銀河外ガンマ線による宇宙暗黒物質探索

Koji Ishiwata

Kanazawa University

Based on

• JCAP 1505 (2015) 05, 024 (with S. Ando)

• JCAP 1606 (2016) 06, 045 (with S. Ando)

Kyoto, August 6, 2018

1. Introduction

After the Higgs discovery in 2012,

- The Standard model (SM) has been found to be a very good theory below a TeV scale
- But there're some inconsistencies, especially cosmological side

+ something

Cosmological issues:

- Isotropic, homogenous, flat universe
- Baryon asymmetry
- Dark matter
- Dark energy

Cosmological issues:

- Isotropic, homogenous, flat universe
- Baryon asymmetry
- Dark matter
 - Dark matter (DM) is beyond the SM physics
 - Many DM searches are ongoing

+ something (DM, ...)

DM searches

- Direct detection
- Indirect detection (via cosmic rays)
- Collider
- Axion like particle searches

LHC

DM searches

- Direct detection
- Indirect detection (via cosmic rays)

- Collider
- Axion like particle searches

Fermi-LAT

XENON1T

NLO calculation@QCD

DM searches

- Direct detection
- Indirect detection (
- Collider
- Axion like particle :

XENON1T

DM searches

Direct detection

Indirect detection (via cosmic rays)

Fermi-LAT

- Collider
- Axion like particle searches

Motivations for indirect DM search (*theoretical side*)

• It consists of about 27% of the total energy of the universe

 There's a possibility to detect DM that interact with SM particles very weakly, i.e., to open the discussion of its stability

Motivations for indirect DM search (*experimental side*)

Motivations for indirect DM search (experimental side)

Ibe, Matsumoto, Shirai, Yagagida '14

Antiproton AMS-02 '16

Hamaguchi, Moroi, Nakayama '15

Motivations for indirect DM search (experimental side)

 4.5σ indication of a DM signal for DM masses near 80 GeV Cuoco, Krämer, Korsmeier '17 Cui, Yuan, Tsai, Fan '17 Are those really DM signals?

Are those really DM signals?

-----> We may check with other observables

Today's topic

DM search using extragalactic gamma rays (including local galaxy distributions)

- a). Inverse-Compton (IC) γ -rays in the *extragalactic* region
- b). Astrophysical sources in the extragalactic region
- c). Tomographic cross-correlation using local galaxy distribution

a). Inverse-Compton (IC) γ-rays in the extragalactic region
b). Astrophysical sources in the Profumo, Jeltema '09
c). Tomographic cross-correlation using local galaxy distribution

- a). Inverse-Compton (IC) γ -rays in the *extragalactic* region
- b). Astrophysical sources in the *extragalactic* region

c). Tomographic cross-correlated using local galaxy distribution

a). Inverse-Compton (IC) γ -rays in the

b). Astrophysical sources in the extragalactic region

c). Tomographic cross-correlation using local galaxy distribution Cuoco, Xia, Regis, Branchini, Fornengo, Viel '15

- a). Inverse-Compton (IC) γ -rays in the extragalactic region
- b). Astrophysical sources in the extragalactic region
- c). Tomographic cross-correlation using local galaxy distribution

Ando, KI '16

<u>Outline</u>

- 1. Introduction
- 2. Part I: DM and the extragalactic gamma rays
- 3. Part II: DM and local galaxy distributions
- 4. Ultra high energy cosmic rays and DM
- 5. Conclusion

2. Part I: DM and the extragalactic gamma rays

- a). Inverse-Compton (IC) γ -rays in the *extragalactic* region
- b). Astrophysical sources in the extragalactic region
- c). Tomographic cross-correlation using local galaxy distribution

a). Inverse-Compton (IC) γ -rays in the *extragalactic* region

b). Astrophysical sources in the

c). Tomographic cross-correlation using local galaxy distribution

a). Inverse-Compton (IC) γ -rays in the extragalactic region

1. About 27% of the total energy of the universe is DM

2. Assume that high energy e^{\pm} are produced by decay or annihilation of DM 3. They hit the CMB photons and produce high energy γ -rays

<u>a). Inverse-Compton (IC) γ -rays in the extragalactic region</u>

- 1. About 27% of the total energy of the universe is DM
- 2. Assume that high energy e^{\pm} are produced by decay or annihilation of DM
- 3. They hit the CMB photons and produce high energy $\gamma\text{-rays}$

<u>a). Inverse-Compton (IC) γ -rays in the extragalactic region</u>

1. About 27% of the total energy of the universe is DM 2. Assume that high energy e^{\pm} are produced by decay or annihilation of DM 3. They hit the CMB photons and produce high energy γ -rays

<u>a). Inverse-Compton (IC) γ -rays in the extragalactic region</u>

KI, Matsumoto, Moroi '09 Profumo, Jeltema '09

- The story is very simple
- If we specify DM model, the QED tells us the IC spectrum exactly especially for decaying DM
- A good tool to test DM scenarios which accommodate the anomalous positron or antiproton excess

<u>a). Inverse-Compton (IC) γ -rays in the extragalactic region</u>

DM model

- Mass
- Lifetime/annihilation cross section
- Decay modes

IC scattering

<u>a). Inverse-Compton (IC) γ -rays in the extragalactic region</u>

Gamma-ray spectrum in various DM models

Ando, KI '15

a). Inverse-Compton (IC) γ -rays in the

b). Astrophysical sources in the extragalactic region

c). Tomographic cross-correlation using local galaxy distribution

- Blazars

M. Ajello et al. '12, '13 & '15

- Star-forming galaxies (SFG) Fermi-LAT '12
 - C. Gruppioni et al. '13
 - Tomborra, Ando, Murase '14
- Misaligned active galactic nuclei (mAGN)

Inoue '11

Mauro, Calore, Donato, Ajello, Latronico '14

They are determined due to recent updates in multifrequency measurements of gamma rays

<u>Blazars</u>

M. Ajello et al. '12, '13 & '15

- active galaxies whose jets are directed toward us
- correlation between gamma and X ray
- ~ 50% of the total EGBR
- uncertainty: ~ 30%

<u>SFG</u>

• e.g., Milky Way galaxy

Fermi-LAT '12 C. Gruppioni et al. '13 Tomborra, Ando, Murase '14

- correlation between gamma and infrared
- ~ 10-30% of the total EGBR
- uncertainty: ~ 60%

Inoue '11

<u>mAGN</u>

Mauro, Calore, Donato, Ajello, Latronico '14

- active galaxies whose jets are NOT directed toward us
- correlation between gamma and radio
- uncertainty: ~ 200%

Ando, KI '15

Blazars and SFGs well explain the observed gamma rays

Ando, KI '15

Blazars and SFGs well explain the observed gamma rays

Constraints on DM scenarios
Important ingredients for our study:

- a). Inverse-Compton (IC) γ -rays in the extragalactic region
- b). Astrophysical sources in the *extragalactic* region
- Ando, KI '15 c). Tomographic cross-correlation using local galaxy distribution

Decaying DM

Ando, KI '15

Decaying DM scenarios to explain the anomalous positron or antiproton are partly excluded

Without astrophysical components

For the TeV anomalous antiproton

In the study, we considered that the gamma rays from the extragalactic region is

- Statistically isotropic
- Integrated over the cosmological distances

In the study, we considered that the gamma rays from the extragalactic region is

- Statistically isotropic
- Integrated over the cosmological distances

But due to the recent observational developments,

- Anisotropies
- Cosmological distances

of the gamma rays can be used for the study

Important ingredients for our study:

a). Inverse-Compton (IC) γ -rays in the

b). Astrophysical sources in the

c). Tomographic cross-correlation using local galaxy distribution

3. Part II: DM and local galaxy distributions

Ingredients for further analysis:

- Anisotropies
- Cosmological distances

Gamma rays are almost isotropic, but ..

DATA (P6_V3 diffuse), 1.0-2.0 GeV

There're anisotropies

DATA (P6_V3 diffuse), 1.0-2.0 GeV

Ingredients for further analysis:

Anisotropies

Cosmological distances

Ingredients for further analysis:

Anisotropies

Cosmological distances

Galaxy distribution

2MRS '11

6000<v<7000km/s 7000<v<8000km/s 8000<v<9000km/s

We know the distance from each galaxy by its redshift

Ingredients for further analysis:

- Anisotropies
- Cosmological distances

Ingredients for further analysis:

- Anisotropies
- Cosmological distances

Gamma rays are expected to trace galaxy distribution

2MRS,QSO, 2MASS,NVSS,MG,LRG

galaxy catalog:

Redshift distribution

0

0.01

Redshift z

1

0.1

Tomographic cross-correlation

 $\hat{m{n}}+m{ heta}$

Xia, Cuoco, Branchini, Viel '15

Cross-correlation signal for $<1^{\circ}$

Compare both, then exclude the theory which deviates from obs. Xobs.

Theoretical calculation

 $\delta I_{\gamma} = I_{\gamma} - \langle I_{\gamma} \rangle$ $\delta \Sigma_g = \Sigma_g - \langle \Sigma_g \rangle$

Theoretical calculation

$$\begin{split} \delta I_{\gamma} &= I_{\gamma} - \langle I_{\gamma} \rangle \\ \delta \Sigma_g &= \Sigma_g - \langle \Sigma_g \rangle \end{split}$$

$$\Sigma_g = \int d\chi \underline{W_g(z)} \frac{n_g(\chi \hat{\boldsymbol{n}}, z)}{\langle n_g \rangle}$$

window function

$$W_g(z) = \frac{d\log N_g}{dz} \frac{dz}{d\chi}$$

 $\langle \Sigma_g \rangle = 1$

Theoretical calculation

 $\delta I_{\gamma} = I_{\gamma} - \langle I_{\gamma} \rangle$ $\delta \Sigma_g = \Sigma_g - \langle \Sigma_g \rangle$

$$\begin{split} C^{\gamma g}(\theta) &= \left\langle \delta I_{\gamma}(\hat{\boldsymbol{n}}) \, \delta \Sigma_{g}(\hat{\boldsymbol{n}} + \boldsymbol{\theta}) \right\rangle \\ \uparrow & \uparrow \\ \gamma \text{-ray flux} & \text{galaxy distribution} \\ &= \mathsf{DM} + \text{astro. sources} \\ & [\mathrm{cm}^{-2} s^{-1} \mathrm{str}^{-1}] \end{split}$$

Decaying DM

$$I_{\gamma}^{\rm dm} = \int d\chi W_{\gamma}^{\rm dm}(z) \left[\frac{\rho_{\rm dm}(\chi \hat{\boldsymbol{n}}, z)}{\langle \rho_{\rm dm} \rangle} \right]$$

$$W_{\gamma}^{\rm dm}(z) = \int dE_{\gamma} \ \frac{d\Phi_{\gamma}^{\rm dm}}{d\chi}(E_{\gamma}, z) \qquad \left[{\rm cm}^{-3} s^{-1} {\rm str}^{-1} \right]$$

$$\frac{d\Phi_{\gamma}^{\rm dm}}{d\chi}(E_{\gamma},z) = \frac{1}{4\pi} \frac{\Omega_{\rm dm}\rho_c}{m_{\rm dm}\tau_{\rm dm}} \frac{1}{1+z} Q_{\gamma}^{\rm dm}(E_{\gamma}',z) e^{-\tau(E_{\gamma}',z)} \qquad \left[{\rm GeV}^{-1} {\rm cm}^{-3} s^{-1} {\rm str}^{-1} \right]$$

Theoretical calculation

 $\delta I_{\gamma} = I_{\gamma} - \langle I_{\gamma} \rangle$ $\delta \Sigma_g = \Sigma_g - \langle \Sigma_g \rangle$

Annihilating DM

$$I_{\gamma}^{\rm dm} = \int d\chi W_{\gamma}^{\rm dm}(z) \left[\frac{\rho_{\rm dm}(\chi \hat{\boldsymbol{n}}, z)}{\langle \rho_{\rm dm} \rangle} \right]^2$$

$$W_{\gamma}^{\rm dm}(z) = \int dE_{\gamma} \, \frac{d\Phi_{\gamma}^{\rm dm}}{d\chi}(E_{\gamma}, z) \qquad \left[{\rm cm}^{-3} s^{-1} {\rm str}^{-1} \right]$$

$$\frac{d\Phi_{\gamma}^{\rm dm}}{d\chi}(E_{\gamma},z) = \frac{\langle \sigma v \rangle}{8\pi} \left(\frac{\Omega_{\rm dm}\rho_c}{m_{\rm dm}}\right)^2 (1+z)^3 Q_{\gamma}^{\rm dm}(E_{\gamma}',z) \, e^{-\tau(E_{\gamma}',z)} \qquad \left[\text{GeV}^{-1}\text{cm}^{-3}s^{-1}\text{str}^{-1}\right]$$

Theoretical calculation

 $\delta I_{\gamma} = I_{\gamma} - \langle I_{\gamma} \rangle$ $\delta \Sigma_g = \Sigma_g - \langle \Sigma_g \rangle$

Decaying/Annihilating DM (source term)

Theoretical calculation

 $\delta I_{\gamma} = I_{\gamma} - \langle I_{\gamma} \rangle$ $\delta \Sigma_g = \Sigma_g - \langle \Sigma_g \rangle$

Astro. sources

$$I_{\gamma}^{X} = \int d\chi W_{\gamma}^{X}(z) \left[\frac{n_{X}(\chi \hat{\boldsymbol{n}}, z)}{\langle n_{X} \rangle} \right] \qquad \qquad X = \text{blazar, SFG}$$

$$W_{\gamma}^{X}(z) = \chi^{2} \int dL_{\gamma} \frac{dn_{\gamma}^{X}(L_{\gamma}, z)}{dL_{\gamma}} F_{\gamma}(L_{\gamma}, z) \quad \left[\mathrm{cm}^{-3} s^{-1} \mathrm{str}^{-1}\right]$$

Acero *et al.* '15 Ajello *et al.* '15

Ackermann *et al.* '12 Gruppioni *et al.* '13 Tamborra, Ando, Murase '14

Theoretical calculation

$$\delta I_{\gamma} = I_{\gamma} - \langle I_{\gamma} \rangle$$
$$\delta \Sigma_g = \Sigma_g - \langle \Sigma_g \rangle$$

Astro. sources (window function)

$$W_{\gamma}^{X}(z) = \chi^{2} \int dL_{\gamma} \frac{dn_{\gamma}^{X}(L_{\gamma}, z)}{dL_{\gamma}} F_{\gamma}(L_{\gamma}, z) \quad \left[\mathrm{cm}^{-3} s^{-1} \mathrm{str}^{-1}\right]$$

$$\frac{dn_{\gamma}^{X}(L_{\gamma},z)}{dL_{\gamma}}$$
: luminosity function [erg⁻¹s cm⁻³]

 $F_{\gamma}(L_{\gamma}, z)$: number flux of photons from a source with luminosity L_{γ} and redshift $z \quad [\text{ cm}^{-2}\text{s}^{-1}\text{str}^{-1}]$

$$L_{\gamma}$$
 : luminosity [$\mathrm{erg\,s^{-1}}$]

Theoretical calculation

$$\begin{split} \delta I_{\gamma} &= I_{\gamma} - \left< I_{\gamma} \right> \\ \delta \Sigma_g &= \Sigma_g - \left< \Sigma_g \right> \end{split}$$

Fornasa, Sánchez-Conde '15

Advantages of tomography

Advantages of tomography

Blazars and SFGs are dominant in z > 0.1

Advantages of tomography

Astro. BG can be reduced in z < 0.1

Theoretical calculation

 $\delta I_{\gamma} = I_{\gamma} - \langle I_{\gamma} \rangle$ $\delta \Sigma_g = \Sigma_g - \langle \Sigma_g \rangle$

$$\begin{split} C^{\gamma g}(\theta) &= \langle \delta I_{\gamma}(\hat{\boldsymbol{n}}) \, \delta \Sigma_{g}(\hat{\boldsymbol{n}} + \boldsymbol{\theta}) \rangle \\ \uparrow & \uparrow \\ \gamma \text{-ray flux} & \text{galaxy distribution} \\ &= \sum_{\ell} \frac{2\ell + 1}{4\pi} C_{\ell}^{\gamma g} P_{\ell}(\cos \theta) \end{split}$$

$$\longrightarrow \quad C_{\ell}^{\gamma g} = \int \frac{d\chi}{\chi^2} W_{\gamma}(z) W_g(z) P_{\gamma g}\left(k = \frac{\ell}{\chi}, z\right)$$

cross-power spectrum between γ -ray sources and galaxies

$$C_{\ell}^{\gamma g} = \int \frac{d\chi}{\chi^2} W_{\gamma}(z) W_g(z) P_{\gamma g}\left(k = \frac{\ell}{\chi}, z\right)$$

cross-correlation

$$C_{\ell}^{\gamma g} = \int \frac{d\chi}{\chi^2} W_{\gamma}(z) W_g(z) P_{\gamma g}\left(k = \frac{\ell}{\chi}, z\right)$$

tomography

$$C_{\ell}^{\gamma g} = \int \frac{d\chi}{\chi^2} W_{\gamma}(z) W_g(z) P_{\gamma g}\left(k = \frac{\ell}{\chi}, z\right)$$

Compare both, then exclude the theory which deviates from obs. Xobs.

Galaxy catalogs

Ando '14

Catalog	Redshift boundaries	$N_{\rm g}$ per bin
2MRS	(0.003, 0.1)	43500
2MRS-N2	(0.003, 0.027, 0.1)	21750
2MRS-N3	(0.003,0.021,0.035,0.1)	14500
2MXSC	(0.003, 0.3)	770000
2MXSC-N2	(0.003,0.083,0.3)	385000
2MXSC-N3	(0.003,0.066,0.10,0.3)	257000
2MXSC-N4	(0.003, 0.058, 0.083, 0.11, 0.3)	193000
2MXSC-N5	(0.003, 0.052, 0.073, 0.093, 0.12, 0.3)	154000
2MXSC-N10	(0.003, 0.039, 0.052, 0.063, 0.073,	77000
	0.083, 0.093, 0.10, 0.12, 0.14, 0.3)	

The reported anomalous cosmic rays:

- Positron
- Antiproton (over 100 GeV)
- Antiproton (~ 80 GeV DM mass)

The reported anomalous cosmic rays:

- Positron
- Antiproton (over 100 GeV)
- Antiproton (~ 80 GeV DM mass)

 10^{4}

Here we focus on three-body leptonic decay: $DM \rightarrow \nu l^{\pm} l^{\mp}$

(a). $\nu \mu^{\pm} e^{\mp} \& \nu e^{\pm} e^{\mp}$ (mainly e^{\pm}) (b). $\nu \mu^{\pm} \mu^{\mp} \& \nu e^{\pm} \mu^{\mp}$ (mainly μ^{\pm})

Including astrophysical sources give ~10 times stronger constraints

The preferred regions are excluded

Impacts of IC gamma rays

(Results without astro. comp.)

(consistent with Regis et al. '15)

Impacts of IC gamma rays

IC gamma gives 1-2 orders of magnitude stronger constraints over TeV region

Impacts of IC gamma rays

IC gamma gives 1-2 orders of magnitude stronger constraints over TeV region

IC gamma rays are crucial to constrain over TeV DM

<u>Decaying DM</u> (for the anomalous $\mathcal{O}(100) \,\mathrm{GeV} \, \bar{p}$) Ando, KI '16

 $DM \to W^{\pm} \mu^{\mp}$

The preferred regions are excluded (only by DM component)

Annihilating DM (for the anomalous $\mathcal{O}(100)$ GeV \bar{p}) Ando, KI '16 DM DM $\rightarrow W^+W^-$

The preferred regions are excluded (by including astro components)

Annihilating DM (for the anomalous $\mathcal{O}(1)\,\mathrm{GeV}\;\bar{p}$)

${ m DM}~{ m DM} ightarrow b \overline{b}$ Ando, KI '16

Annihilating DM (for the anomalous ${\cal O}(1)\,{ m GeV}\; ar p$)

${ m DM}~{ m DM} ightarrow b \overline{b}$ Ando, KI '16

The motivated region is partly excluded

4. Ultra high energy cosmic rays and DM

Although we've shown the constraints on DM models,

Our goal is to find the DM!

For the goal, a naive step to take next would be to consider

• Lower DM mass

• Higher DM mass

Although we've shown the constraints on DM models,

Our goal is to find the DM!

For the goal, a naive step to take next would be to consider

Lower DM mass

Higher DM mass

DM signal might be in PeV neutrino data

IceCube '15

Although we've shown the constraints on DM models,

Our goal is to find the DM!

For the goal, a naive step to take next would be to consider

Lower DM mass

People are getting interested in heavier DM

Cohen, Murase, Rodd, Safdi, Soreq '17 Kalashev, Kuznetsov '16 Kachelriess, Kalashev, Kuznetsov '18 Dudas, Gherghetta, Kaneta, Mambrini, Olive '18

Beyond High Energy Cosmic Rays

Fonseca '03

Beyond High Energy Cosmic Rays

Beyond High Energy Cosmic Rays

Fonseca '03

Propagation of UHECR

Heiter, Kuempel, Walz, Erdmann '17

Initial state	Target field	Process	Secondaries
Nuclei	CBR	Pair production (Bethe-Heitler)	e^{\pm}
Nuclei	CBR	Photo-pion production	p, n, u, e^{\pm}, γ
Nuclei	CBR	Photodisintegration	$p, n, d, t, {}^{3}\mathrm{He}, \alpha, \gamma^{*}$
Nuclei	CBR	Elastic scattering*	γ
Nuclei	—	Nuclear decay	$p, n, \nu, e^{\pm}, \gamma^*$
Photons	CBR	Pair production [*] (Breit-Wheeler)	e^{\pm}
Photons	CBR	Double pair production [*]	e^{\pm}
Electrons	CBR	Triplet pair production [*]	e^{\pm}
Electrons	CBR	Inverse Compton scattering [*]	γ
Electrons	B-field	Synchrotron radiation*	γ

Propagation of UHECR

Heiter, Kuempel, Walz, Erdmann '17

Initial state	Target field	Process	Secondaries
Nuclei	CBR	Pair production (Bethe-Heitler)	e^{\pm}
Nuclei	CBR	Photo-pion production	$p, n, \nu, e^{\pm}, \gamma$
Nuclei	CBR	Photodisintegration	$p, n, d, t, {}^{3}\mathrm{He}, \alpha, \gamma^{*}$
Nuclei	CBR	Elastic scattering*	γ
Nuclei		Nuclear decay	$p, n, \nu, e^{\pm}, \gamma^*$
Photons	CBR	Pair production [*] (Breit-Wheeler)	e^{\pm}
Photons	CBR	Double pair production [*]	e^{\pm}
Electrons	CBR	Triplet pair production [*]	e^{\pm}
Electrons	CBR	Inverse Compton scattering [*]	γ
Electrons	B-field	Synchrotron radiation*	γ

Propagation of UHECR nuclei

Photo-pion production

$$N + \gamma_{\rm BG} \to N + \pi$$

 Pair production (Bethe-Heitler) $^{A}_{Z}X + \gamma_{\rm BG} \rightarrow ^{A}_{Z}X + e^{+} + e^{-}$

Stanev, Engel, Mücke, Protheroe, Rachen '00

Propagation of UHECR

Heiter, Kuempel, Walz, Erdmann '17

Initial state	Target field	Process	Secondaries
Nuclei	CBR	Pair production (Bethe-Heitler)	e^{\pm}
Nuclei	CBR	Photo-pion production	p,n, u,e^{\pm},γ
Nuclei	CBR	Photodisintegration	$p, n, d, t, {}^{3}\mathrm{He}, \alpha, \gamma^{*}$
Nuclei	CBR	Elastic scattering*	γ
Nuclei	_	Nuclear decay	$p, n, \nu, e^{\pm}, \gamma^*$
Photons	CBR	Pair production [*] (Breit-Wheeler)	e^{\pm}
Photons	CBR	Double pair production [*]	e^{\pm}
Electrons	CBR	Triplet pair production [*]	e^{\pm}
Electrons	CBR	Inverse Compton scattering [*]	γ
Electrons	B-field	Synchrotron radiation*	γ

EW cascade

Propagation of UHECR EM particles

• Pair production (PP) $\gamma + \gamma_{BG} \rightarrow e^+ + e^-$

- Double pair production (DPP) $\gamma + \gamma_{BG} \rightarrow e^+ + e^- + e^+ + e^-$
- Triple pair production (TPP) $e + \gamma_{BG} \rightarrow e + e^+ + e^-$
- Inverse Compton scattering (ICS) $e + \gamma_{BG} \rightarrow e + \gamma$

Heiter, Kuempel, Walz, Erdmann '17

CRpropa 3

Batista, Dundovic, Erdmann, Kampert, Kuempel, Müller, Sigl, Vliet, Walz, Winchen '16

A public astrophysical simulation framework for propagating extraterrestrial ultra-high energy particles

CRpropa 3

Batista, Dundovic, Erdmann, Kampert, Kuempel, Müller, Sigl, Vliet, Walz, Winchen '16

A public astrophysical simulation framework for propagating extraterrestrial ultra-high energy particles

CRs from DM can be simulated similarly
CRpropa 3

Batista, Dundovic, Erdmann, Kampert, Kuempel, Müller, Sigl, Vliet, Walz, Winchen '16

A public astrophysical simulation framework for propagating extraterrestrial ultra-high energy particles

CRs from DM can be simulated similarly

5. Conclusions

We have studied DM using extragalactic gamma rays and local galaxy distribution

- The preferred regions for the anomalous e^+ flux are excluded
- IC-induced gamma rays are crucial for the exclusion
- The preferred regions for the anomalous $\mathcal{O}(100\,{\rm GeV})\ \bar{p}\;$ are excluded
- The 80 GeV annihilating DM motivated by the anomalous $\mathcal{O}(1\,{\rm GeV})\ \bar{p}$ is partly excluded
- More to work on