

False vacuum decay in gauge theory ~Standard model and beyond~

Yutaro Shoji (KMI, Nagoya U.)

Phys. Lett. B771(2017)281; M. Endo, T. Moroi, M. M. Nojiri, YS JHEP11(2017)074; M. Endo, T. Moroi, M. M. Nojiri, YS
Phys. Rev. Lett. 119 (2017) no.21, 211801; S. Chigusa, T. Moroi, YS
Phys. Rev. D97 (2018) no.11, 116012; S. Chigusa, T. Moroi, YS

https://github.com/YShoji-HEP/ELVAS

Introduction

Bubble nucleation rate

[C. G. Callan, S. R. Coleman, '77]

A rate to have a bubble in unit volume

R: Size of the instanton

Bubble nucleation rate

[C. G. Callan, S. R. Coleman, '77]

A rate to have a bubble in unit volume $\gamma = Ae^{-D}$ Quantum correction to B $A \sim \left(\frac{\det S_E''|_{\text{bounce}}}{\det S_E''|_{\text{falso}}}\right)^{-1/2}$

Typical scale?

A rate to have a bubble in unit volume

$$\gamma = Ae^{-B}$$

SM is classically scale invariant

Any size of bounce is allowed

Renormalization scale?

A rate to have a bubble in unit volume

Calculate A!

A rate to have a bubble in unit volume

$$\gamma = Ae^{-B}$$

We do not need "typical scale"

The renormalization scale uncertainty is canceled

Standard Model @ one-loop

G. Ishidori, G. Ridolfi, A. Strumia; '01

However,

There were no established ways to subtract dilatational and gauge zero modes They use an approx. for the gauge zero mode subtraction, which is gauge dependent

Gauge zero mode

[A. Kusenko, K. M. Lee, E. J. Weinberg; '97]

However,

There were no established ways to subtract dilatational and gauge zero modes **for the gauge zero mode subtraction**, which is gauge dependent

We have found the correct treatment of the gauge zero mode

JHEP 1711 (2017) 074, M. Endo, T. Moroi, M. M. Nojiri, YS

Contents

- Introduction
- Gauge invariant analytic results
 - Standard Model
- **ELVAS** (c++ package for ELectroweak VAcuum Stability)
 - Right handed neutrino
- Summary

Gauge invariant analytic result

Improvement

Gauge contribution

$$A^{(A_{\mu},\varphi)} = \prod_{J=0}^{\infty} \left(\frac{\det \mathcal{M}_{J}^{(S,L,\varphi)}}{\det \widehat{\mathcal{M}}_{J}^{(S,L,\varphi)}} \right)^{-(2J+1)^{2}/2} \left(\frac{\det \mathcal{M}_{J}^{(T)}}{\det \widehat{\mathcal{M}}_{J}^{(T)}} \right)^{-(2J+1)^{2}}$$

$$\mathcal{M}_J^{(T)} \equiv -\Delta_J + g^2 \bar{\phi}^2$$

$$\mathcal{M}_{J}^{(S,L,\varphi)} \equiv \begin{pmatrix} -\Delta_{J} + \frac{3}{r^{2}} + g^{2}\bar{\phi}^{2} & -\frac{2L}{r^{2}} & g\bar{\phi}' - g\bar{\phi}\partial_{r} \\ -\frac{2L}{r^{2}} & -\Delta_{J} - \frac{1}{r^{2}} + g^{2}\bar{\phi}^{2} & -\frac{L}{r}g\bar{\phi} \\ 2g\bar{\phi}' + g\bar{\phi}\partial_{r} + \frac{3}{r}g\bar{\phi} & -\frac{L}{r}g\bar{\phi} & -\Delta_{J} + \frac{(\Delta_{0}\bar{\phi})}{\bar{\phi}} \end{pmatrix} + \left(1 - \frac{1}{\xi}\right) \begin{pmatrix} \partial_{r}^{2} + \frac{3}{r}\partial_{r} - \frac{3}{r^{2}} & -L\left(\frac{1}{r}\partial_{r} - \frac{1}{r^{2}}\right) & 0 \\ L\left(\frac{1}{r}\partial_{r} + \frac{3}{r^{2}}\right) & -\frac{L^{2}}{r^{2}} & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \Delta_{J} = \partial_{r}^{2} + \frac{3}{r}\partial_{r} - \frac{3}{r}\partial_{r} - \frac{L^{2}}{r^{2}} & 0 \\ L\left(\frac{1}{r}\partial_{r} + \frac{3}{r^{2}}\right) & -\frac{L^{2}}{r^{2}} & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \Delta_{J} = \partial_{r}^{2} + \frac{3}{r}\partial_{r} - \frac{L^{2}}{r^{2}}\partial_{r} - \frac{L^{2}}{r$$

 $\frac{L^2}{r^2}$

hatted operator: $\phi
ightarrow 0$

Theorem

[J. H. van Vleck, '28; R. H. Cameron and W. T. Martin, '45; ...] We give a proof for our case in JHEP11(2017)074

$$\frac{\det \mathcal{M}}{\det \widehat{\mathcal{M}}} = \left(\lim_{r \to \infty} \frac{\det[\psi_1(r) \cdots \psi_n(r)]}{\det[\widehat{\psi}_1(r) \cdots \widehat{\psi}_n(r)]}\right) \left(\lim_{r \to 0} \frac{\det[\psi_1(r) \cdots \psi_n(r)]}{\det[\widehat{\psi}_1(r) \cdots \widehat{\psi}_n(r)]}\right)^{-1}$$

 $\mathcal{M}, \widehat{\mathcal{M}}$: (n x n) radial fluctuation operators

 $\mathcal{M}\psi_i=0,\;\widehat{\mathcal{M}}\hat{\psi}_i=0\;$: independent solutions (regular at r=0)

Decomposition of simultaneous differential equations

[JHEP11(2017)074; M. Endo, T. Moroi, YS]

$$\mathcal{M}_{J}^{(S,L,\varphi)}\Psi_{i} = 0$$

$$\Psi_{i} = \begin{pmatrix} \partial_{r\chi} \\ \frac{L}{r\chi} \\ g\bar{\phi}\chi \end{pmatrix} + \begin{pmatrix} \frac{1}{rg^{2}\bar{\phi}^{2}}\eta \\ \frac{1}{Lr^{2}g^{2}\bar{\phi}^{2}}\partial_{r}(r^{2}\eta) \\ 0 \end{pmatrix} + \begin{pmatrix} -2\frac{\bar{\phi}'}{g^{2}\bar{\phi}^{3}}\zeta \\ 0 \\ \frac{1}{g\bar{\phi}}\zeta \end{pmatrix},$$

$$\frac{\Delta_{J}\chi}{g\bar{\phi}\chi} = \frac{2\bar{\phi}'}{rg^{2}\bar{\phi}^{3}}\eta + \frac{2}{r^{3}}\partial_{r}\left(\frac{r^{3}\bar{\phi}'}{g^{2}\bar{\phi}^{3}}\zeta\right) - \xi\zeta$$

$$\left(\Delta_{J} - g^{2}\bar{\phi}^{2} - 2\frac{\bar{\phi}'}{\bar{\phi}}\frac{1}{r^{2}}\partial_{r}r^{2}\right)\eta = -\frac{2L^{2}\bar{\phi}'}{r\bar{\phi}}\zeta$$

$$\Delta_{J}\zeta = 0$$

Gauge invariant analytic formulae

We can calculate all of the determinants analytically

$$\gamma = \int d\ln R \frac{1}{R^4} \left[\mathcal{A}^{\prime(h)} \mathcal{A}^{(\sigma)} \mathcal{A}^{(\psi)} \mathcal{A}^{(A_{\mu},\varphi)} e^{-\mathcal{B}} \right]_{\overline{\mathrm{MS}}, \ \mu \sim 1/R},$$

where

$$\begin{split} \left[\ln \mathcal{A}^{\prime(h)}\right]_{\overline{\mathrm{MS}}} &= -\frac{3}{4} - 6\ln A_{G} + \frac{5}{2}\ln\frac{\pi}{3} - \frac{5}{2}\ln\frac{|\lambda|}{8} + 3\ln\frac{\mu R}{2},\\ \left[\ln \mathcal{A}^{(\sigma)}\right]_{\overline{\mathrm{MS}}} &= -\frac{1}{2}\mathcal{S}_{\sigma}(z_{\kappa}) + \frac{\kappa}{|\lambda|} + \frac{\kappa^{2}}{3|\lambda|^{2}}\left(1 + \gamma_{E} + \ln\frac{\mu R}{2}\right),\\ \left[\ln \mathcal{A}^{(\psi)}\right]_{\overline{\mathrm{MS}}} &= -\frac{y^{4}}{3|\lambda|^{2}}\left(1 + \gamma_{E} + \ln\frac{\mu R}{2}\right) - \frac{2y^{2}}{3|\lambda|}\left(\frac{25}{4} + \gamma_{E} + \ln\frac{\mu R}{2}\right) + \mathcal{S}_{\psi}(z_{y}),\\ \left[\ln \mathcal{A}^{(A_{\mu},\varphi)}\right]_{\overline{\mathrm{MS}}} &= \ln \mathcal{V}_{G} + \left[\ln \mathcal{A}^{\prime(A_{\mu},\varphi)}\right]_{\overline{\mathrm{MS}}},\\ \left[\ln \mathcal{A}^{\prime(A_{\mu},\varphi)}\right]_{\overline{\mathrm{MS}}} &= \left(\frac{1}{3} + \frac{2g^{2}}{|\lambda|} + \frac{g^{4}}{|\lambda|^{2}}\right)\left(1 + \gamma_{E} + \ln\frac{\mu R}{2}\right) \\ &\quad - \frac{g^{4}}{|\lambda|^{2}}\left(\frac{31}{3} - \pi^{2}\right) - \frac{1}{4} - \frac{1}{3}\gamma_{E} - 2\ln A_{G} - \frac{1}{2}\ln\frac{|\lambda|}{8} + \frac{1}{2}\ln\pi \\ &\quad - \frac{3}{2}\mathcal{S}_{\sigma}(z_{g}) - \frac{3}{2}\ln\Gamma(1 - z_{g})\Gamma(2 + z_{g}). \end{split}$$

[A. Andreassen, W. Frost, M. D. Schwartz; '17, S. Chigusa, T. Moroi, YS; '18]

Integral over the bounce size

R-dependence of the integrand at the one-loop level

$$\gamma = \int dR \frac{d\gamma}{dR} \propto \int d\ln R \ R^{-4 - \frac{8\pi^2 \beta_{\lambda}^{(1)}}{3\lambda^2}}$$
$$\beta_{\lambda}^{(1)} : \text{1-loop beta function of } \lambda$$
The integral apparently diverge!

However, the result can converge if one includes two or more loops

RG improvement

For each bounce size R, we take the renormalization scale as $\mu \simeq R^{-1}$ (Corresponding to resummation of higher loop logarithmic corrections)

Standard Mod

 m_t / Ge

174

-100

($\overline{\phi}_C$: field value at the center of the bounce)

Standard Model

ELVAS

(c++ package for ELectroweak VAcuum Stability)

*実在する都市、背景とは一切関係ありません。

Who don't even want to write a code by theirselves

should go to https://github.com/YShoji-HEP/ELVAS

ELVAS

C++ Package for ELectroweak VAcuum Stability

Introduction

ELVAS is a C++ package for the calculation of the decay rate of a false vacuum at the one-loop level, based on the formulae developed in [1, 2]. ELVAS is applicable to models with the following features:

- Only one scalar boson is responsible for the vacuum decay.
- Classical scale invariance (approximately) holds. In particular, the potential of the scalar field responsible for the vacuum decay should be well approximated by the quartic form for the calculation of the bounce solution. (Thus, the bounce is nothing but the so-called Fubini instanton.)
- The instability of the scalar potential occurs due to RG effects; thus, the quartic coupling constant becomes negative at a high scale.

If you use ELVAS in scholarly work, please cite [1] and [2].

Assumptions

We consider a more general case where the scalar potential is roughly given by

The bounce field can have global/local symmetry

Laurent expansions

The package uses expanded expressions (< 0.05% accuracy)

\mathbf{F} Numerical Recipe In this Appendix, we give fitting formulae of the prefactors at the one-loop level. Contrary to the analytic formulae including various special functions with complex arguments, which may be inconvenient for numerical calculations, the fitting formulae give a simple procedure to perform a numerical calculation of the decay rate with saving computational time. Compared to the analytic expressions, the errors of the fitting formulae are 0.05% or smaller. • Higgs $-\left[\ln \mathcal{A}^{\prime(h)}\right]_{\rm MS} = -0.99192944327027 + 2.5\ln|\lambda| - 3\ln\mu R.$ (F.1)• Scalar Let $x = \kappa/|\lambda|$. For x < 0.7, $-\ 0.134704602106396x^4 + 0.102278606592866x^5$ $-0.0839329261179402x^{6} + 0.0715956882048009x^{7}$ $-0.0625481711576628x^8 + 0.0555697470602515x^9$ $-0.0500042455037409x^{10} - 0.3333333333333333333x^2 \ln \mu R.$ (F.2)For x > 0.7, $-\left[\ln \mathcal{A}^{(\sigma)}\right]_{\overline{MS}} = -0.0261559272783723 + 0.0000886704923163256/x^4$ $+ 0.0000962000962000962/x^3 + 0.000198412698412698/x^2$ $+\ 0.00105820105820106/x + 0.1111111111111111111x$ $+ 0.1666666666666667x^2) \ln x - 0.333333333333333333333x^2 \ln \mu R.$ (F.3) • Fermion Let $x = y^2/|\lambda|$. For x < 1.3, $-\left[\ln\mathcal{A}^{(\psi)}\right]_{\rm MS} = 0.64493454511661x + 0.005114971505109x^2$ $-0.0366953662258276x^{3} + 0.00476307962690785x^{4}$ $-0.000845451274112082x^{5} + 0.000168244913551417x^{6}$ $-\ 0.0000353785958610453x^7 + 7.67709260595572 \times 10^{-6}x^8$ (F.4)52

[S. Chigusa, T. Moroi, YS; '18]

What you need

Renormalization group evolution of couplings

What you need

Renormalization group evolution of couplings

What you need

Renormalization group evolution of couplings

🔴 🕘 🔵 📄 sm.in 🗸	
######################################	
# #	
# Input File for the Standard Model	Start
#	
* ************************************	
[GENERAL]	
#Labels for dataset variables	Read [GENERAL]
DATASET_VARS = {mHiggs, mTop}	
#Labels for RG data	+
$RECORD_VARS = \{Q, g2, g1, yt, yb, lambda\}$	Execute [INITIALIZE]
#Delimiter for dataset variables	Execute [INITIALIZE]
DATASET_DELIM = " "	
#Delimiter for RG data	♥
RECORD_DELIM = " "	Dataset Yes Road detect variables
#Delimiter for output	exists? Read dataset variables
OUTPUT_DELIM = " "	
[INITIALIZE]	• • • • • • • • • • • • • • • • • • •
#Set ln(Q x R)	Execute [BEGIN_ROUTINE]
$LN_QR = 0.$	
#Volume of the group space generated by the broken generators	No
$lnVg = log(2, * p1^2)$	Ves
#Upper bound on <u>lnPhiC</u> and <u>lnR^(-1</u>) EXECUTED at the Deginnin	Record exists? Read a record
upper_bound = log(2.435e18)	
#Print a header	No
print("mHiggs mTop log10(gamma x <u>Gyr Gpc</u> ^3)")	
[BEGIN_ROUTINE]	Execute [FINALIZE] Execute [END_ROUTINE] Execute [MAIN_ROUTINE]
<pre>#Clear phiC and dlngamma/dR^(-1) initialize()</pre>	
#Lower bound on <u>inPhic</u> and <u>inR</u> ^(-1)	
tower_bound = tog(mrop + 10)	End
[MAIN_ROUTINE]	
HIGGS_QUARTIC_COUPLING = lambda	
#Tf Wigge quartic coupling is positive, skip this record	
if(HIGGS_QUARTIC_COUPLING > 0, continue())	

🔴 🕘 🔵 📄 sm.in 🗸	
<i></i>	
# #	
# Input File for the Standard Model	Start
# #	
***************************************	\downarrow
[GENERAL]	Read [GENERAL]
<pre>#Labels for dataset variables DATASET_VARS = {mHiggs, mTop}</pre>	
#Labels for PG data	
RECORD_VARS = {Q, g2, g1, yt, yb, lambda}	
#Delimiter for dataset variables	Execute [INITIALIZE]
DATASET_DELIM = " "	
#Delimiter for RG data	*
RECORD_DELIM = " "	Dataset Yes Read dataset variables
#Delimiter for output	exists?
OUTPOI_DELIM = " "	
[INITIALIZE] #Set lp(0 x R)	
$LN_QR = 0.$	Execute [BEGIN_ROUTINE]
#Volume of the group space generated by the broken generators	Νο
$lnVg = log(2. * pi^2)$	
#Upper bound on <u>lnPhiC</u> and <u>lnR</u> ^(-1)	Record exists? Read a record
upper_bound = $log(2.435e18)$	
<pre>#Print a header print("mHiggs</pre>	No
princy mininggs milliop cogre(gamma x ayr, apr 3/)	
[BEGIN_ROUTINE] #Clear phiC and dlngamma/dR^(-1)	Execute [FINALIZE] Execute [END_KOUTINE] Execute [MAIN_ROUT
initialize() Executed for each datas	
#Lower bound on lnPhiC and lnR^(-1)	
lower_bound = log(mTop * 10)	End
[MAIN_ROUTINE]	
HIGGS OUARTIC COUPLING = lambda	

#If Higgs quartic coupling is positive, skip this record if(HIGGS_QUARTIC_COUPLING > 0, continue())

🛑 🕘 🔵 sm.in 🗸				
***************************************	*********************			
.# # # Input File for the Standard # # ###############################	Model ********	Start		
[GENERAL] #Labels for dataset variables DATASET_VARS = {mHiggs, mTop}		Read [GENERAL]		
<pre>#Labels for RG data RECORD_VARS = {Q, g2, g1, yt, yb, lambda}</pre>				
<pre>#Delimiter for dataset variables DATASET_DELIM = " "</pre>		Execute [INITIALIZE]		
<pre>#Delimiter for RG data RECORD_DELIM = " "</pre>		Dataset Ye	es	7
<pre>#Delimiter for output OUTPUT_DELIM = " "</pre>		exists?		
[INITIALIZE] #Set ln(Q x R) LN_QR = 0.			Execute [BEGIN_ROUTINE]	
#Volume of the group space generated by the broke $lnVg = log(2. * pi^2)$	en generators	No	\downarrow	
<pre>#Upper bound on lnPhiC and lnR^(-1) upper_bound = log(2.435e18)</pre>			Record exists?	Yes Read a record
<pre>#Print a header print("mHiggs mTop log10(gamma x Gy</pre>	(r Gpc^3)")	÷	No	
<pre>[BEGIN_ROUTINE] #Clear phiC and dlngamma/dR^(-1) initialize()</pre>		Execute [FINALIZE]	Execute [END_ROUTINE]	Execute [MAIN_ROUTINE]
<pre>#Lower bound on lnPhiC and lnR^(-1) lower_bound = log(mTop * 10)</pre>		End		
[MAIN_ROUTINE] #The Higgs quartic coupling. HIGGS_QUARTIC_COUPLING = lambda				
<pre>#If Higgs quartic coupling is positive, skip this if(HIGGS_QUARTIC_COUPLING > 0, continue())</pre>	Executed for each	record		

🔴 🕘 📄 sm.in 🗸	

#	
# Input File for the Standard Model	
#	Start
#	
***************************************	↓
[GENERAL]	
#Labels for dataset variables	Read [GENERAL]
DATASET_VARS = {mHiggs, mTop}	
#Labola for PC data	1
RECORD VARS = $\{0, q2, q1, vt, vb, lambda\}$	· · · · · · · · · · · · · · · · · · ·
	Execute [INITIALIZE]
#Delimiter for dataset variables	
DATASET_DELIM = " "	
#Delimiter for RG data	•
RECORD_DELIM = " "	Dataset
	exists?
#Delimiter for output	
UUTPUI_DELIM = " "	
[INITIALIZE]	
#Set ln(Q x R)	
$LN_QR = 0.$	
#Volume of the group space generated by the broken generators	
$\ln Va = \log(2. * pi^2)$	No
#Upper bound on <u>lnPhiC</u> and <u>lnR</u> ^(-1)	
upper_bound = log(2.435e18)	
#Print a header	1
print("mHiggs mTop log10(gamma x Gyr Gpc^3)")	· · · · · · · · · · · · · · · · · · ·
	Execute [EINALIZE]
[BEGIN_ROUTINE] #Clear_phiC_and_dlngamma/dB^(_1)	Execute [FINALIZE]
initialize()	
	+
#Lower bound on <u>lnPhiC</u> and <u>lnR</u> ^(-1)	
lower_bound = log(mTop * 10)	End
[MAIN ROUTINE]	
#The Higgs quartic coupling.	
HIGGS_QUARTIC_COUPLING = lambda	

#If Higgs quartic coupling is positive, skip this record if(HIGGS_QUARTIC_COUPLING > 0, continue())

And similarly for [END_ROUTINE] and [FINALIZE]

Important functions

The routines can be easily constructed

Right handed neutrino

For simplicity, consider one RH neutrino

Neutrino mass

Summary

- We obtained analytic formulas for bubble nucleation rates, which are manifestly gauge invariant.
- We proposed a way to treat the integral over the bounce size, which gives a convergent result.
- We have confirmed that the SM vacuum is meta-stable, i.e. the lifetime is longer than the age of the Universe.
- We provide a c++ package that can calculate decay rates for generic models with approximate scale invariance.