zero
eigenvalues limml!0h !c lc li ¼ "(ð0Þ. While in the chirally
broken phase a nonzero value of the chiral condensate
demands (ð0Þ ! 0, in the chirally symmetric phase a
vanishing chiral condensate leads to (ð0Þ ¼ 0. However,
Eq. (46) shows that a nonzero anomalous symmetry-
breaking difference !" ! !# in the limit of massless
quarks requires complex behavior for (ð'Þ as ' approaches
zero [58]. This required behavior is very different, for
example, from that found in the case of a free field at finite
temperature. For the free field case there is a gap in the
spectrum between zero and the Matsubara frequency "T:
(ð'Þ ¼ 0 for 0 ) '< "T. This question is studied in
detail in Sec. VI.

V. SUð2ÞL ( SUð2ÞR RESTORATION

We now turn to a discussion of SUð2ÞL ( SUð2ÞR chiral
symmetry restoration. We will first discuss the chiral
transition using conventional observables such as the
chiral condensate and the related chiral susceptibility.
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FIG. 5 (color online). Symmetry transformations relating sca-
lar and pseudoscalar mesons in flavor singlet and nonsinglet
channels.

TABLE XI. Summary of screening correlator measurements.
All measurements are with a point source and point sink with the
source located at ðx; y; z; tÞ ¼ ð0; 0; 0; 0Þ.

Label T (MeV) Trajectories Step

1 139 200–2990 10
3 149 300–7000 5
4 159 300–3650 10
5 168 300–3410 10
6 177 300–1780 10
7 186 300–4360 10
8 195 302–2447 5

2450–6000 5

CHIRAL TRANSITION AND Uð1ÞA SYMMETRY . . . PHYSICAL REVIEW D 86, 094503 (2012)
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is this showing really, exactly Δ→0 ?
The expectation value of N2

0 is expected to be an OðVÞ
quantity, as shown in [26], so that these chiral zero-mode’s
effects should not survive in the large volume limit, as
N0=V is vanishing as Oð1=

ffiffiffiffi
V

p
Þ. We numerically confirm

the monotonically decreasing volume scaling of hN0=Vi as
shown in Fig. 13. Therefore, Δ̄ov

π−δ and Δov
π−δ are guaranteed

to have the same thermodynamical limit. We also confirm
that the 5–15 lowest modes are enough to saturate the
reweighing for Δ̄ov

π−δ on 323 × 8 lattices.
Our results for Δ̄ov

π−δ (solid symbols) and Δov
π−δ (dashed)

are plotted in Fig. 14. We confirm that our data for Δ̄ov
π−δ are

stable against the change of the lattice size and lattice
spacing, and their chiral limits are all consistent with zero.
Precisely, all our data are well described (with
χ2=d:o:f ≲ 1) by a simple linear function, which becomes
consistent with zero “before” the chiral limit. We list the
linear extrapolation of Δ̄ov

π−δ at mud ¼ 4 MeV [74] in
Table IV. We observe neither strong volume dependence
nor β dependence of this behavior. Taking the largest value
in the table, we conclude that the chiral limit of Δ̄ov

π−δ is
estimated to be at most 0.0040ð130Þ GeV2. Although our
naive linear extrapolation may simply fail to detect higher
order mass dependence, the smallness of Δ̄ov

π−δ itself
compared to the data around mud ¼ 20 MeV is significa-
tive and has a phenomenological importance.

V. CONCLUSION

In this work, we have examined the Uð1ÞA anomaly in
two-flavor lattice QCD at a finite temperature with chiral
fermions. On the configurations generated by the Möbius
domain-wall Dirac quarks, we have measured the Dirac
eigenvalue spectrum of both the Möbius domain-wall and
overlap quarks, with or without OV/DW reweighting.
We have also examined the meson susceptibility difference
Δπ−δ, that directly measures the violation of the Uð1ÞA
symmetry. Our ensembles are generated at slightly above
the critical temperature of the chiral phase transition
(T ∼ 190–220 MeV) on different physical volume sizes
(L ¼ 2–4 fm), where frequent topology tunnelings
occur.
Our results for the histograms of the Möbius domain wall

and (reweighted) overlap Dirac operators both show a
strong suppression of the near zero modes as the quark
mass decreases. This behavior is stable against the change
of the lattice size and lattice spacing.
If we do not perform the reweighting of their determi-

nants, the overlap Dirac spectrum shows unphysical peaks
near zero. We have identified them as partially quenched
lattice artifacts, due to the strong violation of the Ginsparg-
Wilson relation in the low-lying eigenmodes of the Möbius
domain-wall operator. Our analysis indicates a potential
danger in taking the chiral limit of any observables with
domain-wall type fermions even when the residual mass is
small. If the observable target is sensitive to the low-lying
modes and their chiral properties, its chiral limit can be
distorted by the lattice artifacts.
After removal of these artifacts by the OV/DW reweight-

ing procedure, we have found that the Uð1ÞA susceptibility
is consistent with zero in the chiral limit. From these
evidences, we conclude that Uð1ÞA symmetry breaking in
two-flavor QCD is consistent with zero above the critical
temperature around 200 MeV in the vanishing quark
mass limit.

FIG. 14. The quark mass dependence of Δ̄ov
π−δ (solid symbols) and Δov

π−δ (dashed). Data for coarse (left panel) and fine (right) lattices
are shown.

TABLE IV. Linear extrapolation of Δ̄ov
π−δ to mmd ¼ 4 MeV. It

becomes consistent with zero before the chiral limit.

L3 × Lt β T (MeV)
Δ̄ov

π−δ½GeV2%
at mud ¼ 4 MeV χ2=d:o:f:

323 × 12 4.23 191(1) 0.0037(099) 0.002
323 × 12 4.24 195(1) −0.0199ð033Þ 0.2
163 × 8 4.10 217(1) 0.0025(017) 1.0
323 × 8 4.10 217(1) 0.0040(130) 0.01
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as a function of x =

2V4fAm2. At large volume (x ≫ 1), I1(x)/I0(x) ≃ 1− 1
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is no long-range-order in QCD above Tc. The reason the exchange of dominance occurs

between zero and nonzero modes as we vary the volume is that a long-range correlation is

induced once the global topological charge is fixed [28].

3.3 Implications for lattice QCD simulations

We now discuss implications of the above results for lattice QCD simulations. So far the

U(1)A anomaly at high temperature has been thoroughly investigated on the lattice (as

reviewed in section 1), but despite efforts, a definitive conclusion on the (non-)restoration

of the U(1)A symmetry is not reached yet. This is not surprising, considering that the

physics of U(1)A anomaly is highly sensitive to the explicit breaking of chiral symmetry

by lattice discretization; even domain-wall fermions have serious problems, as pointed out

in [20]. In this regard, the most reliable simulations are those in [16] employing dynamical

overlap fermions. They reported restoration of the U(1)A symmetry based on simulations

with a fixed global topological charge (Q = 0). They also evaluated possible finite-size

effects associated with the topology fixing, by using the formalism developed in [29, 33].

Here we wish to revisit this issue based on our effective-theory framework.

It follows from (3.21) that in the topologically trivial sector (Q = 0) we have

χπ − χδ = 8fA
I1(2V4fAm2)

I0(2V4fAm2)
. (3.30)

The ratio of (3.30) to (χπ−χδ)
∣∣
full

= 8fA is plotted in figure 2. It shows that the ratio tends

to 0 for small x and obscures the nonzero value in the full theory. This signals a strong

finite-volume effect at small x. It seems necessary to ensure at least x = 2V4fAm2 ! 1 in

order to observe a nonzero value of χπ − χδ clearly.

Our result so far is rigorous, as long as fA ̸= 0 and the O(M4) correction to (3.3)

can be neglected. At sufficiently high temperature T ≫ Tc we may resort to the dilute

instanton gas approximation [12], which yields

fA ∼ T 2 e−8π2/g2 ∼ T 2(Λ/T )(11Nc−2Nf )/3 ∝ T−23/3 (3.31)
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is no long-range-order in QCD above Tc. The reason the exchange of dominance occurs

between zero and nonzero modes as we vary the volume is that a long-range correlation is

induced once the global topological charge is fixed [28].

3.3 Implications for lattice QCD simulations

We now discuss implications of the above results for lattice QCD simulations. So far the

U(1)A anomaly at high temperature has been thoroughly investigated on the lattice (as

reviewed in section 1), but despite efforts, a definitive conclusion on the (non-)restoration

of the U(1)A symmetry is not reached yet. This is not surprising, considering that the

physics of U(1)A anomaly is highly sensitive to the explicit breaking of chiral symmetry

by lattice discretization; even domain-wall fermions have serious problems, as pointed out

in [20]. In this regard, the most reliable simulations are those in [16] employing dynamical

overlap fermions. They reported restoration of the U(1)A symmetry based on simulations

with a fixed global topological charge (Q = 0). They also evaluated possible finite-size

effects associated with the topology fixing, by using the formalism developed in [29, 33].

Here we wish to revisit this issue based on our effective-theory framework.

It follows from (3.21) that in the topologically trivial sector (Q = 0) we have

χπ − χδ = 8fA
I1(2V4fAm2)

I0(2V4fAm2)
. (3.30)

The ratio of (3.30) to (χπ−χδ)
∣∣
full

= 8fA is plotted in figure 2. It shows that the ratio tends

to 0 for small x and obscures the nonzero value in the full theory. This signals a strong

finite-volume effect at small x. It seems necessary to ensure at least x = 2V4fAm2 ! 1 in

order to observe a nonzero value of χπ − χδ clearly.

Our result so far is rigorous, as long as fA ̸= 0 and the O(M4) correction to (3.3)

can be neglected. At sufficiently high temperature T ≫ Tc we may resort to the dilute

instanton gas approximation [12], which yields

fA ∼ T 2 e−8π2/g2 ∼ T 2(Λ/T )(11Nc−2Nf )/3 ∝ T−23/3 (3.31)
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Note ��

U(1)A susc.�Physics�Ultraviolet divergence�

∆"#$	= 	' ()	* ) 	
2,-
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34 ∝ ,- ln Λ +⋯

We assume valence quark mass
dependence of ∆"#$ (for small m):
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seemingly vanishing as m→0
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U(1)A susceptibility     Nf=2 
            [JLQCD preliminary]

seemingly vanishing as m→0,  
more evident in log-log prot

ただし

UV subtraction が finite V effect も引いていないかは 
精査する必要あり

to be continued …

その精査を通過したら 
この結果は U(1)A 回復を示している



もう一つの見方？
• Because it is unsettled problem !  
• fate of U(1)A lattice  

• HotQCD (DW, 2012)                                           broken 
• JLQCD (topology fixed overlap, 2013)                restores 
• TWQCD (optimal DW, 2013)                               restores ? 
• LLNL/RBC (DW, 2014)                                       broken 
• HotQCD (DW, 2014)                                           broken 
• Dick et al.  (overlap on HISQ, 2015)                    broken 
• Brandt et al. (O(a) improved Wilson 2016)           restores 
• JLQCD (reweighted overlap from DW, 2016)       restores 
• JLQCD (current:  see Suzuki et al Lattice 2018)  restores ? 
• Ishikawa et al (Wilson, 2017)                       at least Z4 restores

2+1

2+1
2+1
2+1

Nf

2
2

2
2
2
2



ここまでのまとめ
• topological susceptibility 

• T>Tc でゼロの可能性:   結論出ず 

• 相転移の有無:               結論出ず 

• fate of U(1)A  
• T>Tc  で回復するか:      結論出ず 

• しかし、より連続極限に近い格子で、より精密な手法を開発 
• 更なる研究が必要:   そもそも簡単な問題ではない 
• 今後 

• 現状の統計で 様々な解析手法を使い調査継続 

• subtraction の理解 (得に個人的) 

• parameter の変更により、より見やすい所を追跡: Tc 近傍など 

• T=220 MeV →  180 MeV  (> Tc chiral transition)



U(1)A  @ Nf=2+1 (+1)  その他のグループ



references

• topological susceptibility for axion mass


• 1606.07494, S. Borsanyi et al,  (Budapest-Wuppertal), Nature


• “Calculation of the axion mass based on high-temperature lattice 
quantum chromodynamics”


• 1606.07175, J.Frison, R.Kitano, H.Matsufuru, S.Mori, N.Yamada


• “Topological susceptibility at high temperature on the lattice”


• crucial technique of above



simulation parameters and integral path

• T direction:  integrate


• m-direction: 
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Figure S18: Summary plot of simulation points to determine �. There are staggered simulations in the
n
f

= 3 + 1 and n
f

= 2 + 1 + 1 flavor theories, which are then connected by overlap simulations.

S9 Analysis for the topological susceptibility

We combine all approaches developed in the other sections to obtain our final result for the continuum
extrapolated topological susceptibility at the physical point. Figure 2 in the main text shows this result
including statistical and systematic error estimates.

In Figure S18 we show the simulation points that were used in the analysis. The plot shows the
temperature – light-quark mass (m

ud

) plane. Four simulation sets can be distinguished:

1. n
f

= 3 + 1 flavor staggered simulations in the region T = 150 . . . 500 MeV

2. n
f

= 3 + 1 flavor staggered simulations at fixed topology in the region T = 300 . . . 3000 MeV

3. n
f

= 2 + 1 flavor overlap simulations at fixed topology for temperatures T = 300, 450 and 650

MeV building a bridge between the three flavor and the physical theories

4. n
f

= 2+ 1+ 1 flavor staggered simulations at the physical point for temperatures T = 130 . . . 300
MeV

The main feature of our strategy is that the the starting points for the fixed sector integral method are
taken in the three flavor symmetric theory (1. and 2.) instead of gathering statistics at the physical
point. Starting from a temperature of T ⇠ 300 MeV the di↵erence between the two can be taken
into account by rescaling the topological sector weights, which is justified by the results of the overlap
simulations (3.) connecting the two theories. Note that before the connection is done we carried out the
continuum extrapolation, thus physical results are connected with physical results. The main observation
is, as expected, that for large temperatures � scales with the mass. Since it works on the one percent
level already at 300 MeV, there is no need to go beyond 650 MeV for these bridging simulations. In the
transition region the scaling behavior of the susceptibility with the quark mass is expected to change, so
for temperatures T . 300 MeV we still resort to direct simulations at the physical point (4.).

WWW.NATURE.COM/ NATURE | 27

b
=

 -
d
lo

g
χ
/d

lo
g
T

T[MeV]

cont
DIGA

Nt=4
Nt=6

Nt=8
Nt=10

 4

 5

 6

 7

 8

 9

 10

 11

 300  600  1200  2400

Figure S23: Temperature dependence of the exponent b = �d log�/d log T . The plot shows n
f

= 3 + 1

flavor staggered simulations on N
t

= 4, 6, 8 and 10 lattices. The red band is the continuum extrapolation.
The prediction of the n

f

= 3 + 1 flavor DIGA is given by the blue band. The arrow shows the Stefan-
Boltzmann limit.

350 and 400 MeV) and from the systematic error of the exponent fit. The result is then plotted together
with the direct simulations at lower temperature in Figure S24 and also with the prediction of the DIGA.

Let us compare the lattice result of � with the DIGA prediction. The overall picture turned out to be
quite similar for both findings (of course only a posteriori): a strong drop as a function of the temperature.
There are, however, sizable di↵erences. Similarly to the quenched case [S10] the prefactor of the DIGA
result is o↵ by an order of magnitude also in the present case (full dynamical result with physical quark
masses). This is not the only di↵erence. A more subtle e↵ect is related to the temperature dependence.
The lattice exponent b is all the way from 300 MeV to 3000 MeV somewhat below the DIGA prediction,
see Figure S23. This means that the topological susceptibility decreases faster in the dilute instanton gas
approximation than in the lattice picture. When the temperature reaches 3000 MeV (which is a relevant
temperature for the post-inflationary axion scenario) the central value of � is more than twenty times
smaller in the DIGA framework than on the lattice. This di↵erence in � would mean a factor of five
di↵erence in the axion’s mass m

A

. For the final prediction of the axion’s mass this is partly compensated
by a change in the oscillation temperature.

S9.3 Topological susceptibility for nf = 2 + 1 + 1 flavors

For the zero temperature susceptibility we applied a method based on leading order chiral perturbation
theory to remove the lattice artefacts. This is described in Section S2.

At finite temperature we can start from the continuum extrapolated topological sector weights in the
n
f

= 3 + 1 theory. The result for n
f

= 2 + 1 + 1 flavors is obtained by performing an integration in the
light-quark mass. For example, the relative weight of sectors Q = 0 and 1 can be calculated as:

Z1

Z0

����
2+1+1

= exp

 Z
m

phys
s

m

phys
ud

d logm
ud

m
ud

h  
ud

i1�0

!
· Z1

Z0

����
3+1

(S26)

The overlap simulations in Section S8 provided ample evidence, that above T = 300 MeV, to a very
good precision the integrand is given by the number of light flavors m

ud

h  
ud

i1�0 = 2. Thus the sector
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S7 Fixed sector integral with staggered fermions

The integral method presented in Methods can be trivially generalized in the presence of fermions. The
definition of b

Q

is still given by Equation (2). In the fixed-N
t

approach changing the temperature is
achieved via changing the lattice spacing, which requires a simultaneous change of � and the mass
parameters m

f

, to keep the system on the LCP, see Equation (S1). Then for b
Q

we obtain:

�b
Q

⌘ d logZ
Q

/Z0

d log T
=

d�

d log a
hS

g

i
Q�0 +

X

f

d logm
f

d log a
m

f

h  
f

i
Q�0. (S17)

Besides the gauge action S
g

, we also have to measure the chiral condensate   
f

of each flavor. The full
expression is a renormalized quantity, and so is the chiral condensate di↵erence multiplied by the quark
mass. To obtain the susceptibility we have to apply the same integral as in the pure gauge case, see
Equation (3).

Now let us look at the Stefan-Boltzmann limit of the decay exponent of the susceptibility. We can
neglect the contribution of the Q > 1 sectors, so the decay exponent is b = b1 � 4. The gauge action
di↵erence is the same as in the pure gauge case 4⇡2/3. The gauge parameter depends on the lattice spacing
as � = (33� 2n

f

) log a/(4⇡2
) and the mass parameter as logm

f

= log a up to logarithmic corrections in
a. The di↵erence in the chiral condensate between sectors Q = 1 and 0 comes entirely from the presence
of the zero mode, which gives a h  

f

i1�0 = 1/m
f

. Altogether we have b = (33 � 2n
f

)/3 � 4 + n
f

in
the high temperature limit.

The statements of the Methods Section about the computer time scaling with the volume and the
possibility of using Q > 1 sectors also apply in the case of dynamical fermions. We used Q = 0 and 1 in
this work, this is su�cient, since the topological susceptibility with dynamical fermions is tiny.

In numerical simulations the statistical noise on the gauge action di↵erence is much larger than on
the chiral condensate di↵erence. This is very similar to, what was already observed in the context of
the equation of state [S27]. This inspired us to use the following strategy: evaluate the b

Q

and the
susceptibility at a quark mass, where the simulation is less expensive than at the physical point. We
choose a point, the so-called three-flavor symmetric point, where the two light-quark masses were set to
the physical strange mass: m

ud

⌘ m
s,phys. At this point we determined � using the eigenvalue reweighting

method (see later). Then we carried out an integration in the light-quark mass from m
s,phys down to

the physical light-quark mass m
ud,phys = m

s,phys/R. In this way we could avoid calculating the expensive
gauge action di↵erence at the physical point.

We observed that there are huge lattice artefacts on the chiral condensate contribution, if a non-chiral
fermion discretization is used. In the absence of exact zero modes the chiral condensate di↵erence needs
very fine lattices to reach the continuum limit. The lattice spacing dependence of the three flavor chiral
condensate di↵erence is shown on the data labeled by “std” in the upper panel Figure S13. We used
3 + 1 flavor staggered quarks in the simulation at a temperature of T = 750 MeV. There is an order
of magnitude increase in the condensate by going from the coarsest to the finest lattice spacing. In
the middle panel of Figure S13 the temperature dependence of the three flavor condensate is shown for
di↵erent lattice spacings. As the temperature increases the condensate, which is calculated in the standard
way, approaches zero contrary to the expectation in the high temperature limit. This also happens for
the charm quark condensate, although at a somewhat smaller pace, see lower panel. The vanishing of
the chiral condensate di↵erence decreases the decay exponent of the susceptibility by n

f

in the standard
approach, which largely explains the unexpectedly small exponent obtained in the recent lattice calculation
[S51].

We present two independent approaches to solve this problem. One is to use a chiral fermion dis-
cretization to evaluate the chiral condensate di↵erence, this is explained in a separate section, Section
S8. The other is the modification of the path integral by the reweighting technique, that we already
introduced in the Methods Section. Let us present the details of the reweighting here. The introduction
of the reweighting factors w[U ] in Equation (1) means, that our simulation corresponds to a modified
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• starting from 3+1 at T=300 MeV

↓ use Q=1

LETTERRESEARCH

METHODS
Eigenvalue reweighting technique. Here we show how cut-off effects in χ arise 
with staggered quarks and propose a new method to efficiently suppress them.

The cut-off effects are strongly related to the zero modes. To understand their 
importance, we first note that in the quark determinant every zero mode for each 
dynamical flavour contributes a factor mf, the corresponding quark mass. In this 
way gauge configurations with zero modes are strongly suppressed in the path 
integral, especially if the quark masses are small. Owing to the index theorem, 
this also implies that light dynamical quarks strongly suppress higher topological 
sectors and thus χ itself.

On the lattice, however, there can be strong cut-off effects in this suppression. 
This is because the suppression factor is not mf but mf +  iλ0, where λ0 is an eigen-
value corresponding to the would-be zero mode of the staggered Dirac operator, 
Dst. The lack of exact zero modes can thus introduce strong cut-off effects and slow 
convergence to the continuum limit. Indeed, as long as the typical would-be zero 
eigenvalues are comparable to or larger than the lattice bare quark mass mf, higher 
sectors are much less suppressed on the lattice than in the continuum.

To improve the situation, even at finite lattice spacing we can identify the 
would-be zero modes and restore their continuum weight in the path integral. In 
case of rooted staggered quarks this amounts to a reweighting of each configuration 
(U) with a weight factor

∏ ∏ ∏ σ λ
=

⎛

⎝
⎜⎜⎜⎜ +

⎞

⎠
⎟⎟⎟⎟σ= =±

/

w U
m

i U m
[ ]

[ ]
(1)

f n

Q U f

n f

n

1

2 [ ] 4f

where the second product runs over the would-be zero eigenvalues (λn) of the 
staggered Dirac operator with positive imaginary part. For nf fermion flavours the 
third product takes into account the iλ →  − iλ symmetry of the eigenvalue 
 spectrum. The nf/4 factor takes rooting into account, the factor 2 next to Q  
together with the ±  symmetry make up for the fact that in the continuum limit the 
staggered zero modes become fourfold degenerate25.

We now turn to the most important part of the reweighting: the definition of 
the would-be zero modes. Since we are interested in χ, we identify the number of 
these modes with the magnitude of the topological charge Q2  as obtained from 
the gauge field after using the Wilson flow (see Supplementary Information). We 
investigated two specific choices for the would-be zero modes. In the first approach, 
we took the Q2  eigenmodes that have the largest magnitude of chirality among 
the eigenmodes with the appropriate sign of chirality, positive if Q <  0 and negative 
if Q >  0. In the second approach we took the Q2  eigenmodes with smallest 
 magnitude. These two approaches are equivalent in the continuum limit, where 
zero modes are exactly at zero and their chirality is unity. In practical simulations 
they give very similar results; we use the second approach in our analysis.

Since in the continuum limit the would-be zero eigenvalues get closer to zero, 
the reweighting factors tend to unity and in the continuum limit we recover the 
original Dirac operator. This way, however, even at finite lattice spacings the proper 
suppression of higher sectors is restored and cut-off effects are strongly reduced 
resulting in much faster convergence to the continuum limit. For completeness, 
we note that the above modification corresponds to a non-local modification of 
the path integral. (In this respect it stands on a footing similar to another method, 
which also modifies the quark determinant and which we also use in our  staggered 
simulations: determinant rooting. As of today there is ample theoretical and 
numerical evidence for the correctness of the staggered rooting. See ref. 26 and its 
follow-ups.) In the following we provide several pieces of numerical evidence for 
the correctness of the approach.

In Extended Data Fig. 1 we plot the distribution of the eigenvalues correspond-
ing to the would-be zero modes at a temperature of T =  240 MeV for different 
lattice spacings. The distributions get narrower and their centre moves towards zero 
as the lattice spacing is decreased. In Extended Data Fig. 2 we show the expectation 
value of the reweighting factors in the first few sectors. In the continuum limit  
〈 w〉 Q =  1 should be fulfilled in each sector. The results nicely converge to 1.

In most of our runs, especially at large temperatures and small quark masses, 
the weights were much smaller than 1. As a result there are orders of magnitude 
differences between χ with and without reweighting. It is therefore important to 
illustrate how the standard approach breaks down if the lattice spacing is large and 
how the correct result is recovered for very small lattice spacings. In the following 
we show two examples, Extended Data Figs 3 and 4, where the standard method 
produces cut-off effects so large that a reliable continuum extrapolation is not 
possible. In contrast, the lattice spacing dependence of the reweighted results is 
much milder. To make sure that the reweighted results are in the a2-scaling regime, 
for both cases we present a non-standard approach to determine χ and compare 
them to reweighting.

In the first case (Extended Data Fig. 3) the temperature is just at the transition 
point, T =  150 MeV, where we expect to get a value close to the zero  temperature 

susceptibility. This suggests that in this case the cut-off effects of the standard 
method can be largely eliminated by performing the continuum limit of the 
ratio χ(T, a)/χ(T =  0, a), where the finite temperature result is divided by the 
zero  temperature one at the same lattice spacing. We call this approach the ‘ratio 
method’, see for example, ref. 7. As can be seen in Extended Data Fig. 3, the cut-
off effects are indeed reduced. The continuum extrapolation so obtained is nicely 
consistent with reweighting.

In the second case, Extended Data Fig. 4, we have a temperature well above 
the transition, T =  300 MeV. We see again that the standard method produces 
results with large cut-off effects. The ratio method seems to perform better, but 
the apparent scaling is misleading. Although a nice continuum extrapolation can 
be done from lattice spacings Nt =  8, 10 and 12, the Nt =  16 result is much below 
the extrapolation curve. The reweighting produces a result that is an order of 
 magnitude smaller. Below we introduce a new method, called the ‘fixed sector 
integral technique’, which is tailored for large temperatures. The result so obtained, 
where no reweighting is applied, agrees reasonably with the reweighted one in the 
continuum limit.

These results provide numerical evidence for our expectations: reweighting not 
only produces a correct continuum limit, it also eliminates the large cut-off effects 
of staggered fermions.
Fixed sector integral technique. There are many proposals to increase the tunnel-
ling between the topological sectors; see, for example, refs 27–29. Here we forbid 
sector changes and determine the relative weight of the sectors by measuring the 
Q dependence of certain observables. (We note that a discussion of our method, 
though only in the quenched approximation using coarse lattices, has appeared 
in ref. 30.) Here we illustrate the method in the quenched approximation; for the 
extension in the case of dynamical fermions, see Supplementary Information. The 
gauge configurations are generated with a probability proportional to exp(− βSg), 
where β is the gauge coupling parameter and Sg is the gauge action. We consider 
the following differentials:

β≡−
/
=− −b Z Z

T a
Sd log

d log
d

d log
(2)Q

Q
Q

0
g 0

where ZQ is the partition function of the system restricted to sector Q. In the con-
tinuum limit the sectors are unambiguously defined, but on the lattice several 
different definitions are possible (our choice is given later on). In equation (2) we 
introduced the notation = −−O O OQ Q0 0  for the difference of the 
 expectation values of an observable between sectors Q and 0. Equation (2) gives a 
renormalized quantity, the ultraviolet divergences cancel in the difference of the 
gauge actions. The important observation is that the necessary statistics to reach 
a certain level of precision on values of bQ does not depend on the temperature.

To obtain the relative weights ZQ/Z0, we need to integrate equation (2) in the 
temperature. For that, we start from a temperature T0, where the standard approach 
is still feasible, and determine ZQ/Z0. Then by measuring the bQ values for higher 
temperatures, we can use the following integral in temperature T ′  to obtain ZQ/Z0:

∫/ | =
⎛
⎝
⎜⎜⎜
− ′ ′

⎞
⎠
⎟⎟⎟ / |Z Z T b T Z Zexp d log ( ) (3)Q T

T

T
Q Q T0 0

0
0

Let us make a remark about the volume dependence. As we increase the 
 temperature, the ratios ZQ+1/ZQ get smaller. This effect is in competition with the 
infinite volume limit, which brings these ratios closer to 1. The question is how 
many sectors are needed to determine χ reliably. χ is an intensive quantity, and as 
such, its finite volume effects can be neglected, if the box size is large enough to 
accommodate all correlation lengths in the system. In our quenched study5, we 
found that for !LT 2c  the finite size effects on χ are negligible, where Tc denotes 
the phase transition temperature.

For high temperatures only the Q =  0 and 1 sectors remain relevant and 
χ=Q V2  becomes small. Using the data from our quenched simulations5, we 

found that in a box size of L =  2/Tc, the contribution of Q ≥  2 sectors to χ and also 
χV are on the per cent level at 1.7Tc and they decrease rapidly with the 
 temperature3. (A similar behaviour was found with dynamical fermions, see 
Supplementary Information for details.) In the case when contributions from Z2 
and higher sectors are small it is appropriate to write χ =  2Z1/Z0(1 +  2Z1/Z0)/V. 
To the accuracy of O(χV), one can also use χ ≈  2Z1/Z0/V, and then the decay 
exponent of the susceptibility b can be simply obtained as

χ
≡− ≈ −b

T
bd log

d log
4 (4)1

Here the term − 4 reflects that the physical volume also changes with the 
 temperature. To derive the Stefan–Boltzmann limit of equation (4), we can use the 
fact that for large temperatures β =  33 log a/(4π 2). The gauge action difference is 
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other key methodologies

• “reweighting” of staggered simulations to better ones with small O(a2)


• lowest modes engineering :  


• would induce non-local term in the action → similar to 4th root ? 


• isospin breaking effect


• finite volume effect


• charm quark effect


• line of constant physics:   mud(β), ms(β), mc(β), a(β);  β=6/g2


• systematic error associated with the ambiguous definition of Q from Gluonic


• …

↖この操作の正当性が大きな問題
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Figure S26: Comparison of our result for the n
f

= 2 + 1 + 1 susceptibility with two recent works.
“1512.06746” corresponds to Reference [S51]. “1606.03145” corresponds to Reference [S56], where two
di↵erent definitions, a gauge (�

t

) and a fermionic one (m2�
disc

), are used.

In Figure S26 we compare our results for � with other findings in the literature. Since our highest
temperature was 3000 MeV, whereas in the literature it is 500 MeV, we focus on the temperature range
between 200 and 500 MeV. Reference [S51] used an approach in which staggered fermions were taken
and the ratio of the T >0 and T=0 susceptibilities were determined. This brute force approach turned
out to be quite di�cult. As we have presented before, our result for � is many orders of magnitude
smaller than that of [S51] in the cosmologically relevant temperature region. One understands why the
staggered artefacts mimic such a behaviour and we showed how to remove these artefacts by the eigenvalue
reweighting technique. Similarly large values for � were obtained in a study using twisted mass fermions
[S57]. Since in Reference [S57] no continuum extrapolation was carried out, we did not put their finite a
lattice spacing results on our figure.

Whilst writing up our results, a paper [S56] appeared with findings similar to ours. The authors used
two techniques to determine �. The first technique is based on the gradient flow the second one on
the disconnected chiral condensate. The two methods give compatible result (within their errorbars).
Between 250 to 330 MeV they were even able to carry out a controlled continuum extrapolation. Their
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he direct determination of χ(T) all the way 
up to 3 GeV means that we do not have to 
rely on the dilute instanton gas 
approximation (DIGA). 

Note that a posteriori the exponent predicted 
by DIGA turned out to be compatible with 
our finding, but its prefactor is off by an 
order of magnitude, similar to the quenched 
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Though some of our simulations (see 
Supplementary Fig. 18) are already carried 
out with chiral (overlap) fermions, where 
large cut-off effects are a priori absent, it is 
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crosscheck these results with a calculation 
using chiral fermions only. 
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FIG. 7: Monte-Carlo history of the topological charges
obtained after 80 cooling steps and after 10 stout-smearing
steps (with ρst = 0.1), for the run on the 483 × 16 lattice
at β = 4.592, adopting a bias potential as in Eq.(14), with
B = 11 and C = 2.
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FIG. 8: Topological susceptibility in lattice spacing units, as
a function of the inverse spatial volume, for different values
of Nt at a fixed value of the temperature, T = 1/(Nta) ≃
430 MeV. The volume dependence is not significant and the
horizontal bands are the result of a fit to a constant value.

tribution of topological charge: therefore, at least for the
lower temperature, we have also explored, for every lat-
tice spacing, different spatial volumes, in order to exclude
the possibile presence of finite size effects.
In Fig. 8 we report the whole collection of results ob-

tained for T ≃ 430 MeV, where results for a4χ are re-
ported as a function of the inverse spatial volume for the
different lattice spacings (see Table I), which appear in
increasing order starting from the bottom. Finite size
effects appear to be not significant, and the horizontal
bands represent our infinite volume estimates for a4χ.
The same estimates, expressed in physical units for

χ1/4, are reported in Fig. 9 as a function of a2; in the
same figure, continuum extrapolations at the same tem-
perature from Ref. [39] and Ref. [42] are also reported.
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FIG. 9: Fourth root of the topological susceptibility, as a func-
tion of a2, for T ≃ 430 MeV. To two bands represent the result
of two different continuum extrapolations, taking into account
respectively O(a2) or O(a4) corrections. The two horizontal
lines are the continuum extrapolations reported respectively
in Refs. [39] and [37] at the same temperature.

As one can easily appreciate, finite cut-off effects are
huge, with χ decreasing by a factor 40 when moving
from a ≃ 0.0576 fm to a ≃ 0.0286 fm: that explains the
discrepancy observed among previous literature results.
Continuum extrapolation is possible with our present
data: we require to include O(a4) corrections when con-
sidering all explored lattice spacings, and just O(a2) for
the three smallest ones: results are consistent and we ob-
tain, in the latter case, χ1/4 = (5.3 ± 3.1) MeV, which
is compatible, even if within large error bars, with the
results reported in Ref. [42]. A similar agreement is ob-
served for results obtained at T = 570 MeV, which are
reported in Fig. 10.
Despite the huge cut-off effects observed for χ, the val-

ues obtained for the b2 coefficient defined in Eq. (2),
which are reported in Fig. 11 for T = 430 MeV, are
practically independent of a within errors, and always
compatible with the prediction from DIGA, b2 = −1/12.
Therefore, the assumption of a dilute gas of independent
topological objects seems to be well justified at this tem-
perature.

IV. DISCUSSION

The determination of the topological susceptibility in
the high temperature regime has to face various numeri-
cal challenges: topological fluctuations become very rare
and difficult to sample, ultraviolet (UV) cut-off effects
can be quite large because of the non-exact lattice chiral
symmetry of the adopted fermion discretization and, fi-
nally, the freezing of topological modes leads to a critical
slowing down when one gets too close to the continuum
limit. These difficulties are at the basis of the discrepan-
cies found among recent lattice determinations adopting
different approximations or assumptions.
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hOiov ¼
hORiDW
hRiDW

; ð12Þ

where h$ $ $iDW and h$ $ $iov denotes the ensemble average
with the Möbius domain wall and overlap sea quarks, and R
is the reweighting factor

R≡ det½HovðmÞ&2

det½H4D
DWðmÞ&2

×
det½H4D

DWð1=4aÞ&2

det½Hovð1=4aÞ&2
: ð13Þ

The second factor det½H4D
DWð1=4aÞ&2= det½Hovð1=4aÞ&2 in

(13) is introduced to cancel the noise from high modes at
the cutoff scale [65]. It corresponds to adding fermions and
ghosts of a cutoff scale mass 1=4a, and therefore does not
affect the low-energy physics we are interested in. The
reweighting factor is stochastically estimated [66] with
Gaussian noise fields ξi and ξ0i,

R ¼ 1

N

XN

i¼1

exp½−ξ†i ½H4D
DWðmÞ&2½HovðmÞ&−2ξi

− ξ0†i ½H4D
DWð1=2aÞ&−2½Hovð1=2aÞ&2ξ0i&; ð14Þ

with a few noise samples for each configuration.
The reweighting is effective when the factor R does not

fluctuate too much. Since the factor scales exponentially as
a function of the volume of the lattice, the relevant matrix
½H4D

DWðmÞ&2½HovðmÞ&−2 needs to be close to an identity
operator. Our operator DovðmÞ is designed to satisfy this
condition, i.e., only the treatment of the near-zero eigenm-
odes of the kernel operator is different. It is however not
known how such difference affects R until we actually
compute it. Figure 5 shows examples of the Monte Carlo
history of R. It turns out that the maximum of R is at the
level ofOð10Þ on 163 × 8 and 323 × 12 lattices, which does
not destroy the ensemble average when we have Oð100Þ
samples. To assess the quality of the reweighting, we define
the effective number of configurations [67] by

Neff
conf ¼

hRi
Rmax

; ð15Þ

where Rmax is the maximum value of the reweighting factor
in the ensemble. However, as shown in the same plot in
Fig. 5, it turns out that Rmax does not necessarily coincide
with the peak of the observable OR, e.g., O ¼ Δ̄ov

π−δ as
defined later. Therefore, we also measure

Neffð2Þ
conf ¼ hRi

R0
max

; ð16Þ

with R0
max the reweighting factor which gives the maximum

value of Δ̄ov
π−δ × R in the ensemble. Both Neff

conf and Neffð2Þ
conf

are listed in Table I. Neffð2Þ
conf is larger than Neff

conf except for
the configurations at β ¼ 4.24 and m ¼ 0.0025.
In particular, on the 163 × 8 lattices, the reweighting

factors are stable enough that we can choose different quark
masses from that of the original ensemble: m ¼ 0.005 on
m ¼ 0.01 Möbius domain-wall ensembles.
There are some configurations for which the reweighting

factor is essentially zero, say R < 10−3. For these configu-
rations, we find chiral zero modes for the overlap-Dirac
operator. They are suppressed as the fermion determinant
contains a factor ðamÞ2 from the zero mode, and the next
lowest eigenvalues are also smaller compared to the
corresponding eigenvalues of the Möbius domain-wall
Dirac operator. We note that the pairing of the positive
and negative eigenvalues of Hov is precisely satisfied other
than the exact zero modes. WithH4D

DW, such correspondence
is hardly visible especially for the coarser lattices at Lt ¼ 8.
For the large-volume lattices of size 323 × 8, we found

that the reweighting as described above are not effective.

FIG. 4. History of the topological charge for
L3 × Lt ¼ 323 × 12, β ¼ 4.24, m ¼ 0.01.

FIG. 5. History of the reweighting factor R (solid) and that of
Δ̄ov

π−δ × R=hRi (dashed) for L3 × Lt ¼ 323 × 12 ensembles at
β ¼ 4.23 (top), 4.24 (bottom) with the same bare quark mass
m ¼ 0.0025. The definition of Δ̄ov

π−δ is given by Eq. (24).
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the cutoff scale [65]. It corresponds to adding fermions and
ghosts of a cutoff scale mass 1=4a, and therefore does not
affect the low-energy physics we are interested in. The
reweighting factor is stochastically estimated [66] with
Gaussian noise fields ξi and ξ0i,

R ¼ 1

N

XN
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exp½−ξ†i ½H4D
DWðmÞ&2½HovðmÞ&−2ξi

− ξ0†i ½H4D
DWð1=2aÞ&−2½Hovð1=2aÞ&2ξ0i&; ð14Þ

with a few noise samples for each configuration.
The reweighting is effective when the factor R does not

fluctuate too much. Since the factor scales exponentially as
a function of the volume of the lattice, the relevant matrix
½H4D

DWðmÞ&2½HovðmÞ&−2 needs to be close to an identity
operator. Our operator DovðmÞ is designed to satisfy this
condition, i.e., only the treatment of the near-zero eigenm-
odes of the kernel operator is different. It is however not
known how such difference affects R until we actually
compute it. Figure 5 shows examples of the Monte Carlo
history of R. It turns out that the maximum of R is at the
level ofOð10Þ on 163 × 8 and 323 × 12 lattices, which does
not destroy the ensemble average when we have Oð100Þ
samples. To assess the quality of the reweighting, we define
the effective number of configurations [67] by

Neff
conf ¼

hRi
Rmax

; ð15Þ

where Rmax is the maximum value of the reweighting factor
in the ensemble. However, as shown in the same plot in
Fig. 5, it turns out that Rmax does not necessarily coincide
with the peak of the observable OR, e.g., O ¼ Δ̄ov

π−δ as
defined later. Therefore, we also measure

Neffð2Þ
conf ¼ hRi

R0
max

; ð16Þ

with R0
max the reweighting factor which gives the maximum

value of Δ̄ov
π−δ × R in the ensemble. Both Neff

conf and Neffð2Þ
conf

are listed in Table I. Neffð2Þ
conf is larger than Neff

conf except for
the configurations at β ¼ 4.24 and m ¼ 0.0025.
In particular, on the 163 × 8 lattices, the reweighting

factors are stable enough that we can choose different quark
masses from that of the original ensemble: m ¼ 0.005 on
m ¼ 0.01 Möbius domain-wall ensembles.
There are some configurations for which the reweighting

factor is essentially zero, say R < 10−3. For these configu-
rations, we find chiral zero modes for the overlap-Dirac
operator. They are suppressed as the fermion determinant
contains a factor ðamÞ2 from the zero mode, and the next
lowest eigenvalues are also smaller compared to the
corresponding eigenvalues of the Möbius domain-wall
Dirac operator. We note that the pairing of the positive
and negative eigenvalues of Hov is precisely satisfied other
than the exact zero modes. WithH4D

DW, such correspondence
is hardly visible especially for the coarser lattices at Lt ¼ 8.
For the large-volume lattices of size 323 × 8, we found

that the reweighting as described above are not effective.

FIG. 4. History of the topological charge for
L3 × Lt ¼ 323 × 12, β ¼ 4.24, m ¼ 0.01.

FIG. 5. History of the reweighting factor R (solid) and that of
Δ̄ov

π−δ × R=hRi (dashed) for L3 × Lt ¼ 323 × 12 ensembles at
β ¼ 4.23 (top), 4.24 (bottom) with the same bare quark mass
m ¼ 0.0025. The definition of Δ̄ov

π−δ is given by Eq. (24).
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the rational approximation of the sign function is typically
adopted. As far as the chiral symmetry of the resulting
fermion is concerned, the difference of the kernels and
the details of the sign function approximation are not
important.
In the following, we take the lattice spacing a ¼ 1 unless

otherwise stated. It is shown that the fermion determinant
generated with the domain-wall fermion together with the
associated Pauli-Villars field is equivalent to a determinant
of the four-dimensional (4D) effective operator [37,38],

D4D
DWðmÞ ¼ 1þm

2
þ 1 −m

2
γ5sgnðHMÞ: ð3Þ

Here, m is the quark mass, and the matrix sign function
“sgn” is approximated by

sgnðHMÞ ¼
1 − ðTðHMÞÞLs

1þ ðTðHMÞÞLs
ð4Þ

with the transfer matrix TðHMÞ ¼ ð1 −HMÞ=ð1þHMÞ.
The kernel operator HM is written as

HM ¼ γ5
αDW

2þDW
; ð5Þ

where DW is the Wilson-Dirac operator with a large
negative mass −1=a. The scale parameter α is set to 2
in this work. This corresponds to the Möbius domain-wall
fermion [38], while α ¼ 1 gives the standard domain-wall
fermion. With this choice, the Ginsparg-Wilson relation
is realized with a better precision at a fixed Ls. The
sign function in (4) is equivalent to the form
tanhðLs tanh−1ðHMÞÞ, which converges to the exact sign
function in the limit Ls → ∞. This is called the polar
approximation. In this limit, the Ginsparg-Wilson relation
is exactly satisfied. The details of our choice of the
parameters are reported in [52].
The size of the violation of chiral symmetry for the

Möbius domain-wall fermion may be quantified by the
residual mass,

mres ¼
htrG†ΔGWGi
htrG†Gi

; ð6Þ

with

ΔGW≡ γ5
2
½D4D

DWð0Þγ5þ γ5D4D
DWð0Þ− 2aD4D

DWð0Þγ5D4D
DWð0Þ&;

ð7Þ

where G is the contact-term-subtracted quark propagator,

G ¼ 1

1 −m
ððD4D

DWðmÞÞ−1 − 1Þ: ð8Þ

We confirm that the residual mass of the Möbius domain-
wall fermion as defined in (6) is roughly 5–10 times smaller
than that of the standard domain-wall Dirac operator at the
same value of Ls [52].
Even when the residual mass calculated as (6) is small, at

a level of a few MeV or less, the low-lying mode of D4D
DW

may be significantly affected by such small violation of the
Ginsparg-Wilson relation [34]. In fact, it was shown that
the contribution to the chiral condensate is in some cases
dominated by the lattice artifact that violates the Ginsparg-
Wilson relation. Since we are interested in the details of the
low-mode spectrum, we need to carefully study such
effects. For that reason, we introduce the overlap fermion
(with the same kernel as the domain-wall fermion) and
perform the reweighting to eliminate the contamination
from the lattice artifact.
One may improve the sign function approximation in (3)

by exactly treating the low-lying eigenmodes of the kernel
operatorHM, since the polar approximation is worse for the
low modes. We compute Nth lowest eigenmodes of the
kernel operator HM and exactly calculate the sign function
for this part of the spectrum. Namely, we define

DovðmÞ ¼
X

jλMi j<λ
M
th

!
1þm
2

þ 1 −m
2

γ5sgnðλMi Þ
"
jλMi ihλMi j

þD4D
DWðmÞ

!
1 −

X

λMi <jλ
M
th j
jλMi ihλMi j

"
; ð9Þ

where λMi is the ith eigenvalue ofHM nearest to zero and λMth
is a certain threshold. We choose λMth ¼ 400 − 600 MeV
depending on the parameters. With these choices, the
violation of chiral symmetry is kept negligible, at the order
of ∼1 eV in our ensembles.
In this paper, we slightly misuse the terminology and call

thus defined Dov the overlap-Dirac operator, though the
kernel is that of domain-wall fermion, i.e., the Shamir
kernel.
Since the difference between D4D

DW and Dov appears only
in the treatment of the low modes of HM, we expect a good
overlap in their relevant configuration spaces and a mild
fluctuation of the reweighting factor between them. This is
indeed the case for the 163 × 8 and 323 × 12 lattices we
generated using D4D

DW, as we will see below.

B. Configuration generation

For the gauge part, we use the tree-level improved
Symanzik gauge action [53]. We apply the stout smearing
[54] 3 times on the gauge links with the ρ parameter
ρ ¼ 0.1 before computing the Dirac operators. All the
details on the choice of the parameters for these actions are
reported in our zero temperature studies [55,56].
Our simulation setup is summarized in Table I. The

lattice spacing a is estimated by the Wilson flow on a few
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QCD in a spatial volume V3 can be expanded in terms of a small parameter mu,d/T ≪ 1

as [15, 26]

Z(T, V3,M) = exp

[
−V3

T
f(T, V3,M)

]
, (3.2)

f(T, V3,M) = f0 − f2 trM
†M − fA(detM + detM †) +O(M4) , (3.3)

where f0, f2 and fA are functions of T and V3. We assume that this expansion has a

nonzero radius of convergence. The term ∝ fA represents the effect of axial anomaly: for

a U(1)A rotation ψ → eiγ5θA ψ, this term transforms as detM → e4iθA detM , so it breaks

U(1)A down to Z4. The absence of O(M) terms is consistent with the vanishing chiral

condensate in the chiral limit for T > Tc. In the following we will disregard the O(M4)

terms in the free energy as they are suppressed by additional powers of mu,d/T ≪ 1. Since

the partition function (3.2) is obtained with a systematic expansion, this will be called the

“effective theory” in this paper (although there is no dynamical field in it).

We now turn to the study of topological sectors. As is well known, the θ angle can be

incorporated into the partition function via M → M eiθ/Nf [28], where Nf = 2 is of our

interest here. Then the partition function in a sector of given topological charge

Q ≡ g2

32π2

∫
d4xGa

µνG̃
a
µν (3.4)

is obtained, from (3.3), as

ZQ(T, V3,M) ≡
∮

dθ

2π
e−iQθ Z(T, V3,Meiθ/2). (3.5)

= e−V4[f0−f2(m2
u+m2

d)]
∮

dθ

2π
e−iQθ e2V4fAmumd cos θ (3.6)

= e−V4[f0−f2(m2
u+m2

d)] IQ(2V4fAmumd) , (3.7)

where V4 ≡ V3/T is the spacetime volume, IQ is the modified Bessel function of Q-th order,

and M = diag(mu, md) was substituted. Intriguingly, the probability distribution of Q is

proportional to IQ in one-flavor QCD, too [28].6

The Taylor expansion of (3.7) in powers of quark masses starts with (V4fAmumd)|Q|,

which is the contribution of exact zero modes. Hence the topological sectors with Q ̸= 0

will all drop out in the chiral limit if V4 is finite. By contrast, topological fluctuations will

not be suppressed at all even near the chiral limit if V4 is sufficiently large. This subtle

balance between topology and volume has an important practical consequence for lattice

simulations, as we will discuss shortly.

An important quantity that characterizes topological fluctuations is the mean square

of the topological charge at θ = 0,

⟨Q2⟩ =
∞∑

Q=−∞
Q2ZQ

Z
= 2V4fAmumd , (3.8)

6An analogous toy model was also studied in [29, appendix A].
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not be suppressed at all even near the chiral limit if V4 is sufficiently large. This subtle

balance between topology and volume has an important practical consequence for lattice

simulations, as we will discuss shortly.

An important quantity that characterizes topological fluctuations is the mean square

of the topological charge at θ = 0,

⟨Q2⟩ =
∞∑

Q=−∞
Q2ZQ

Z
= 2V4fAmumd , (3.8)

6An analogous toy model was also studied in [29, appendix A].
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It was emphasized in [8, 9] that the dominant contribution to χπ − χδ comes from

exact zero modes in the Q = ±1 sector. A more recent paper [13] argues to the contrary

that contributions of exact zero modes is suppressed in the thermodynamic limit. In what

follows we aim to clarify this issue.

Let us first decompose the anomalous contribution (3.19) into contributions from each

topological sector. We assume θ = 0 in the following. Since the second terms in (3.15b)

and (3.15c) vanish for degenerate masses, it follows that

lim
mu,d→m

(χπ − χδ) =

∫
d4x
[
⟨ψiγ5τ3ψ(x)ψiγ5τ3ψ(0)⟩ − ⟨ψτ3ψ(x)ψτ3ψ(0)⟩

]

=
1

V4

(
1

Z

∂2Z

∂b2

∣∣∣
b=0

− 1

Z

∂2Z

∂c2

∣∣∣
c=0

)
(3.20)

≡
∞∑

Q=−∞

ZQ

Z
PQ , (3.21)

where it is tacitly assumed in (3.20) that the first term is evaluated for M = diag(m +

ib,m − ib) and the second term for M = diag(m + c,m − c). In (3.21) we defined the

contribution PQ from the sector of topological charge Q as

PQ ≡ 1

V4

(
1

ZQ

∂2ZQ

∂b2

∣∣∣
b=0

− 1

ZQ

∂2ZQ

∂c2

∣∣∣
c=0

)
(3.22)

=

[
4f2 + 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
−
[
4f2 − 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
(3.23)

= 8fA
I ′Q(2V4fAm2)

IQ(2V4fAm2)
. (3.24)

Using the identity I ′Q(x) =
Q
x IQ(x) + IQ+1(x) or I ′Q(x) = −Q

x IQ(x) + IQ−1(x) depending

on the sign of Q, one may cast PQ into a suggestive form

PQ =

⎧
⎪⎪⎨

⎪⎪⎩

4

V4m2
Q+ 8fA

IQ+1(2V4fAm2)

IQ(2V4fAm2)
for Q ≥ 0 ,

4

V4m2
|Q|+ 8fA

IQ−1(2V4fAm2)

IQ(2V4fAm2)
for Q < 0 .

(3.25)

The first terms in (3.25) are the contributions from exact zero modes. This can be easily

seen by plugging ZQ ∝ (m2 + b2)|Q| and ZQ ∝ (m2 − c2)|Q| into the first and the second

terms in (3.22), respectively. Therefore the U(1)A-violating contribution (3.21) may be

split into the zero-mode fraction7 and the nonzero-mode fraction as

lim
mu,d→m

(χπ − χδ) = 8fA(Sz + Snz) , (3.26)

7It is intriguing that (3.27) below has exactly the same form as the fraction of zero modes for the chiral

condensate in one-flavor QCD [28, eq. (7.3)], under the identification 2V4fAm
2 ↔ V4Σm.
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QCD in a spatial volume V3 can be expanded in terms of a small parameter mu,d/T ≪ 1

as [15, 26]

Z(T, V3,M) = exp

[
−V3

T
f(T, V3,M)

]
, (3.2)

f(T, V3,M) = f0 − f2 trM
†M − fA(detM + detM †) +O(M4) , (3.3)

where f0, f2 and fA are functions of T and V3. We assume that this expansion has a

nonzero radius of convergence. The term ∝ fA represents the effect of axial anomaly: for

a U(1)A rotation ψ → eiγ5θA ψ, this term transforms as detM → e4iθA detM , so it breaks

U(1)A down to Z4. The absence of O(M) terms is consistent with the vanishing chiral

condensate in the chiral limit for T > Tc. In the following we will disregard the O(M4)

terms in the free energy as they are suppressed by additional powers of mu,d/T ≪ 1. Since

the partition function (3.2) is obtained with a systematic expansion, this will be called the

“effective theory” in this paper (although there is no dynamical field in it).

We now turn to the study of topological sectors. As is well known, the θ angle can be

incorporated into the partition function via M → M eiθ/Nf [28], where Nf = 2 is of our

interest here. Then the partition function in a sector of given topological charge

Q ≡ g2

32π2

∫
d4xGa

µνG̃
a
µν (3.4)

is obtained, from (3.3), as

ZQ(T, V3,M) ≡
∮

dθ

2π
e−iQθ Z(T, V3,Meiθ/2). (3.5)

= e−V4[f0−f2(m2
u+m2

d)]
∮

dθ

2π
e−iQθ e2V4fAmumd cos θ (3.6)

= e−V4[f0−f2(m2
u+m2

d)] IQ(2V4fAmumd) , (3.7)

where V4 ≡ V3/T is the spacetime volume, IQ is the modified Bessel function of Q-th order,

and M = diag(mu, md) was substituted. Intriguingly, the probability distribution of Q is

proportional to IQ in one-flavor QCD, too [28].6

The Taylor expansion of (3.7) in powers of quark masses starts with (V4fAmumd)|Q|,

which is the contribution of exact zero modes. Hence the topological sectors with Q ̸= 0

will all drop out in the chiral limit if V4 is finite. By contrast, topological fluctuations will

not be suppressed at all even near the chiral limit if V4 is sufficiently large. This subtle

balance between topology and volume has an important practical consequence for lattice

simulations, as we will discuss shortly.

An important quantity that characterizes topological fluctuations is the mean square

of the topological charge at θ = 0,

⟨Q2⟩ =
∞∑

Q=−∞
Q2ZQ

Z
= 2V4fAmumd , (3.8)

6An analogous toy model was also studied in [29, appendix A].
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It was emphasized in [8, 9] that the dominant contribution to χπ − χδ comes from

exact zero modes in the Q = ±1 sector. A more recent paper [13] argues to the contrary

that contributions of exact zero modes is suppressed in the thermodynamic limit. In what

follows we aim to clarify this issue.

Let us first decompose the anomalous contribution (3.19) into contributions from each

topological sector. We assume θ = 0 in the following. Since the second terms in (3.15b)

and (3.15c) vanish for degenerate masses, it follows that

lim
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∫
d4x
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≡
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ZQ

Z
PQ , (3.21)

where it is tacitly assumed in (3.20) that the first term is evaluated for M = diag(m +

ib,m − ib) and the second term for M = diag(m + c,m − c). In (3.21) we defined the

contribution PQ from the sector of topological charge Q as

PQ ≡ 1

V4
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1

ZQ
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b=0

− 1

ZQ
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(3.22)

=

[
4f2 + 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
−
[
4f2 − 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
(3.23)

= 8fA
I ′Q(2V4fAm2)

IQ(2V4fAm2)
. (3.24)

Using the identity I ′Q(x) =
Q
x IQ(x) + IQ+1(x) or I ′Q(x) = −Q

x IQ(x) + IQ−1(x) depending

on the sign of Q, one may cast PQ into a suggestive form

PQ =

⎧
⎪⎪⎨
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4

V4m2
Q+ 8fA

IQ+1(2V4fAm2)

IQ(2V4fAm2)
for Q ≥ 0 ,

4

V4m2
|Q|+ 8fA

IQ−1(2V4fAm2)

IQ(2V4fAm2)
for Q < 0 .

(3.25)

The first terms in (3.25) are the contributions from exact zero modes. This can be easily

seen by plugging ZQ ∝ (m2 + b2)|Q| and ZQ ∝ (m2 − c2)|Q| into the first and the second

terms in (3.22), respectively. Therefore the U(1)A-violating contribution (3.21) may be

split into the zero-mode fraction7 and the nonzero-mode fraction as

lim
mu,d→m

(χπ − χδ) = 8fA(Sz + Snz) , (3.26)

7It is intriguing that (3.27) below has exactly the same form as the fraction of zero modes for the chiral

condensate in one-flavor QCD [28, eq. (7.3)], under the identification 2V4fAm
2 ↔ V4Σm.
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Figure 1. Relative contributions of zero and nonzero Dirac eigenmodes to χπ − χδ as a function
of x ≡ 2V4fAm2.

where

Sz ≡
1

8fA

(
2

∞∑

Q=1

ZQ

Z

4

V4m2
Q

)
= e−2V4fAm2 [

I0(2V4fAm
2) + I1(2V4fAm

2)
]
, (3.27)

Snz = 1− Sz . (3.28)

In addition, the contribution of the Q = ±1 sectors to Sz is defined as

S±1 ≡
1

8fA

(
2
Z1

Z

4

V4m2

)
=

1

V4fAm2
e−2V4fAm2

I1(2V4fAm
2) . (3.29)

The quantities Sz, Snz and S±1 are plotted in figure 1 as functions of x ≡ 2V4fAm2.

We observe that, in a small volume or near the chiral limit (x ≪ 1), χπ − χδ is

dominated by the contribution of exact zero modes in the Q = ±1 sector, as argued

in [8, 9]. By contrast, if we take the thermodynamic limit (x ≫ 1), the contribution of

nonzero modes dominates, and the exact zero modes are completely irrelevant. This can

be understood from (3.8): since ⟨Q2⟩ ∼ V4fAm2, one naturally expects ⟨|Q|⟩ = O(
√
V4),

implying that the first term in (3.25) is suppressed in a large volume.8 On the other hand,

the second term in (3.25) tends to 8fA, which is the same value as in the full theory (3.19).

This means that the anomaly (fA ̸= 0) in the thermodynamic limit must be attributed

to nonzero Dirac eigenmodes. The Q = ±1 sector does not play a distinguished role.

Indeed, one can show for x ≫ 1 that ZQ/Z obeys a Gaussian distribution (see also [28]),

according to which ZQ/Z ∼ 1/
√
V4fAm2 for |Q| !

√
V4fAm2 and is suppressed otherwise.

Therefore, if the volume is sufficiently large with a fixed nonzero mass, all contributions to

χπ − χδ from the sectors with |Q| !
√
V4fAm2 are equally important, in contradistinction

to the finite-volume regime (x ! 1) where only the Q = ±1 sectors contribute to χπ − χδ.

To avoid confusion, we stress that the total amount of χπ − χδ is equal to 8fA irre-

spective of the value of x; the order-of-limit issue does not arise, of course, because there

8In this inspection, the positivity of the path-integral measure plays an essential role. We note that the

suppression of exact zero modes does not hold in general for negative or complex masses [28, 31, 32].
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as a function of x =

2V4fAm2. At large volume (x ≫ 1), I1(x)/I0(x) ≃ 1− 1
2x .

is no long-range-order in QCD above Tc. The reason the exchange of dominance occurs

between zero and nonzero modes as we vary the volume is that a long-range correlation is

induced once the global topological charge is fixed [28].

3.3 Implications for lattice QCD simulations

We now discuss implications of the above results for lattice QCD simulations. So far the

U(1)A anomaly at high temperature has been thoroughly investigated on the lattice (as

reviewed in section 1), but despite efforts, a definitive conclusion on the (non-)restoration

of the U(1)A symmetry is not reached yet. This is not surprising, considering that the

physics of U(1)A anomaly is highly sensitive to the explicit breaking of chiral symmetry

by lattice discretization; even domain-wall fermions have serious problems, as pointed out

in [20]. In this regard, the most reliable simulations are those in [16] employing dynamical

overlap fermions. They reported restoration of the U(1)A symmetry based on simulations

with a fixed global topological charge (Q = 0). They also evaluated possible finite-size

effects associated with the topology fixing, by using the formalism developed in [29, 33].

Here we wish to revisit this issue based on our effective-theory framework.

It follows from (3.21) that in the topologically trivial sector (Q = 0) we have

χπ − χδ = 8fA
I1(2V4fAm2)

I0(2V4fAm2)
. (3.30)

The ratio of (3.30) to (χπ−χδ)
∣∣
full

= 8fA is plotted in figure 2. It shows that the ratio tends

to 0 for small x and obscures the nonzero value in the full theory. This signals a strong

finite-volume effect at small x. It seems necessary to ensure at least x = 2V4fAm2 ! 1 in

order to observe a nonzero value of χπ − χδ clearly.

Our result so far is rigorous, as long as fA ̸= 0 and the O(M4) correction to (3.3)

can be neglected. At sufficiently high temperature T ≫ Tc we may resort to the dilute

instanton gas approximation [12], which yields

fA ∼ T 2 e−8π2/g2 ∼ T 2(Λ/T )(11Nc−2Nf )/3 ∝ T−23/3 (3.31)
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QCD in a spatial volume V3 can be expanded in terms of a small parameter mu,d/T ≪ 1

as [15, 26]

Z(T, V3,M) = exp

[
−V3

T
f(T, V3,M)

]
, (3.2)

f(T, V3,M) = f0 − f2 trM
†M − fA(detM + detM †) +O(M4) , (3.3)

where f0, f2 and fA are functions of T and V3. We assume that this expansion has a

nonzero radius of convergence. The term ∝ fA represents the effect of axial anomaly: for

a U(1)A rotation ψ → eiγ5θA ψ, this term transforms as detM → e4iθA detM , so it breaks

U(1)A down to Z4. The absence of O(M) terms is consistent with the vanishing chiral

condensate in the chiral limit for T > Tc. In the following we will disregard the O(M4)

terms in the free energy as they are suppressed by additional powers of mu,d/T ≪ 1. Since

the partition function (3.2) is obtained with a systematic expansion, this will be called the

“effective theory” in this paper (although there is no dynamical field in it).

We now turn to the study of topological sectors. As is well known, the θ angle can be

incorporated into the partition function via M → M eiθ/Nf [28], where Nf = 2 is of our

interest here. Then the partition function in a sector of given topological charge

Q ≡ g2

32π2

∫
d4xGa

µνG̃
a
µν (3.4)

is obtained, from (3.3), as

ZQ(T, V3,M) ≡
∮

dθ

2π
e−iQθ Z(T, V3,Meiθ/2). (3.5)

= e−V4[f0−f2(m2
u+m2

d)]
∮

dθ

2π
e−iQθ e2V4fAmumd cos θ (3.6)

= e−V4[f0−f2(m2
u+m2

d)] IQ(2V4fAmumd) , (3.7)

where V4 ≡ V3/T is the spacetime volume, IQ is the modified Bessel function of Q-th order,

and M = diag(mu, md) was substituted. Intriguingly, the probability distribution of Q is

proportional to IQ in one-flavor QCD, too [28].6

The Taylor expansion of (3.7) in powers of quark masses starts with (V4fAmumd)|Q|,

which is the contribution of exact zero modes. Hence the topological sectors with Q ̸= 0

will all drop out in the chiral limit if V4 is finite. By contrast, topological fluctuations will

not be suppressed at all even near the chiral limit if V4 is sufficiently large. This subtle

balance between topology and volume has an important practical consequence for lattice

simulations, as we will discuss shortly.

An important quantity that characterizes topological fluctuations is the mean square

of the topological charge at θ = 0,

⟨Q2⟩ =
∞∑

Q=−∞
Q2ZQ

Z
= 2V4fAmumd , (3.8)

6An analogous toy model was also studied in [29, appendix A].
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It was emphasized in [8, 9] that the dominant contribution to χπ − χδ comes from

exact zero modes in the Q = ±1 sector. A more recent paper [13] argues to the contrary

that contributions of exact zero modes is suppressed in the thermodynamic limit. In what

follows we aim to clarify this issue.

Let us first decompose the anomalous contribution (3.19) into contributions from each

topological sector. We assume θ = 0 in the following. Since the second terms in (3.15b)

and (3.15c) vanish for degenerate masses, it follows that

lim
mu,d→m

(χπ − χδ) =

∫
d4x
[
⟨ψiγ5τ3ψ(x)ψiγ5τ3ψ(0)⟩ − ⟨ψτ3ψ(x)ψτ3ψ(0)⟩

]

=
1

V4

(
1

Z

∂2Z

∂b2

∣∣∣
b=0

− 1

Z

∂2Z

∂c2

∣∣∣
c=0

)
(3.20)

≡
∞∑

Q=−∞

ZQ

Z
PQ , (3.21)

where it is tacitly assumed in (3.20) that the first term is evaluated for M = diag(m +

ib,m − ib) and the second term for M = diag(m + c,m − c). In (3.21) we defined the

contribution PQ from the sector of topological charge Q as

PQ ≡ 1

V4

(
1

ZQ

∂2ZQ

∂b2

∣∣∣
b=0

− 1

ZQ

∂2ZQ

∂c2

∣∣∣
c=0

)
(3.22)

=

[
4f2 + 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
−
[
4f2 − 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
(3.23)

= 8fA
I ′Q(2V4fAm2)

IQ(2V4fAm2)
. (3.24)

Using the identity I ′Q(x) =
Q
x IQ(x) + IQ+1(x) or I ′Q(x) = −Q

x IQ(x) + IQ−1(x) depending

on the sign of Q, one may cast PQ into a suggestive form

PQ =

⎧
⎪⎪⎨

⎪⎪⎩

4

V4m2
Q+ 8fA

IQ+1(2V4fAm2)

IQ(2V4fAm2)
for Q ≥ 0 ,

4

V4m2
|Q|+ 8fA

IQ−1(2V4fAm2)

IQ(2V4fAm2)
for Q < 0 .

(3.25)

The first terms in (3.25) are the contributions from exact zero modes. This can be easily

seen by plugging ZQ ∝ (m2 + b2)|Q| and ZQ ∝ (m2 − c2)|Q| into the first and the second

terms in (3.22), respectively. Therefore the U(1)A-violating contribution (3.21) may be

split into the zero-mode fraction7 and the nonzero-mode fraction as

lim
mu,d→m

(χπ − χδ) = 8fA(Sz + Snz) , (3.26)

7It is intriguing that (3.27) below has exactly the same form as the fraction of zero modes for the chiral

condensate in one-flavor QCD [28, eq. (7.3)], under the identification 2V4fAm
2 ↔ V4Σm.
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Figure 1. Relative contributions of zero and nonzero Dirac eigenmodes to χπ − χδ as a function
of x ≡ 2V4fAm2.

where

Sz ≡
1

8fA

(
2

∞∑

Q=1

ZQ

Z

4

V4m2
Q

)
= e−2V4fAm2 [

I0(2V4fAm
2) + I1(2V4fAm

2)
]
, (3.27)

Snz = 1− Sz . (3.28)

In addition, the contribution of the Q = ±1 sectors to Sz is defined as

S±1 ≡
1

8fA

(
2
Z1

Z

4

V4m2

)
=

1

V4fAm2
e−2V4fAm2

I1(2V4fAm
2) . (3.29)

The quantities Sz, Snz and S±1 are plotted in figure 1 as functions of x ≡ 2V4fAm2.

We observe that, in a small volume or near the chiral limit (x ≪ 1), χπ − χδ is

dominated by the contribution of exact zero modes in the Q = ±1 sector, as argued

in [8, 9]. By contrast, if we take the thermodynamic limit (x ≫ 1), the contribution of

nonzero modes dominates, and the exact zero modes are completely irrelevant. This can

be understood from (3.8): since ⟨Q2⟩ ∼ V4fAm2, one naturally expects ⟨|Q|⟩ = O(
√
V4),

implying that the first term in (3.25) is suppressed in a large volume.8 On the other hand,

the second term in (3.25) tends to 8fA, which is the same value as in the full theory (3.19).

This means that the anomaly (fA ̸= 0) in the thermodynamic limit must be attributed

to nonzero Dirac eigenmodes. The Q = ±1 sector does not play a distinguished role.

Indeed, one can show for x ≫ 1 that ZQ/Z obeys a Gaussian distribution (see also [28]),

according to which ZQ/Z ∼ 1/
√
V4fAm2 for |Q| !

√
V4fAm2 and is suppressed otherwise.

Therefore, if the volume is sufficiently large with a fixed nonzero mass, all contributions to

χπ − χδ from the sectors with |Q| !
√
V4fAm2 are equally important, in contradistinction

to the finite-volume regime (x ! 1) where only the Q = ±1 sectors contribute to χπ − χδ.

To avoid confusion, we stress that the total amount of χπ − χδ is equal to 8fA irre-

spective of the value of x; the order-of-limit issue does not arise, of course, because there

8In this inspection, the positivity of the path-integral measure plays an essential role. We note that the

suppression of exact zero modes does not hold in general for negative or complex masses [28, 31, 32].
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2V4fAm2. At large volume (x ≫ 1), I1(x)/I0(x) ≃ 1− 1
2x .

is no long-range-order in QCD above Tc. The reason the exchange of dominance occurs

between zero and nonzero modes as we vary the volume is that a long-range correlation is

induced once the global topological charge is fixed [28].

3.3 Implications for lattice QCD simulations

We now discuss implications of the above results for lattice QCD simulations. So far the

U(1)A anomaly at high temperature has been thoroughly investigated on the lattice (as

reviewed in section 1), but despite efforts, a definitive conclusion on the (non-)restoration

of the U(1)A symmetry is not reached yet. This is not surprising, considering that the

physics of U(1)A anomaly is highly sensitive to the explicit breaking of chiral symmetry

by lattice discretization; even domain-wall fermions have serious problems, as pointed out

in [20]. In this regard, the most reliable simulations are those in [16] employing dynamical

overlap fermions. They reported restoration of the U(1)A symmetry based on simulations

with a fixed global topological charge (Q = 0). They also evaluated possible finite-size

effects associated with the topology fixing, by using the formalism developed in [29, 33].

Here we wish to revisit this issue based on our effective-theory framework.

It follows from (3.21) that in the topologically trivial sector (Q = 0) we have

χπ − χδ = 8fA
I1(2V4fAm2)

I0(2V4fAm2)
. (3.30)

The ratio of (3.30) to (χπ−χδ)
∣∣
full

= 8fA is plotted in figure 2. It shows that the ratio tends

to 0 for small x and obscures the nonzero value in the full theory. This signals a strong

finite-volume effect at small x. It seems necessary to ensure at least x = 2V4fAm2 ! 1 in

order to observe a nonzero value of χπ − χδ clearly.

Our result so far is rigorous, as long as fA ̸= 0 and the O(M4) correction to (3.3)

can be neglected. At sufficiently high temperature T ≫ Tc we may resort to the dilute

instanton gas approximation [12], which yields

fA ∼ T 2 e−8π2/g2 ∼ T 2(Λ/T )(11Nc−2Nf )/3 ∝ T−23/3 (3.31)
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QCD in a spatial volume V3 can be expanded in terms of a small parameter mu,d/T ≪ 1

as [15, 26]

Z(T, V3,M) = exp

[
−V3

T
f(T, V3,M)

]
, (3.2)

f(T, V3,M) = f0 − f2 trM
†M − fA(detM + detM †) +O(M4) , (3.3)

where f0, f2 and fA are functions of T and V3. We assume that this expansion has a

nonzero radius of convergence. The term ∝ fA represents the effect of axial anomaly: for

a U(1)A rotation ψ → eiγ5θA ψ, this term transforms as detM → e4iθA detM , so it breaks

U(1)A down to Z4. The absence of O(M) terms is consistent with the vanishing chiral

condensate in the chiral limit for T > Tc. In the following we will disregard the O(M4)

terms in the free energy as they are suppressed by additional powers of mu,d/T ≪ 1. Since

the partition function (3.2) is obtained with a systematic expansion, this will be called the

“effective theory” in this paper (although there is no dynamical field in it).

We now turn to the study of topological sectors. As is well known, the θ angle can be

incorporated into the partition function via M → M eiθ/Nf [28], where Nf = 2 is of our

interest here. Then the partition function in a sector of given topological charge

Q ≡ g2

32π2

∫
d4xGa

µνG̃
a
µν (3.4)

is obtained, from (3.3), as

ZQ(T, V3,M) ≡
∮

dθ

2π
e−iQθ Z(T, V3,Meiθ/2). (3.5)

= e−V4[f0−f2(m2
u+m2

d)]
∮

dθ

2π
e−iQθ e2V4fAmumd cos θ (3.6)

= e−V4[f0−f2(m2
u+m2

d)] IQ(2V4fAmumd) , (3.7)

where V4 ≡ V3/T is the spacetime volume, IQ is the modified Bessel function of Q-th order,

and M = diag(mu, md) was substituted. Intriguingly, the probability distribution of Q is

proportional to IQ in one-flavor QCD, too [28].6

The Taylor expansion of (3.7) in powers of quark masses starts with (V4fAmumd)|Q|,

which is the contribution of exact zero modes. Hence the topological sectors with Q ̸= 0

will all drop out in the chiral limit if V4 is finite. By contrast, topological fluctuations will

not be suppressed at all even near the chiral limit if V4 is sufficiently large. This subtle

balance between topology and volume has an important practical consequence for lattice

simulations, as we will discuss shortly.

An important quantity that characterizes topological fluctuations is the mean square

of the topological charge at θ = 0,

⟨Q2⟩ =
∞∑

Q=−∞
Q2ZQ

Z
= 2V4fAmumd , (3.8)

6An analogous toy model was also studied in [29, appendix A].

– 6 –

• to study topological sectors

J
H
E
P
0
1
(
2
0
1
6
)
1
4
1

QCD in a spatial volume V3 can be expanded in terms of a small parameter mu,d/T ≪ 1

as [15, 26]

Z(T, V3,M) = exp

[
−V3

T
f(T, V3,M)

]
, (3.2)

f(T, V3,M) = f0 − f2 trM
†M − fA(detM + detM †) +O(M4) , (3.3)

where f0, f2 and fA are functions of T and V3. We assume that this expansion has a

nonzero radius of convergence. The term ∝ fA represents the effect of axial anomaly: for

a U(1)A rotation ψ → eiγ5θA ψ, this term transforms as detM → e4iθA detM , so it breaks

U(1)A down to Z4. The absence of O(M) terms is consistent with the vanishing chiral

condensate in the chiral limit for T > Tc. In the following we will disregard the O(M4)

terms in the free energy as they are suppressed by additional powers of mu,d/T ≪ 1. Since

the partition function (3.2) is obtained with a systematic expansion, this will be called the

“effective theory” in this paper (although there is no dynamical field in it).

We now turn to the study of topological sectors. As is well known, the θ angle can be

incorporated into the partition function via M → M eiθ/Nf [28], where Nf = 2 is of our

interest here. Then the partition function in a sector of given topological charge

Q ≡ g2

32π2

∫
d4xGa

µνG̃
a
µν (3.4)

is obtained, from (3.3), as

ZQ(T, V3,M) ≡
∮

dθ

2π
e−iQθ Z(T, V3,Meiθ/2). (3.5)

= e−V4[f0−f2(m2
u+m2

d)]
∮

dθ

2π
e−iQθ e2V4fAmumd cos θ (3.6)

= e−V4[f0−f2(m2
u+m2

d)] IQ(2V4fAmumd) , (3.7)

where V4 ≡ V3/T is the spacetime volume, IQ is the modified Bessel function of Q-th order,

and M = diag(mu, md) was substituted. Intriguingly, the probability distribution of Q is

proportional to IQ in one-flavor QCD, too [28].6

The Taylor expansion of (3.7) in powers of quark masses starts with (V4fAmumd)|Q|,

which is the contribution of exact zero modes. Hence the topological sectors with Q ̸= 0

will all drop out in the chiral limit if V4 is finite. By contrast, topological fluctuations will

not be suppressed at all even near the chiral limit if V4 is sufficiently large. This subtle

balance between topology and volume has an important practical consequence for lattice

simulations, as we will discuss shortly.

An important quantity that characterizes topological fluctuations is the mean square

of the topological charge at θ = 0,

⟨Q2⟩ =
∞∑

Q=−∞
Q2ZQ

Z
= 2V4fAmumd , (3.8)

6An analogous toy model was also studied in [29, appendix A].
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It was emphasized in [8, 9] that the dominant contribution to χπ − χδ comes from

exact zero modes in the Q = ±1 sector. A more recent paper [13] argues to the contrary

that contributions of exact zero modes is suppressed in the thermodynamic limit. In what

follows we aim to clarify this issue.

Let us first decompose the anomalous contribution (3.19) into contributions from each

topological sector. We assume θ = 0 in the following. Since the second terms in (3.15b)

and (3.15c) vanish for degenerate masses, it follows that

lim
mu,d→m

(χπ − χδ) =

∫
d4x
[
⟨ψiγ5τ3ψ(x)ψiγ5τ3ψ(0)⟩ − ⟨ψτ3ψ(x)ψτ3ψ(0)⟩

]

=
1

V4

(
1

Z

∂2Z

∂b2

∣∣∣
b=0

− 1

Z

∂2Z

∂c2

∣∣∣
c=0

)
(3.20)

≡
∞∑

Q=−∞

ZQ

Z
PQ , (3.21)

where it is tacitly assumed in (3.20) that the first term is evaluated for M = diag(m +

ib,m − ib) and the second term for M = diag(m + c,m − c). In (3.21) we defined the

contribution PQ from the sector of topological charge Q as

PQ ≡ 1

V4

(
1

ZQ

∂2ZQ

∂b2

∣∣∣
b=0

− 1

ZQ

∂2ZQ

∂c2

∣∣∣
c=0

)
(3.22)

=

[
4f2 + 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
−
[
4f2 − 4fA

I ′Q(2V4fAm2)

IQ(2V4fAm2)

]
(3.23)

= 8fA
I ′Q(2V4fAm2)

IQ(2V4fAm2)
. (3.24)

Using the identity I ′Q(x) =
Q
x IQ(x) + IQ+1(x) or I ′Q(x) = −Q

x IQ(x) + IQ−1(x) depending

on the sign of Q, one may cast PQ into a suggestive form

PQ =

⎧
⎪⎪⎨

⎪⎪⎩

4

V4m2
Q+ 8fA

IQ+1(2V4fAm2)

IQ(2V4fAm2)
for Q ≥ 0 ,

4

V4m2
|Q|+ 8fA

IQ−1(2V4fAm2)

IQ(2V4fAm2)
for Q < 0 .

(3.25)

The first terms in (3.25) are the contributions from exact zero modes. This can be easily

seen by plugging ZQ ∝ (m2 + b2)|Q| and ZQ ∝ (m2 − c2)|Q| into the first and the second

terms in (3.22), respectively. Therefore the U(1)A-violating contribution (3.21) may be

split into the zero-mode fraction7 and the nonzero-mode fraction as

lim
mu,d→m

(χπ − χδ) = 8fA(Sz + Snz) , (3.26)

7It is intriguing that (3.27) below has exactly the same form as the fraction of zero modes for the chiral

condensate in one-flavor QCD [28, eq. (7.3)], under the identification 2V4fAm
2 ↔ V4Σm.
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Figure 1. Relative contributions of zero and nonzero Dirac eigenmodes to χπ − χδ as a function
of x ≡ 2V4fAm2.

where

Sz ≡
1

8fA

(
2

∞∑

Q=1

ZQ

Z

4

V4m2
Q

)
= e−2V4fAm2 [

I0(2V4fAm
2) + I1(2V4fAm

2)
]
, (3.27)

Snz = 1− Sz . (3.28)

In addition, the contribution of the Q = ±1 sectors to Sz is defined as

S±1 ≡
1

8fA

(
2
Z1

Z

4

V4m2

)
=

1

V4fAm2
e−2V4fAm2

I1(2V4fAm
2) . (3.29)

The quantities Sz, Snz and S±1 are plotted in figure 1 as functions of x ≡ 2V4fAm2.

We observe that, in a small volume or near the chiral limit (x ≪ 1), χπ − χδ is

dominated by the contribution of exact zero modes in the Q = ±1 sector, as argued

in [8, 9]. By contrast, if we take the thermodynamic limit (x ≫ 1), the contribution of

nonzero modes dominates, and the exact zero modes are completely irrelevant. This can

be understood from (3.8): since ⟨Q2⟩ ∼ V4fAm2, one naturally expects ⟨|Q|⟩ = O(
√
V4),

implying that the first term in (3.25) is suppressed in a large volume.8 On the other hand,

the second term in (3.25) tends to 8fA, which is the same value as in the full theory (3.19).

This means that the anomaly (fA ̸= 0) in the thermodynamic limit must be attributed

to nonzero Dirac eigenmodes. The Q = ±1 sector does not play a distinguished role.

Indeed, one can show for x ≫ 1 that ZQ/Z obeys a Gaussian distribution (see also [28]),

according to which ZQ/Z ∼ 1/
√
V4fAm2 for |Q| !

√
V4fAm2 and is suppressed otherwise.

Therefore, if the volume is sufficiently large with a fixed nonzero mass, all contributions to

χπ − χδ from the sectors with |Q| !
√
V4fAm2 are equally important, in contradistinction

to the finite-volume regime (x ! 1) where only the Q = ±1 sectors contribute to χπ − χδ.

To avoid confusion, we stress that the total amount of χπ − χδ is equal to 8fA irre-

spective of the value of x; the order-of-limit issue does not arise, of course, because there

8In this inspection, the positivity of the path-integral measure plays an essential role. We note that the

suppression of exact zero modes does not hold in general for negative or complex masses [28, 31, 32].
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x

I1(x)

I0(x)

Figure 2. The magnitude of (χπ − χδ)
∣∣
Q=0

normalized by (χπ − χδ)
∣∣
full

as a function of x =

2V4fAm2. At large volume (x ≫ 1), I1(x)/I0(x) ≃ 1− 1
2x .

is no long-range-order in QCD above Tc. The reason the exchange of dominance occurs

between zero and nonzero modes as we vary the volume is that a long-range correlation is

induced once the global topological charge is fixed [28].

3.3 Implications for lattice QCD simulations

We now discuss implications of the above results for lattice QCD simulations. So far the

U(1)A anomaly at high temperature has been thoroughly investigated on the lattice (as

reviewed in section 1), but despite efforts, a definitive conclusion on the (non-)restoration

of the U(1)A symmetry is not reached yet. This is not surprising, considering that the

physics of U(1)A anomaly is highly sensitive to the explicit breaking of chiral symmetry

by lattice discretization; even domain-wall fermions have serious problems, as pointed out

in [20]. In this regard, the most reliable simulations are those in [16] employing dynamical

overlap fermions. They reported restoration of the U(1)A symmetry based on simulations

with a fixed global topological charge (Q = 0). They also evaluated possible finite-size

effects associated with the topology fixing, by using the formalism developed in [29, 33].

Here we wish to revisit this issue based on our effective-theory framework.

It follows from (3.21) that in the topologically trivial sector (Q = 0) we have

χπ − χδ = 8fA
I1(2V4fAm2)

I0(2V4fAm2)
. (3.30)

The ratio of (3.30) to (χπ−χδ)
∣∣
full

= 8fA is plotted in figure 2. It shows that the ratio tends

to 0 for small x and obscures the nonzero value in the full theory. This signals a strong

finite-volume effect at small x. It seems necessary to ensure at least x = 2V4fAm2 ! 1 in

order to observe a nonzero value of χπ − χδ clearly.

Our result so far is rigorous, as long as fA ̸= 0 and the O(M4) correction to (3.3)

can be neglected. At sufficiently high temperature T ≫ Tc we may resort to the dilute

instanton gas approximation [12], which yields

fA ∼ T 2 e−8π2/g2 ∼ T 2(Λ/T )(11Nc−2Nf )/3 ∝ T−23/3 (3.31)
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�|Q=0

�|full

KY tells 
• fixed topology gives wrong result at small V 
• adding all Q sector or large enough volume necessary

JLQCD 
• does not fix topology  (DW) 
• zero-mode subtraction may have similar effect to fix Q=0 

• for smallest m: actually effectively fixed to Q=0


