ヒッグス結合の精密測定による CPの破れの間接的検証

阪大理 久保田 充紀

[arXiv: 1808.XXXXX]

共同研究者:青木真由美¹,金子大毅²,兼村晋哉³,端野克哉^{3,4} 1:金沢大数物,2:金沢大自然,3:阪大理,4:富山大理

導入

◆ヒッグス粒子(125GeV)の発見(2012)

標準模型 (SM) は O(100) GeV以下の 低エネルギー有効理論として確立。 SMのヒッグスセクターは 最小形を仮定 $\mathcal{L}_{Higgs} = |D_{\mu}\Phi|^2 - (Y\overline{\psi_L}\Phi\psi_R + h.c.) - (\mu^2|\Phi|^2 + \lambda|\Phi|^4)$ $(\mu^2 < 0)$

しかし、ヒッグスセクターの構造は未だ不明瞭。 (スカラー場の数、表現、対称性など)

這入

◆標準模型を超えた現象

宇宙のバリオン数非対称性,暗黒物質,ニュートリノ振動,...

CPの破れが必要不可欠 [Sakharov, JETP Lett. 5, 24 (1967)] 小林-益川位相によるCPの破れは量的に小さい。 [Huet and Sather, PRD51, 379 (1995)]

新しいCPの破れのソースが必要である。

□ 拡張ヒッグスセクターは新しい**CP**の破れを含み得る。

◆拡張ヒッグス模型の検証

- 直接的検証: SMにない新粒子の発見
- 間接的検証: SMの予言からのずれの検出

◆CPの破れの探索

- 新粒子 (CP-even, -odd state) の特徴
- 崩壊粒子の角度分布
- 電気双極子モーメント(EDM)
- ▶ 既知の粒子の精密測定が新物理探索の糸口になる。

■ ヒッグス結合定数に現れるCPの破れの間接的効果に注目。

を用いて議論する。

◆具体例として、

Two Higgs doublet model (2HDM)

[T. D. Lee, PRD8, 1226 (1973)]

追加のisospin doublet

2HDM : SM + Φ_{extra}

◆ CPを保存する2HDMとCPを破る2HDMのそれぞれで、 ヒッグス結合 (hVV, hττ, hbb, hcc) の解析をする。

◆それらの比較から CPの破れの効果を検証できるかを議 論する。

Contents

- 導入
- CPを破るTwo Higgs doublet model
- 数值解析
- ・まとめ

◆ポテンシャル (softly broken Z₂ sym.)

$$V = \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 - \{\mu_3^2(\Phi_1^{\dagger}\Phi_2) + h.c.\}$$
 $+ \frac{1}{2}\lambda_1 |\Phi_1|^4 + \frac{1}{2}\lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger}\Phi_2|^2 + \left\{ \frac{1}{2}\lambda_5 (\Phi_1^{\dagger}\Phi_2)^2 + h.c. \right\}$

◆スカラー場

 Φ_1, Φ_2 : Isospin doublet, Y=1/2, $\Phi_1 \to \Phi_1, \Phi_2 \to -\Phi_2$ under Z_2 sym.

$$\Phi_1 = \begin{pmatrix} w_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + h_1 + iz_1) \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} w_2^+ \\ \frac{1}{\sqrt{2}}(v_2 e^{i\xi} + h_2 + iz_2) \end{pmatrix}$$
$$v^2 \equiv v_1^2 + v_2^2 = (246 GeV)^2$$

2018/8/9

◆ポテンシャル (softly broken Z₂ sym.)

$$V = \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 - (\mu_3^2) \Phi_1^{\dagger} \Phi_2) + h.c.$$
 $+ \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \left\{ \frac{1}{2} \lambda_5 \Phi_1^{\dagger} \Phi_2 \right\}^2 + h.c.$

 Φ_1, Φ_2 : Isospin doublet, Y=1/2, $\Phi_1 \to \Phi_1, \Phi_2 \to -\Phi_2$ under Z_2 sym.

$$\Phi_{1} = \begin{pmatrix} w_{1}^{+} \\ \frac{1}{\sqrt{2}}(v_{1} + h_{1} + iz_{1}) \end{pmatrix}, \quad \Phi_{2} = \begin{pmatrix} w_{2}^{+} \\ \frac{1}{\sqrt{2}}(v_{2}e^{i\xi} + h_{2} + iz_{2}) \end{pmatrix}$$
$$v^{2} \equiv v_{1}^{2} + v_{2}^{2} = (246GeV)^{2}$$
 ξ は場の位相の再定義で消せる。

◆ポテンシャル(softly broken Z₂ sym.)

$$V = \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 - (\mu_3^2) \Phi_1^{\dagger} \Phi_2) + h.c. \}
 + \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \left\{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + h.c. \right\}$$
 (停留条件)
 (停留条件)
 ($\frac{\partial V}{\partial h_1} \Big|_0 = 0,$
 ($\frac{\partial V}{\partial h_2} \Big|_0 = 0,$
 ($\frac{\partial V}{\partial h_2} \Big|_0 = 0,$
 ($\frac{\partial V}{\partial h_2} \Big|_0 = 0,$
 ($\frac{\partial V}{\partial z_1} \Big|_0 =$

◆模型のパラメータ

$$v_1, v_2, \operatorname{Re}(\mu_3^2), \lambda_1, \lambda_2, \lambda_3, \lambda_4, \operatorname{Re}(\lambda_5), \operatorname{Im}(\lambda_5)$$
2018/8/9 2018 基研研究会

FCNC: Flavor Changing Neutral Current

Z。荷の課し方で4タイプ

◆湯川相互作用 $-\mathcal{L}_Y \ni \overline{f_L} \{Y_1(v_1 + \phi_1^0) + \frac{Y_2(v_2 + \phi_2^0)}{Y_2(v_2 + \phi_2^0)}\} f_R + h.c.$

 \square フェルミオンfの質量行列対角化でFCNCが自動的に消える。

			2.5			-	
	Φ_1	Φ_2	Q_L	L_L	u_R	d_R	e_R
Type-I	+	_	+	+	_	_	
Type-II	+	_	+	+	—	+	+
Type-X	+	—	+	+	—	_	+
Type-Y	+	—	+	+	_	+	_

[Aoki, Kanemura, Tsumura and Yagyu, PRD80, 015017 (2009)]

◆中性スカラーの混合 **質量固有状態**

 h_1', h_2' : CP-even, h_3' : CP-odd

基底の回転

$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix} \qquad \tan \beta = \frac{v_2}{v_1}$$

$$\phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h_1'+iG^0) \end{pmatrix}, \quad \phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(h_2'+ih_3') \end{pmatrix}$$

◆質量行列:
$$\mathcal{M}_{ij}^2 \equiv \partial^2 V / \partial h'_i \partial h'_j$$

 $\mathcal{M}^2 = \begin{pmatrix} \mathcal{M}_{11}^2 & \mathcal{M}_{12}^2 & \mathcal{M}_{13}^2 \\ \mathcal{M}_{12}^2 & \mathcal{M}_{22}^2 & \mathcal{M}_{23}^2 \\ \mathcal{M}_{13}^2 & \mathcal{M}_{23}^2 & \mathcal{M}_{33}^2 \end{pmatrix}$

$$R = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix}$$

 $\mathcal{M}_{13}^2, \mathcal{M}_{23}^2 \propto \operatorname{Im}(\lambda_5)$ $\operatorname{Im}(\lambda_5) \neq 0 \Rightarrow$ CP-even, -odd が混ざる。

$$\kappa_V = \frac{g_{H_1VV}^{2\text{HDM}}}{g_{hVV}^{\text{SM}}} = R_{11}$$
$$\frac{\Gamma_{2\text{HDM}}(H_1 \to f\bar{f})}{\Gamma_{\text{SM}}(h \to f\bar{f})} \simeq (c_f^s)^2 + (c_f^p)^2$$

	ξ_u	ξ_d	ξ_e
Type-I	$+\cot\beta$	$+\cot\beta$	$+\cot\beta$
Type-II	$+\cot\beta$	$-\tan\beta$	$-\tan\beta$
Type-X	$+\cot\beta$	$+\cot\beta$	$-\tan\beta$
Type-Y	$+\cot\beta$	$-\taneta$	$+\cot\beta$

Contents

- 導入
- CPを破るTwo Higgs doublet model
- 数值解析
- ・まとめ

◆ 注目するカップリング

[Kanemura, Tsumura, Yagyu, Yokoya, PRD90, 075001 (2014)]

解析結果

解析結果

Sensitivity: [K. Fujii, et al., arXiv: 1710.07621] *κ*_Z: 0.38% ILC250 (2ab⁻¹) *κ*_{*b*}: 1.8% 1 00/ $R_{21} \leq 0$ 1.0 SM 2.5 0.9 $\Gamma_{SM}(h \to b\overline{b})$ 0.99 Ky = 0.98 0.7 Туре-Х

 κ_V =0.99と観測されたとする。

2HDM (CPC)を仮定すると **橙色の実曲線**が引ける。

Sensitivity: [K. Fujii, et al., arXiv: 1710.07621]

*κ*_{*Z*}: 0.38% ILC250 (2ab⁻¹) κ_h : 1.8% κ_{τ} : 1.9% $R_{21} \le 0$

 κ_V =0.99と観測されたとする。

- 2HDM (CPC)を仮定すると **橙色の実曲線**が引ける。
- 2HDM (CPC)が予言するの は、観測量()が橙色の 実曲線に乗ること。

観測量の実曲線から のずれは、間接的**CP** の破れの効果。

2018/8/9

Sensitivity:

[Keus, King, Moretti and Yagyu, JHEP 04, 048 (2016)]

2018/8/9

2018 基研研究会

[青木,金子,兼村,端野,久保田] 19

まとめ

- ◆本講演では、Two Higgs doublet modelに注目し、間接探索の観点からヒッグス結合定数へのCPの破れの効果を解析した。
- ◆拡張ヒッグスセクターのCPを保存する場合とCPを破る場 合では、それぞれでヒッグス結合定数に異なるズレが生 じる。
- ◆ヒッグス結合定数の精密測定からは、拡張ヒッグス模型の判別に加えて、CPの破れの情報まで引き出せる可能性がある。

Back up

2HDM with softly broken Z₂の解析

$$\hat{\phi_1} = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h_1'+iG^0) \end{pmatrix}, \ \hat{\phi_2} = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(h_2'+ih_3') \end{pmatrix} \qquad \begin{pmatrix} h_1' \\ h_2' \\ h_3' \end{pmatrix} = R \begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix}$$

• CP conserving case (${
m Im}(\lambda_5)=0$), for the mixing states $\,(h_1',h_2',h_3')$,

 $\mathcal{M}_{CPC}^{2} = \begin{pmatrix} m_{h}^{2} s_{\beta-\alpha}^{2} + m_{H}^{2} c_{\beta-\alpha}^{2} & \frac{1}{2} (m_{h}^{2} - m_{H}^{2}) s_{2(\beta-\alpha)} \\ \frac{1}{2} (m_{h}^{2} - m_{H}^{2}) s_{2(\beta-\alpha)} & m_{h}^{2} c_{\beta-\alpha}^{2} + m_{H}^{2} s_{\beta-\alpha}^{2} \\ 0 & 0 & m_{A}^{2} \end{pmatrix}$

mass eigenstates

/1/

• CP violating case (${
m Im}(\lambda_5)
eq 0$),

$$\mathcal{M}^{2} = \begin{pmatrix} \tilde{m}_{h}^{2} s_{\beta-\tilde{\alpha}}^{2} + \tilde{m}_{H}^{2} c_{\beta-\tilde{\alpha}}^{2} & \frac{1}{2} (\tilde{m}_{h}^{2} - \tilde{m}_{H}^{2}) s_{2(\beta-\tilde{\alpha})} \\ \frac{1}{2} (\tilde{m}_{h}^{2} - \tilde{m}_{H}^{2}) s_{2(\beta-\tilde{\alpha})} & \tilde{m}_{h}^{2} c_{\beta-\tilde{\alpha}}^{2} + \tilde{m}_{H}^{2} s_{\beta-\tilde{\alpha}}^{2} \\ -\frac{1}{2} v^{2} \operatorname{Im}(\lambda_{5}) s_{2\beta} & -\frac{1}{2} v^{2} \operatorname{Im}(\lambda_{5}) c_{2\beta} \end{pmatrix} \begin{bmatrix} -\frac{1}{2} v^{2} \operatorname{Im}(\lambda_{5}) s_{2\beta} \\ -\frac{1}{2} v^{2} \operatorname{Im}(\lambda_{5}) c_{2\beta} \\ \tilde{m}_{A}^{2} \end{bmatrix}$$

• Parameters in this model

 $v (= 246 \text{ GeV}), m_{H_1} (= 125 \text{ GeV}), M, m_{H^{\pm}}, \tilde{m}_H, \tilde{m}_A, \kappa_V, \tan\beta, \operatorname{Im}(\lambda_5)$

2018/8/9

2HDM with softly broken Z₂の解析

$$\begin{aligned}
\int \mathcal{M}^2 &= \tilde{\mathcal{M}}^2 + \Delta \mathcal{M}^2 \\
R &= \tilde{R} + \Delta R \\
\Delta \mathcal{M}^2, \Delta R, \to 0 \; (\operatorname{Im}(\lambda_5) \to 0)
\end{aligned}$$

$$diag(m_{H_1}^2, m_{H_2}^2, m_{H_3}^2) = R^T \mathcal{M}^2 R$$

= $\tilde{R}^T \tilde{\mathcal{M}}^2 \tilde{R} + \Delta (R^T \mathcal{M}^2 R)$
= $diag(\tilde{m}_h^2, \tilde{m}_H^2, \tilde{m}_A^2) + diag(\Delta m_h^2, \Delta m_H^2, \Delta m_A^2)$

2HDM with softly broken Z₂の解析

• Mass dimensional parameters $ilde{m}_H, ilde{m}_A$

Sensitivity:

解析結果

◆将来の観測制度

	ILC250	+ILC500
	κ fit	κ fit
g(hbb)	1.8	0.60
g(hcc)	2.4	1.2
g(hgg)	2.2	0.97
g(hWW)	1.8	0.40
g(h au au)	1.9	0.80
g(hZZ)	0.38	0.30
$g(h\gamma\gamma)$	1.1	1.0
$g(h\mu\mu)$	5.6	5.1
$g(h\gamma Z)$	16	16

Sensitivity: [K. Fujii, et al., arXiv: 1710.07621]

Type-I

2018 基研研究会

29

2018/8/9

2018 基研研究会

31

角度分布へのCPの破れの効果

以下のような結合を含むモデルでは、 $\mathcal{L}_{h\tau\tau} = g\bar{\tau}(\cos\psi_{CP} + i\gamma_5\sin\psi_{CP})\tau h$ $h \to \tau^+ \tau^- \to h^+ \bar{\nu} h^- \nu$ test fame t rest frame (polarimeter) Δœ h- (polarimeter) [From D. Jeans's slide(ACWS2016)]

 $dN/(d\cos\theta^+ d\cos\theta^- d\phi^+ d\phi^-) \propto (1 + \cos\theta^+ \cos\theta^-) - \sin\theta^+ \sin\theta^- \cos(\Delta\phi - 2\psi_{\rm CP}).$

ILC250, 2ab⁻¹ :
$$\Delta \psi_{CP}$$
=4.3°

[Jeans and Wilson, PRD98, 013007 (2018)]

ILC250, 2ab⁻¹ : $\Delta \psi_{CP}$ =4.3°

[Jeans and Wilson, PRD98, 013007 (2018)]

標準模型のバリオン数生成

サハロフの条件(1967): 対象な宇宙からバリオン数を生むための条件

▶バリオン数の生成には標準模型の拡張が必要とされる。

2018/8/9