Proton Size

東北大学電子光理学研究センター 須田利美

Proton Radius Puzzle ?

基研研究会 2018/8/6-8/10 素粒子物理学の進展2018

R. Pohl *et al*., Nature 466 (2010) 213. A. Antognini *et al.*, Science 339 (2013) 417.

東北大学電子光理学研究センター

Electron Scattering

電子散乱

R. Hofstadter

J. Friedman, H. Kendall, R. Taylor

Structure studies of neutron-rich nuclei by electron scattering

電子散乱による 短寿命中性子過剰核の構造研究

電子散乱の対象となった原子核

H.deVries, C. deJager and C. deVries Atomic Data and Nuclear Data Tables 36 (987)495

SCRIT electron scattering facility@RIBF

基研研究会 2018/8/6-8/10 素粒子物理学の進展2018

	Ee	N _{beam}	ρ·t	L
Hofstadter's era (1950s)	I50 MeV	~ InA (~I0 ⁹ /s)	~10 ¹⁹ /cm ²	~10 ²⁸ /cm ² /s
JLAB	6 GeV	~100µA (~10¹⁴ /s)	~10 ²² /cm2	~10 ³⁶ /cm ² /s
SCRIT	150 - 300 MeV	~200 mA (~10 ¹⁸ /s)	~ 10 ¹⁰ /cm ²	~10 ²⁷ /cm ² /s

~10⁸ ions are trapped on e-beam (~ 1 mm²)

 $N_t \sim 10^8 / mm^2 => 10^{10} / cm^2$

First experiment at SCRIT facility

基研研究会 2018/8/6-8/10 素粒子物理学の進展2018

60 years of Phys. Rev. Lett. @ 信州大学

基研研究会 2018/8/6-8/10 素粒子物理学の進展2018

60 years of Physical Review Letters	9月15日	
15日 S20会場 13:30~17:10 領域掼断		
(共催: American Physical Society)		
1.60 years of PRL: looking back and forward	PRL, APS Garisto Robert	
2. The Calorimetric Electron Telescope (CALET) Experiment on the International Space Station	Sci. Eng. Waseda Univ. Shoji Torii	
3. Lovely phase space	Kavil-IPMU, Univ. Tokyo Melia Thomas Edward	
 Nuclear experimental approach toward the nuclesoynthesis in the universe 	Scl. Osaka Univ. Takahiro Kawabata	
Break		
5. The SCRIT electron Scattering facility: Toward the world's first study of unstable nuclei by electron	ELPH, Tohoku Univ. Kyo Tsukada	
6. Observation of high-energy cosmic rays with the Tibet air shower ICRR, Univ. Tokyo array Masato Takita		
7. From CP violation to XYZ particles	Scl., Nara Women's Univ. Kenkichi Miyabayashi	
8. Quest for CP violation in neutrino oscillation Sci., Kyoto Univ. Atsuko K. Ichikawa		

Proton Radius Puzzle

2010~

Proton Radius Puzzle ?

C. Carlson, Prog. Part. Nucl. Phys. 82 (2015) 59.

Particle Data (2017)

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

Why is the proton (charge) radius a hot topic 基础研究会 2018/8/6-8/10 Why is the proton (charge) radius a hot topic 基础子物理学の進展2018

1) the radius is one of the basic properties of the nucleon

2) the radius is strongly correlated to the Rydberg constant

$$\Delta E = \alpha \cdot R_{Rydberg} + \beta \cdot < r^2 >$$

3) possible new physics beyond SM (??)

Lepton Universality ??

possible MeV-order force carrier \longleftrightarrow (g-2) μ 3.5 σ discrepancy

(dark photon ···?)

4) (bound) QED high precision calculations

e-p scattering and form factor

図8·4 q²の関数としての陽子形状因子

Charge Radius and Density Distribution

基研研究会 2018/8/6-8/10 素粒子物理学の進展2018

RMS radius

$$\langle r^2 \rangle = \int r^2 \rho(\vec{r}) d\vec{r}$$

= $4\pi \int r^4 \rho(r) dr$

Proton Charge Radius by Hydrogen spectroscopy

the most accurately determined fundamental constant

$$R_{\infty} = 10973\ 731.568\ \underline{539} \pm 0.000\ 055\ \mathrm{m}^{-1}$$

r_p uncertainty

Hydrogen Spectroscopy

Main

$$E(n,l,j) = -\frac{R_{\infty}}{n^2} \frac{m_{red.}}{m} + \frac{E_{NS}}{n^3} \delta_{l0} + \Delta(n,l,j)$$

Proton size

基研研究会 2018/8/6-8/10 素粒子物理学の進展2018

$$R_{\infty} : \text{Rydberg constant}$$
$$E_{NS} = \frac{2m}{3h} \alpha^2 (\frac{m_{red.}}{m})^3 (\frac{\langle r \rangle^2}{\lambda_C})^2$$

 Δ : radiative correction, polarizability etc.

Higher order

$$\Delta E = -e^2 \int \int \frac{\rho_n(\boldsymbol{r}_n) \rho_e(\boldsymbol{r}_e)}{|\boldsymbol{r}_n - \boldsymbol{r}_e|} d\boldsymbol{r}_n d\boldsymbol{r}_e - \left[-Ze^2 \int \frac{\rho_e(\boldsymbol{r}_e)}{r_e} d\boldsymbol{r}_e\right]$$

$$= -4\pi e^{2} \int_{0}^{\infty} \rho_{n}(r_{n})r_{n}^{2}dr_{n} \cdot 4\pi \left[\int_{0}^{r_{n}} \frac{\rho_{e}(r_{e})}{r_{n}}r_{e}^{2}dr_{e} + \int_{r_{n}}^{\infty} \frac{\rho_{e}(r_{e})}{r_{e}}r_{e}^{2}dr_{e} - \int_{0}^{\infty} \frac{\rho_{e}(r_{e})}{r_{e}}r_{e}^{2}dr_{e}\right]$$

proton charge radius

µ-hydrogen Spectroscopy

基研研究会 2018/8/6-8/10 素粒子物理学の進展2018

PSI (Paul Scherrer Institute)

$$\label{eq:N_multiple} \begin{split} N_\mu &\sim 600 \; /s \\ E_\mu &= 3 \; - \; 6 \; keV \\ beam \; cross \; section : 0.5 \; x \; 1.5 \; cm^2 \end{split}$$

µ⁻ beam

trapped to the hydrogen orbital (n ~ 14)

~1% of μ trapped in metastable 2S (~1 μ S)

Laser excitation for 2S -> 2P

measuring the decay 2keV X-rays

C. Carlson, Prog. Part. Nucl. Phys. 82 (2015) 59.

Hydrogen spectroscopy

基研研究会 2018/8/6-8/10 <u>素粒子</u>物理学の進展2018

	transition	$f(\mathbf{kHz})$	<i>R</i> ∞ (m ⁻¹)	r p (fm)
Garching	2S-4P	616 520 931 626.8(2.3)	10 973 731.568 <u>076</u> (96)	0.8335(95)
LKB-Paris	1S-3S	2 922 743 278 671.5(2.6)	10 973 731.568 53(14)	0.877(13)

Uncertainty Budget (Garching)

	$\Delta \nu ~({ m kHz})$	$\sigma~({ m kHz})$
Statistics	0.00	0.41
First-order Doppler shift	0.00	2.13
Quantum interference shift	0.00	0.21
Light force shift	-0.32	0.30
Model corrections	0.11	0.06
Sampling bias	0.44	0.49
Second-order Doppler shift	0.22	0.05
DC Stark shift	0.00	0.20
Zeeman shift	0.00	0.22
Pressure shift	0.00	0.02
Laser spectrum	0.00	0.10
Frequency standard (H maser)	0.00	0.06
Recoil shift	-837.23	0.00
Hyperfine structure (HFS) corrections	-132552.092	0.075
Total	-133388.9	2.3

proton size effect ~ 9kHz (Garching)

Science 358 (2017) 79-85. PRL 120 (2018) 183001.

Proton Charge Radius by Electron Scattering

Proton Charge Radius measurements

基研研究会 2018/8/6-8/10 素粒子物理学の進展2018

Charge Radius and Density Distribution

基研研究会 2018/8/6-8/10 素粒子物理学の進展2018

電子散乱と陽子電荷半径

基研研究会 2018/8/6-8/10 素粒子物理学の進展2018

momentum transfer energy transfer 4 momentum transfer

$$\omega = e - e'$$
$$Q^2 = q^2 - \omega^2$$
$$= 4 e e' \sin^2(\theta/2)$$

 $\vec{q} = \vec{e} - \vec{e'}$

$$\left(\frac{\mathrm{d}\theta}{\mathrm{d}\Omega}\right)_{Mott} = \frac{2}{4e^2} \frac{\mathrm{cos}\left(\theta/2\right)}{\mathrm{sin}^4(\theta/2)} \propto \frac{e}{q^4}$$
$$\epsilon = \frac{1}{1+2(1+\tau)\mathrm{tan}^2\frac{\theta}{2}}$$
$$\tau = \frac{Q^2}{4m_p^2}$$

1) high Q²: charge density ρ(r)

radius is sensitive to $\rho(r)$ at large distance (even at r ~ 4 fm)

2) low Q² $G_E(Q^2) \sim 1 - \frac{\langle r^2 \rangle^{1/2}}{6}Q^2 + \frac{\langle r^4 \rangle^{1/2}}{120}Q^4 - \dots$ $\langle r^2 \rangle \equiv -6 \frac{\mathrm{d}G_E(Q^2)}{\mathrm{d}Q^2}|_{Q^2 \to 0}$

ill problem : higher order contribution

lower Q² as possible

電子散乱による電荷半径決定法

基研研究会 2018/8/6-8/10 素粒子物理学の進展201**5 / 10**

低運動量領域の測定データの問題点?

基研研究会 2018/8/6-8/10 <u>素粒子物理学の進展</u>20**18 / 10**

(Phys. Rev. C90 (2014) 045206)

低運動量移行量領域での G_E(Q²) 測定

基研研究会 2018/8/6-8/10 素粒子物理学の進展2018

低エネルギー且つ様々なビームエネルギーの電子ビームが不可欠

世界最先端の<mark>高</mark>エネルギー<mark>大型</mark>加速器では不可能!

頻繁な加速エネルギー変更は不可能

1) 低エネルギー電子加速器

2) 広い実験室(散乱角可変の電子スペクトロメータ) 電子光センターのみ

3) 電子散乱を専門とする原子核研究者

ELPH 低エネルギー電子加速器の特徴を最大限に活かせる実験

低エネルギー電子加速器: Ee = 20 - 60 MeV

史上最低電子エネルギーによる電子・陽子弾性散乱

> 電子散乱では最も信頼度の高い陽子半径測定が可能

Single-Sided Silicon Detector (SSSD) developed for g-2/EDM experiments at JPARC

Readout boards "Multi-Slit128A board" Four ASICs "Slit128A" (128 ch/chip)

Active area	97.28 mm × 97.28 mm
Thickness	0.32 mm
Strip length	48.575 mm
Strip pitch	<mark>0.19 mm</mark>
No. of strips	512 ch × 2

other on-going projects and future projects

他の極低運動量移行領域での測定計画

基研研究会 2018/8/6-8/10 素粒子物理学の進展2018

MUSE@PSI

μ[±] scattering off proton p = 115, 158 and 210 MeV/c θ = 20 - 100° Q² = 0.002 - 0.07 (GeV/c)²

PRAD@JLAB

 $E_e^{min} = 1.1 \text{ GeV}$ $\theta \sim a \text{ few deg.}$ $Q^2 = 0.0002 - 0.02 (GeV/c)^2$

No Rosenbluth separation (quite small factor for GM(Q2)) Absolute cross section (relative to Moeller)

e : PbWO4 telescope

Courtesy of A. Gasparian

その他の計画

A high precision measurement of the proton electric form factor

ProRad experiment requirements:

- · High precision beam
- · Precise knowledge of the beam energy
- A stable target
- Optimised measurement of the scattered electron energy and position

COMPASS, CERN

d-Quark Transversity

and

Proton Radius

Addendum to the COMPASS-II Proposal

Finure 20: Schematics of the COMPASS MUP set-up. The target region including the gameous hydrogen TPC is not to scale.

Figure 21: Example for the use of a high pressure active target TPC [57]

 $E = 100 \, GeV$ $Q^2 = 10^{-4} - 10^{-1} (GeV/c)^2$

Mainz, Germany (ドイツ)

Proposal

for high precision measuremens of the ep - differential cross sections at small t- values with the recoiled proton detector

> Suggested by PNPI to perform at MAMI (Mainz Microtron) in 2018

Combined recoiled proton@forward tracker detector

Statistics and beam time

電子散乱による陽子電荷半径値決定時のモデル依存性を抑制し、 電子散乱としては最も信頼度の高い陽子半径値を決定するために

東北大学電子光理学研究センターでの低エネルギー電子・陽子弾性散乱		
特徴		
電子ビームエネルギー	- : Ee = 20 - 60 MeV	
運動量移行	Q ² = 0.0003 - 0.0008 (GeV/c) ²	
Rosenbluth分離による G _E (Q²), G _M (Q²) の分離		
断面積絶対値測定	:G _E (Q ²)絶対値	

2017 - 2018 : 2連スペクトロメータ、新ビームラインの建設、調整 2019 ~ : 実験開始