g －2の格子理論計算

Taku Izubuchi
（RBC\＆UKQCD collaboration）

RIKEN BNL
Research Center

Contents \& References

- g-2 Hadronic Vacuum Polarization (HVP) Phys. Rev. Lett. 121 (2018) 022003
- g-2 Hadronic Light-by-Light (HLbL) Phys. Rev. D96 (2017) 034515 Phys. Rev. Lett. 118 (2017) 022005
- Luchang Jin, Christoph Lehner, Aaron Meyer, talks at Lattice 2019
- Tom Blum, talk at Anomalies 2019

tau input for g-2 HVP \&	Mattia Bruno (CERN) Aaron Meyer (BNL)	Christoph Lehner (BNL \& Regensburg) Taku Izubuchi (BNL \& RBRC)
tau decay	Peter Boyle (Edinburgh) Taku Izubuchi (BNL/RBRC) Christoph Lehner (BNL) Kim Maltman (York) Antonin Portelli (Edinburgh)	Renwick James Hudspith (York) Andreas Jü"tner(Southampton) Randy Lewis (Southampton) Hiroshi Ohki (RBRC/Nara Women) Matthew Spraggs (Edinburgh)

Part of related calculation are done by resources from
USQCD (DOE), XSEDE, ANL BG/Q Mira (DOE, ALCC), Edinburgh BG/Q,
BNL BG/Q, RIKEN BG/Q and Cluster (RICC, HOKUSAI)

The RBC \& UKQCD collaborations

BNL and BNL/RBRC	Bigeng Wang	KEK
Yasumichi Aoki (KEK)	Tianle Wang	Julien Frison
Taku Izubuchi	Yidi Zhao	
Yong-Chull Jang	University of Connecticut	Nic
Chulwoo Jung	Tom Blum	Nicolas Garron
Meifeng Lin	Dan Hoying (BNL)	MIT
Aaron Meyer	Luchang Jin (RBRC)	David Murphy
Hiroshi Ohki Shigemi Ohta (KEK)	Cheng Tu	Peking University
Amarjit Soni	Edinburgh University	Xu Feng
UC Boulder	Peter Boyle	University of Regensburg
Oliver Witzel	Luigi Del Debbio Felix Erben	Christoph Lehner (BNL)
CERN	Vera Gülpers	University of Southampton
Mattia Bruno	Tadeusz Janowski Julia Kettle	Nils Asmussen
Columbia University	Michael Marshall	Jonathan Flynn
Ryan Abbot	Fionn Ó hÓgáin	Ryan Hill
Norman Christ	Antonin Portelli	Andreas Jüttner
Duo Guo	Tobias Tsang	James Richings
Christopher Kelly	Andrew Yong	Chris Sachrajda
Bob Mawhinney	Azusa Yamaguchi	Stony Brook University
Masaaki Tomii		Jun-Sik Yoo
Jiqun Tu		Sergey Syritsyn (RBRC)

Anomalous magnetic moment

- Fermion's energy in the external magnetic field:

$$
V(x)=-\vec{\mu}_{l} \cdot \vec{B} \quad \vec{\mu}_{l}=g_{l} \frac{e}{2 m_{l}} \vec{S}_{l}
$$

- Magnetic moment Lande g-factor tree level value 2
- 1928 P.A.M. Dirac "Quantum Theory of Electron" Dirac equation (relativity, minimal gauge interaction)

$$
i\left[\partial_{\mu}-i e A_{\mu}(x)\right] \gamma^{\mu} \psi(x)=m \psi(x)
$$

- Non-relativistic and weak constant magnetic field limits of the Dirac equation :

$$
\begin{aligned}
-i \hbar \frac{\partial \psi}{\partial t} & =\left[\frac{\nabla^{2}}{2 m}+\frac{e}{2 m}(\vec{L}+2 \vec{S}) \cdot \vec{B}\right] \psi \\
g_{l} & =2 \quad \text { (for Dirac Fermion } \mathrm{I}=\mathrm{e}, \mu, \tau, \ldots .)
\end{aligned}
$$

SM Theory

$$
\gamma^{\mu} \rightarrow \Gamma^{\mu}(q)=\left(\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m} F_{2}\left(q^{2}\right)\right)
$$

- QED, hadronic, EW contributions

QED (5-loop)
Aoyama Hayakawa, Kinoshita, Nio
PRL109,111808 (2012)

Hadronic vacuum polarization (HVP)

Hadronic light-by-light
(HIbl)

Electroweak (EW)
Knecht et al 02
Czarnecki et al. 02

muon anomalous magnetic moment

BNL g-2 till 2004: ~ 3.7σ larger than SM prediction

Contribution	Value $\times 10^{10}$	Uncertainty $\times 10^{10}$
QED (5 loops)	11658471.895	0.008
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	2.6
Total SM prediction	11659181.5	4.9
BNL E821 result	11659209.1	6.3
FNAL E989/J-PARC E34 goal		≈ 1.6
$a_{\mu}^{\mathrm{EXP}}-a_{\mu}^{\mathrm{SM}}=27.4 \underbrace{(2.7)}_{\text {HVP }} \underbrace{(2.6)}_{\text {HLbL }} \underbrace{(0.1)}_{\text {other }} \underbrace{(6.3)}_{\text {EXP }} \times 10^{-10}$		

FNAL E989 (began 2017-)
2019: BNL level error : (6.3) -> 4.5×10^{-10}
2022(?): $1.610^{-10} \times 4$ precise 0.14 ppm
J-PARC E34 (IMPORTANT different systematics !)
ultra-cold muon beam
0.37 ppm then 0.1 ppm , also EDM

muon anomalous magnetic moment

BNL g-2 till 2004 : ~ 3.7σ larger than SM prediction

Contribution	Value $\times 10^{10}$	Uncertainty $\times 10^{10}$
QED (5 loops)	11658471.895	0.008
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	$\mathbf{2 . 6}$
Total SM prediction	11659181.5	4.9
BNL E821 result	11659209.1	6.3
FNAL E989/J-PARC E34 goal	≈ 1.6	
$a_{\mu}^{\mathrm{EXP}}-a_{\mu}^{\mathrm{SM}}=27.4 \underbrace{(2.7)} \underbrace{(2.6)} \underbrace{(0.1)}_{\text {HVP }} \underbrace{(6.3)}_{\text {EXher }} \times 10^{-10}$		

FNAL E989 (began 2017-)
2019: BNL level error : (6.3) -> 4.5×10^{-10}
2022(?): $1.610^{-10} \times 4$ precise 0.14 ppm
J-PARC E34 (IMPORTANT different systematics !)
ultra-cold muon beam
0.37 ppm then 0.1 ppm , also EDM

Hadronic Vacuum Polarization (HVP) contribution to g-2

Quark \& anti-quark contribution

g-2 from R-ratio

- From experimental e+e- inclusive hadron decay cross section $\sigma_{\text {total }}(\mathrm{s})$ in time-like $\mathrm{s}=\mathrm{q}^{2}>0$, and dispersion relation, optical theorem

$$
a_{\mu}^{\mathrm{HVP}}=\frac{1}{4 \pi^{2}} \int_{\mathrm{s}_{\mathrm{th}}}^{\infty} d s K(s) \sigma_{\mathrm{total}}(s)
$$

[Keshavarzi, Nomura, Teubner PRD96 (2018) 114025, arXiV 1802.02995]

KNT18 $a_{\mu}^{\text {SM }}$ update

The Dominant $\pi^{+} \pi^{-}$Channel (2)

BABAR \& KLOE dominates 0.6-0.9 GeV $\pi \pi$ data, Has a large discrepancy between BABAR \& KLOE -> inflate error (dominant)

Combined Results Fit [<0.6 GeV] + Data [0.6-1.8 GeV]

Add half of the discrepancy (2.8) as an additional uncertainty (correcting the local PDG inflation to avoid double counting)
> Take the mean value "All but BABAR" and "All but KLOE" as our central value

Include other contributions in unit of 10^{-10} :

$$
\text { QCD NLO: }-9.87 \pm 0.07 ; \text { NNLO: } 1.24 \pm 0.01 ; \text { LBL: } 10.5 \pm 2.6
$$

$$
\text { EW: } 15.29 \pm 0.10 ; \text { QED: } 11658471.895 \pm 0.008
$$

$$
\Rightarrow \mathrm{a}_{\mu}=11659182.9 \pm 4.8 \text { total }
$$

In comparison with the direct measurement:
$11659209.1 \pm 6.3_{\text {total }}$
$\Rightarrow 26.2 \pm 7.9(3.3 \sigma)$

Zhang et al. EPS2019

DHMZ19 added half of discrepancy b / w BABAR and KLOE, 2.8×10^{-10}, as an additional uncertainty
\rightarrow Unless this discrepancy is understood, this limits the precision of dispersive analysis

g-2 HVP from Lattice

[Bernecker Meyer 2011 , Feng et al. 2013]
In Euclidean space-time, project verctor 2 pt to zero spacial momentum, $\vec{p}=0$:

$$
C(t)=\frac{1}{3} \sum_{x, i}\left\langle j_{i}(x) j_{i}(0)\right\rangle
$$

g-2 HVP contribution is

$$
\begin{gathered}
\mathrm{w}(\mathrm{t}) \sim \mathrm{t}^{4} \\
a_{\mu}^{H V P}=\sum_{t} w(t) C(t) \\
w(t)=2 \int_{0}^{\infty} \frac{d \omega}{\omega} f_{\mathrm{QED}}\left(\omega^{2}\right)\left[\frac{\cos \omega t-1}{\omega^{2}}+\frac{t^{2}}{2}\right]
\end{gathered}
$$

- Subtraction $\Pi(0)$ is performed. Noise/Signal $\sim e^{\left(E_{\pi \pi}-m_{\pi}\right) t}$, is improved [Lehner et al. 2015] .

Euclidean time correlation from $e^{+} e^{-} R(s)$ data

From $e^{+} e^{-} R(s)$ ratio, using disparsive relation, zero-spacial momentum projected Euclidean correlation function $C(t)$ is obtained

$$
\begin{aligned}
\hat{\Pi}\left(Q^{2}\right) & =Q^{2} \int_{0}^{\infty} d s \frac{R(s)}{s\left(s+Q^{2}\right)} \quad \begin{array}{l}
\text { Lattice can compute Integral of } \\
\text { Inclusive cross sections accurately }
\end{array} \\
C^{\mathrm{R} \text {-ratio }}(t) & =\frac{1}{12 \pi^{2}} \int_{0}^{\infty} \frac{d \omega}{2 \pi} \hat{\Pi}\left(\omega^{2}\right) e^{i \omega t}=\frac{1}{12 \pi^{2}} \int_{0}^{\infty} d s \sqrt{s} R(s) e^{-\sqrt{s} t}
\end{aligned}
$$

- $C(t)$ or $w(t) C(t)$ are directly comparable to Lattice results with the proper limits ($m_{q} \rightarrow m_{q}^{\text {phys }}, a \rightarrow 0, V \rightarrow \infty$, QED ...)
- Lattice: long distance has large statistical noise, (short distance: discretization error, removed by $a \rightarrow 0$ and/or pQCD)
- R-ratio : short distance has larger error

$$
\begin{aligned}
& \hat{\Pi}\left(Q^{2}\right)=Q^{2} \int_{0}^{\infty} d s \frac{R(s)}{s\left(s+Q^{2}\right)} \\
& (1 / a=1.78 \mathrm{GeV}, \quad \text { Relative statistical error })
\end{aligned}
$$

$\operatorname{Pihat}\left(Q^{2}\right)$

Relative Err of Pihat(\mathbf{Q}^{2})

Nf=2+1 DWF QCD ensemble at physical quark mass

New Data since 2018

RBC/UKQCD 2019 (data for light quarks, changes from 2018):

- A2A data for connected isospin symmetric: 48 I (127 conf $\rightarrow 400 \mathrm{conf}$), 64 I (160 conf $\rightarrow 250$ conf), 24ID (new 130 conf, multi mass), 32ID (new 88 conf, multi mass)
- A2A data (tadpole fields) for disconnected: 48I (33 conf), 24ID (new 260 conf, multi mass), 32IDf (new 103 conf)
- QED and SIB corrections to meson and Ω masses, $Z_{V}: 481$ (30 conf) and 641 (new 30 conf)
- QED and SIB from HLbL point sources on 48I, 24ID, 32ID, 32IDf (on order of 20 conf each, 2000 points per config)
- Distillation data on 48 I (33 conf), 64I (in progr.), 24ID (33 conf), 32ID (11 conf, multi-mass)
- New Ω mass operators (excited states control): 481 (130 conf)

DWF light HVP [2016 Christoph Lehner]

120 conf ($a=0.11 \mathrm{fm}$), 80 conf ($a=0.086 \mathrm{fm}$) physical point $\mathrm{Nf}=2+1$ Mobius DWF 4 D full volume LMA with 2,000 eigen vector (of e/o preconditioned zMobius $\mathrm{D}^{+} \mathrm{D}$) EV compression (1/10 memory) using local coherence [C. Lehner Lat2017 Poster] In addition, 50 sloppy / conf via multi-level AMA more than $\times 1,000$ speed up compared to simple CG

disconnected quark loop contribution

- [C. Lehner et al. (RBC/UKQCD 2015, arXiv:1512.09054, PRL) 1
- Very challenging calculation due to statistical noise
- Small contribution, vanishes in SU(3) limit, Qu+Qd+Qs = 0
- Use low mode of quark propagator, treat it exactly
 (all-to-all propagator with sparse random source)
- First non-zero signal

Sensitive to m_{π}

$$
a_{\mu}^{\mathrm{HVP}}(\mathrm{LO}) \mathrm{DISC}=-9.6(3.3)_{\mathrm{stat}}(2.3)_{\mathrm{sys}} \times 10^{-10}
$$

crucial to compute at physical mass

HVP QED+ strong IB corrections

- HVP is computed so far at Iso-symmetric quark mass, needs to compute isospin breaking corrections: Qu, Qd, mu-md $\neq 0$
- u,d,s quark mass and lattice spacing are re-tuned using \{charge, neutral\} $\times\{$ pion,kaon\} and (Omega baryon masses)
- For now, V, S, F, M are computed : assumes EM and IB of sea quark and also shift to lattice spacing is small (correction to disconnected diagram)
- Point-source method : stochastically sample pair of 2 EM vertices a la important sampling with exact photon

(e) D2

(f) F

(g) D3

Comparison of R-ratio and Lattice [F. Jegerlehner alphaQED 2016]

- Covariance matrix among energy bin in R-ratio is not available, assumes 100%

Combine R-ratio and Lattice [Christoph Lehner et al PRL18]

- Use short and long distance from R-ratio using smearing function, and mid-distance from lattice

$$
\begin{aligned}
& \Theta(t, \mu, \sigma) \equiv[1+\tanh [(t-\mu) / \sigma]] / 2 \\
& a_{\mu}=\sum_{t} w_{t} C(t) \equiv a_{\mu}^{\mathrm{SD}}+a_{\mu}^{\mathrm{W}}+a_{\mu}^{\mathrm{LD}}
\end{aligned}
$$

$$
a_{\mu}^{\mathrm{sD}}=\sum_{t} C(t) w_{t}\left[1-\Theta\left(t, t_{0}, \Delta\right)\right]
$$

$$
a_{\mu}^{\mathrm{w}}=\sum_{t} C(t) w_{t}\left[\theta\left(t, t_{0}, \Delta\right)-\Theta\left(t, t_{1}, \Delta\right)\right],
$$

$$
a_{\mu}^{\mathrm{LD}}=\sum_{t} c(t) w_{t} \Theta\left(t, t_{1}, \Delta\right)
$$

R-ratio + Lattice

t1 dependence is flat => a consistency between R-ratio and Lattice $\mathrm{t} 1=1.2 \mathrm{fm}$, R-ratio : Lattice $=50: 50$
$\mathrm{t} 1=1.2 \mathrm{fm}$ current error (note 100% correlation in R -ratio) is minimum

How does this translate to the time-like region?

Most of $\pi \pi$ peak is captured by window from $t_{0}=0.4 \mathrm{fm}$ to $t_{1}=1.5 \mathrm{fm}$, so replacing this region with lattice data reduces the dependence on
BaBar versus KLOE data sets.

Current status \& Improvements

[Christoph Lehner Lattice2019]

The pure lattice calculation of RBC/UKQCD 2018:

$$
\begin{aligned}
10^{10} \times a_{\mu}^{\mathrm{HVP} \mathrm{LO}} & =715.4(18.7) \quad[\mathrm{RBC} / \mathrm{UKQCD}, \mathrm{PRL} 121(2018) \text { 022003] } \\
& =715.4(16.3)_{\mathrm{S}}(7.8)_{\mathrm{V}}(3.0)_{\mathrm{C}}(1.9)_{\mathrm{A}}(3.2)_{\text {other }}
\end{aligned}
$$

(S) statistics, (V) finite-volume errors, (C) the continuum limit extrapolation, (A) scale setting uncertainty; other \supset neglected diagrams for QED and SIB, estimate of bottom quark contribution

Statistical noise mostly from isospin symmetric light quark connected (14.2) and disconnected (3.3), QED (5.7), SIB (4.3)

RBC/UKQCD 2019 update (in preparation):

- Improved methodology
- A lot of new data

[Aaron Meyer LATTICE2019] Reconstruction of HVP from multi-channel Greens function

- Correlation function among N operators $\mathrm{O} _\mathrm{n}, \mathrm{n}=0,1, \ldots, \mathrm{~N}-1$
- Point (or smeared) vector $\mathcal{O}_{0}=\sum_{x} \bar{\psi}(x) \gamma_{\mu} \psi(x), \mu \in\{1,2,3\}$
- 2 п operator
- 4 п operator

$$
\begin{aligned}
& \mathcal{O}_{n}=\left|\sum_{x y z} \bar{\psi}(x) f(x-z) e^{-i \vec{p}_{\pi} \cdot z_{V}} \nu_{5} f(z-y) \psi(y)\right|^{2}
\end{aligned}
$$

- NxN correlation function < O_it \mathbf{t}) $\mathrm{O} \mathrm{j}(0)$ > (using distillation)
- Solve NxN spectrum $\mathrm{E}_{-} \mathrm{n}$ of eigenstates |E_n> and Overwrap factors <E_n|O_O|O> (GEVP)
- Reconstruct V - V correlator, and bound contribution from the $(\mathrm{N}+1)$-th states and above

$$
\begin{array}{|l|}
\left.\left\langle O_{0}(t) O_{0}^{\dagger}(0)\right\rangle=\sum_{n=0}^{N-1}\left|\langle 0| O_{0}\right| n\right\rangle\left.\right|^{2} e^{-E_{n} t} \\
+(\text { contributions from } \quad n \geq N \text { states }
\end{array}
$$

[Aaron Meyer LATTICE2019]

GEVP \& Reconstruct I=1 VV

6-operator basis on 481 ensemble: local+smeared vector, $4 \times(2 \pi)$

$$
C(t) V=C(t+\delta t) V \Lambda(\delta t), \quad V_{i m} \propto\langle\Omega| \mathcal{O}_{i}|m\rangle
$$

Bounds for \mathbf{a}_{μ}

- Upper $\&$ lower bounds from unitarity

$$
\widetilde{C}\left(t ; t_{\max }, E\right)= \begin{cases}C(t) & t<t_{\max } \\ C\left(t_{\max }\right) e^{-E\left(t-t_{\max }\right)} & t \geq t_{\max }\end{cases}
$$

Upper bound: $E=E_{0}$, lowest state in spectrum
Lower bound: $E=\log \left[\frac{C\left(t_{\max }\right)}{C\left(t_{\max }+1\right)}\right]$

- Also bounds for the n in $[\mathrm{N}+1, \infty]$ states contribution

Replace $C(t) \rightarrow C(t)-\sum_{n}^{N}\left|c_{n}\right|^{2} e^{-E_{n} t}$
\Longrightarrow Long distance convergence now $\propto e^{-E_{N+1} t}$
\Longrightarrow Smaller overall contribution from neglected states

test of GEVP+Bounding method [A. Meyer]

Bounding Method Results - 481

a factor of 2.5 smaller statistical error by bounding method
a factor of 7 smaller statistical error by bounding method +4 state reconstruction

No bounding method:
Bounding method $t_{\max }=3.3 \mathrm{fm}$, no reconstruction:
Bounding method $t_{\text {max }}=3.0 \mathrm{fm}, 1$ state reconstruction:
Bounding method $t_{\text {max }}=2.9 \mathrm{fm}, 2$ state reconstruction:
Bounding method $t_{\max }=2.2 \mathrm{fm}, 3$ state reconstruction:
Bounding method $t_{\text {max }}=1.8 \mathrm{fm}, 4$ state reconstruction:

$$
\begin{aligned}
a_{\mu}^{H V P} & =646(38) \\
a_{\mu}^{H V P} & =631(16) \\
a_{\mu}^{H V P} & =631(12) \\
a_{\mu}^{H V P} & =633(10) \\
a_{\mu}^{H V P} & =624.3(7.5) \\
a_{\mu}^{H} H P & =625.0(5.4)
\end{aligned}
$$

Bounding method gives factor of 2 improvement over no bounding method
Improving the bounding method increases gain to factor of 7 , including systematics

Finite Volume correction estimates

- L=6.22 fm (24cube) bax vs L=4.66 fm (32cube)
- scalar QED
- Using pion form factor (Gounaris-Sakurai parametrization) $\&$ Lellouche Luscher's FV formula

$$
a_{\mu}^{H V P}(L=\infty)-a_{\mu}^{H V P}(L=5.47 \mathrm{fm})=22(1) \times 10^{-10}
$$

Continuum limit of a^{w}

Continuum limit of a_{μ}^{W} from our lattice data; below $t_{0}=0.4 \mathrm{fm}$ and $\Delta=0.15 \mathrm{fm}$

RBC/UKQCD [C. Lehner Lat17]

Continuum extrapolation is mild
c.f BMWc [K. Miura Lat17]

Add $a^{-1}=2.77 \mathrm{GeV}$ lattice spacing

- Third lattice spacing for strange data ($a^{-1}=2.77 \mathrm{GeV}$ with $m_{\pi}=234 \mathrm{MeV}$ with sea light-quark mass corrected from global fit):

- For light quark need new ensemble at physical pion mass. Started run on Summit Machine at Oak Ridge this year ($a^{-1}=2.77 \mathrm{GeV}$ with $m_{\pi}=139 \mathrm{MeV}$).

HVP results

[Christoph Lehner Lat19]

- Significant improvements is in progress for statistical error using 2π and 4π (!) states in addition to EM current (GEVP, GS-parametrization)
- Pure Lattice HVP 5×10^{-10} this year, 1×10^{-10} for long term
- Check BABAR-KLOE tention by windown method, consolidate error at 3×10^{-10}

Hadronic Light-by-Light (HLbL) contributions

HLbL from Models

- Model estimate with non-perturbative constraints at the chiral / low energy limits using anomaly : (9-12) x 10-10 with $25-40 \%$ uncertainty

$$
a_{\mu}^{\mathrm{EXP}}-a_{\mu}^{\mathrm{SM}}=27.4 \underbrace{(2.7)}_{\mathrm{HVP}} \underbrace{(2.6)}_{\text {HLbL }} \underbrace{0.1)}_{\text {other }} \underbrace{(6.3)}_{\text {EXP }} \times 10^{-10}
$$

F. Jegerlehner , x 10^{11}

Contribution	BPP	HKS	KN	MV	PdRV	N / JN
$\pi^{0}, \eta, \eta^{\prime}$	85 ± 13	82.7 ± 6.4	83 ± 12	114 ± 10	114 ± 13	99 ± 16
π, K loops	-19 ± 13	-4.5 ± 8.1	-	0 ± 10	-19 ± 19	-19 ± 13
axial vectors	2.5 ± 1.0	1.7 ± 1.7	-	22 ± 5	15 ± 10	22 ± 5
scalars	-6.8 ± 2.0	-	-	-	-7 ± 7	-7 ± 2
quark loops	21 ± 3	9.7 ± 11.1	-	-	2.3	21 ± 3
total	83 ± 32	89.6 ± 15.4	80 ± 40	136 ± 25	105 ± 26	116 ± 39

Hadronic Light-by-Light

- 4pt function of EM currents
- No direct experimental data available
- Dispersive approach

$$
\begin{aligned}
& \times \gamma_{\nu} S^{(\mu)}\left(\not p_{2}+\not k_{2}\right) \gamma_{\rho} S^{(\mu)}\left(\not p_{1}+\not k_{1}\right) \gamma_{\sigma} \\
& \Pi_{\mu \nu \rho \sigma}^{(4)}\left(q, k_{1}, k_{3}, k_{2}\right)=\int d^{4} x_{1} d^{4} x_{2} d^{4} x_{3} \exp \left[-i\left(k_{1} \cdot x_{1}+k_{2} \cdot x_{2}+k_{3} \cdot x_{3}\right)\right] \\
& \times\langle 0| T\left[j_{\mu}(0) j_{\nu}\left(x_{1}\right) j_{\rho}\left(x_{2}\right) j_{\sigma}\left(x_{3}\right)\right]|0\rangle \\
& \text { Form factor: } \Gamma_{\mu}(q)=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m_{l}} F_{2}\left(q^{2}\right)
\end{aligned}
$$

Our Basic strategy : Lattice QCD+QED system

- 4pt function has too much information to parameterize (?)
- Do Monte Carlo integration for QED two-loop with 4 pt function $\pi^{(4)}$ which is sampled in lattice QCD with chiral quark (Domain-Wall fermion)
- Photon \& lepton part of diagram is derived either in lattice QED+QCD [Blum et al 2014] (stat noise from QED), or exactly derive for loop momenta / location at currents [L. Jin et al 2015] (no noise from

$$
\begin{aligned}
& \text { QED+lepton). } \\
& \qquad \Gamma_{\mu}^{(\text {Hlbl })}\left(p_{2}, p_{1}\right)=i e^{6} \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \Pi_{\mu \nu \rho \sigma}^{(4)}\left(q, k_{1}, k_{2}, k_{3}\right) \\
& \left.\times\left[S\left(p_{2}\right) \gamma_{\nu} S\left(p_{2}+k_{2}\right) \gamma_{\rho} S\left(p_{1}+k_{1}\right) \gamma_{\sigma} S\left(p_{1}\right)+\text { (perm. }\right)\right]
\end{aligned}
$$

- set spacial momentum for
- external EM vertex q
- in- and out- muon p, p^{\prime}

$$
q=p-p^{\prime}
$$

- set time slice of muon source($\mathrm{t}=0$), $\operatorname{sink}\left(\mathrm{t}^{\prime}\right)$ and operator (t_{op})
- take large time separation for ground state matrix element

Coordinate space Point photon method

[LLuchang Jiin et all. , PRD93, 014503 (2016)]

- Treat all 3 photon propagators exactly (3 analytical photons), which makes the quark loop and the lepton line connected :
disconnected problem in Lattice QED+QCD -> connected problem with analytic photon
- QED 2-loop in coordinate space. Stochastically sample, two of quark-photon vertex location x, y, z and $x_{o p}$ is summed over space-time exactly

- Short separations, $\operatorname{Min}[|x-z|,|y-z|,|x-y|]<R \sim O(0.5) f m$, which has a large contribution due to confinement, are summed for all pairs
- longer separations, $\operatorname{Min}[|x-z|,|y-z|,|x-y|] \quad>=R$, are done stochastically with a probability shown above (Adaptive Monte Carlo sampling)

Systematic effects in QED only study

- muon loop, muon line
- $a=a m_{\mu} /(106 \mathrm{MeV})$

$$
\begin{aligned}
a_{\mu}^{(6)}(\mathrm{lbl}, e)= & {\left[\frac{2}{3} \pi^{2} \ln \frac{m_{\mu}}{m_{e}}+\frac{59}{270} \pi^{4}-3 \zeta(3)\right.} \\
& \left.-\frac{10}{3} \pi^{2}+\frac{2}{3}+O\left(\frac{m_{e}}{m_{\mu}} \ln \frac{m_{\mu}}{m_{e}}\right)\right]\left(\frac{\alpha}{\pi}\right)^{3}
\end{aligned}
$$

- $\mathrm{L}=11.9,8.9,5.9 \mathrm{fm}$
- known result : F2 = 0.371 (diamond) correctly reproduced (good check)

FV and discretization error could be as large as 20-30 \%, similar discretization error seen from QCD+QED study

Dramatic Improvement ! Luchang Jin

$a=0.11 \mathrm{fm}, 24^{3} \times 64(2.7 \mathrm{fm})^{3}$, $\mathrm{m}_{\pi}=329 \mathrm{MeV}, \quad \mathrm{m}_{\mu}=\sim 190 \mathrm{MeV}, \mathrm{e}=1$

$$
\begin{array}{r}
q=2 \pi / L N_{\text {prop }}=81000 \longmapsto \lcm{ŋ} \\
q=0 N_{\text {prop }}=26568 \longmapsto \bigcirc
\end{array}
$$

SU(3) hierarchies for d-HLbL

- At $m_{s}=m_{u d}$ limit, following type of disconnected HLbL diagrams survive $Q_{u}+Q_{d}+Q_{s}=0$
- Physical point run using similar techniques to c-HLbL.
- other diagrams suppressed by

$$
\mathrm{O}\left(\mathrm{~m}_{\mathrm{s}}-\mathrm{m}_{\mathrm{ud}}\right) / 3 \quad \text { and } \quad \mathrm{O}\left(\left(\mathrm{~m}_{\mathrm{s}}-\mathrm{m}_{\mathrm{ud}}\right)^{2}\right)
$$

140 MeV Pion, connected and disconnected LbL results

[Luchang Jin et al. , Phys.Rev.Lett. 118 (2017) 022005]

- left: connected, right : leading disconnected

- Using AMA with 2,000 zMobius low modes, AMA
(statistical error only)
$r=|x-y|$

$$
\begin{array}{ll}
\left.\frac{g_{\mu}-2}{2}\right|_{\mathrm{cHLbL}} & =(0.0926 \pm 0.0077) \times\left(\frac{\alpha}{\pi}\right)^{3}=(11.60 \pm 0.96) \times 10^{-10} \\
\left.\frac{g_{\mu}-2}{2}\right|_{\mathrm{dHLbL}} & =(-0.0498 \pm 0.0064) \times\left(\frac{\alpha}{\pi}\right)^{3}=(-6.25 \pm 0.80) \times 10^{-10} \\
\left.\frac{g_{\mu}-2}{2}\right|_{\mathrm{HLbL}} & =(0.0427 \pm 0.0108) \times\left(\frac{\alpha}{\pi}\right)^{3}=(5.35 \pm 1.35) \times 10^{-10}
\end{array}
$$

Continuum / infinite volume extrapolation

- Discretization error $1 / \mathrm{a}=2.7,1.4 \mathrm{GeV}$ at physical quark mass

- Finite volume $\mathrm{L}=4.8,6.4,9.6 \mathrm{fm}$ at $1 / \mathrm{a}=1 \mathrm{GeV}$ at physical mass

Connected diagrams

Disconnected diagrams
$\begin{aligned} \text { 48I-64I } & \longmapsto 0- \\ 24 \mathrm{D} & \longmapsto \hookrightarrow \\ 32 \mathrm{D} & \longmapsto \\ \text { 32Dfine } & \longmapsto-\end{aligned}$

Using QED ${ }_{L}$
[Hayakawa Uno PTP 2008]
QED_{L} continuum and infinite volume extrapolation [Blum etal., 2019] (preliminary)

- Iwasaki ensembles: $a \rightarrow 0$ ($c_{2}=0$, conn. extrap.: up to $1 \mathrm{fm}, 48^{3}$ for $\left.r>1 \mathrm{fm}\right)$
- I-DSDR ensembles: $L \rightarrow \infty\left(b_{2}=0\right)$

$$
\begin{aligned}
a_{\mu}^{c H L b L} & =\left(27.61 \pm 3.51_{\text {stat }} \pm 0.32_{\text {sys }, a^{2}}\right) \times 10^{-10} \\
a_{\mu}^{d H L b L} & =-20.20 \pm 5.65_{\text {stat }} \times 10^{-10} \\
a_{\mu}^{H L b L} & =7.41 \pm 6.32_{\text {stat }} \pm 0.32_{\text {sys }, a^{2}} \times 10^{-10} \\
F_{2}(a, L) & =F_{2}\left(1-\frac{c_{1}}{\left(m_{\mu} L\right)^{2}}\right)\left(1-c_{2} a^{2}\right)
\end{aligned}
$$

Infinite Volume Photon and Lepton QED $_{\infty}$

[Feynman, Schwinger, Tomonaga]

- Instead of, or, in addition to, larger QED box, one could use infinite volume QED to compute $\mathcal{G}_{\rho, \sigma, \kappa}(x, y, z)$.
- Hadron part $\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)$ has following features due to the mass gap :
- For large distance separation, the 4pt Green function is exponentially suppressed: $\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{o p}\right) \sim \exp \left[-m_{\pi} \times \operatorname{dist}\left(x, y, z, x_{o p}\right)\right]$
\triangleright For fixed ($x, y, z, x_{o p}$), FV error (wraparound effect etc.) is exponentially suppressed: $\left.\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\right|_{V}-\left.\mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\right|_{\infty} \sim \exp \left[-m_{\pi} \times L\right]$
- By using QED $_{\infty}$ weight function $\mathcal{G}_{\rho, \sigma, \kappa}(x, y, z)$, which is not exponentially growing, asymptotic FV correction is exponentially suppressed

$$
\left.\Delta_{V}\left[\sum_{x, y, z, x_{\mathrm{op}}} \mathcal{G}_{\rho, \sigma, \kappa}(x, y, z) \mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)\right]\right] \sim \exp \left[-m_{\pi} L\right]
$$

$\left(x_{\text {ref }}=(x+y) / 2\right.$ is at middle of QCD box using transnational invariance $)$

QCD in finite volume, QED in ∞ volume

- Mainz group first proposed QED $_{\infty}$ method
- QED ∞_{∞} : muon, photons computed in infinite volume, continuum (c.f. HVP)
- QED "weight" function $\mathcal{Q}(x, y, z)$ pre-computed
- subtract terms that vanish as $a \rightarrow 0, L \rightarrow \infty$ to reduce $O\left(a^{2}\right)$ errors
- Leading FV error is exponentially suppressed (c.f. HVP) instead of $O\left(1 / L^{2}\right)$
- QCD mass gap: $\mathcal{H}\left(x, y, z, x_{\text {op }}\right) \sim \exp -m_{\pi} \times \operatorname{dist}\left(x, y, z, x_{\text {op }}\right)$
- QED weight function does not grow exponentially

Results, QED case, Finite Volume Error

- QED weight : QED_{L} (purple diamond), QED_{∞} without subtraction (green plus), with subtraction (blue square)
- Curves correspond to expected finite volume scaling ($0.371+k / L^{2}$) and infinite volume scaling $\left(0.371+k e^{-m L}\right)$, where the coefficient k is chosen to match the data at $m L=4.8$.
- The right most point for the finite volume weighting function lies a bit off its scaling curve because the discretization error has not been completely removed, and the coefficient k does not contain any possible volume dependence.

$\mathrm{QED}_{\infty}, 139 \mathrm{MeV}$ pion, $a=0.2 \mathrm{fm}, L=6.4 \mathrm{fm}$ (preliminary)

Combine full lattice result, up to $R_{\text {max }}$, with π^{0} contribution from model or lattice from $R_{\text {max }}$ to ∞ for most precise result (c.f., QED_{L} result)
$\mathrm{dHLbL} \mathrm{QED}_{\infty}$ (non-leading diagram), $m_{\pi}=139 \mathrm{MeV}, a=0.2 \mathrm{fm}$ (peliminas)

negligible contribution compared to error on leading contributions

Summary \& Perspectives

- HVP
- R-ratio has 2.5-4.0 x10-10 [0.35-0.58 \%], BABAR-KLOE discrepancy, New data coming (e.g. Belle-II)
- Significant improvements is in progress for statistical error using 2π and 4π (!) states in addition to EM current (GEVP, GS-parametrization)
- Pure Lattice HVP 5×10^{-10} [0.7%] this year possible, $\sim 1 \times 10^{-10}$ [0.14\%] for long term
- consolidate error of R-ratio + Lattice at 3×10^{-10} [0.4\%]
- Check BABAR-KLOE tention by windown method, AND different lattice group results !
- HLbL
- computing connected and leading disconnected diagrams, take continue $\&$ infinite volume limits
- $Q_{E D}$ and $Q E D_{\text {。 }}$ Long distance from neutral pion pole, cross-check each other, Mainz group
- piO pole contribution \mathbb{A} higher order disconnected diagrams are in progress
- preliminary result not very different from the model results (Glasgow consensus)
- Unlikely explain the exp-theory $3+\sigma$ discrepancy
- Discrepancy between SM and Exp ~ 3.3-3.7 o, New physics, or ?
- Also t lepton hadronic decay (Belle-2, x50 statistics) , for CKM physics (V_{us}) [H. Ohki et al Phys.Rev.Lett. 121 (2018) 202003] . new dhvsics and g-2 induts [M. Bruno. PoS Lattice 2018 (2018) 1351

Subtraction using current conservation

- From current conservation, $\partial_{\rho} V_{\rho}(x)=0$, and mass gap, $\left\langle x V_{\rho}(x) \mathcal{O}(0)\right\rangle \sim$ $|x|^{n} \exp \left(-m_{\pi}|x|\right)$

$$
\begin{aligned}
\sum_{x} \mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right) & =\sum_{x}\left\langle V_{\rho}(x) V_{\sigma}(y) V_{\kappa}(z) V_{\nu}\left(x_{\mathrm{op}}\right)\right\rangle=0 \\
\sum_{z} \mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right) & =0
\end{aligned}
$$

at $V \rightarrow \infty$ and $a \rightarrow 0$ limit (we use local currents).

- We could further change QED weight
$\mathfrak{G}_{\rho, \sigma, \kappa}^{(2)}(x, y, z)=\mathfrak{G}_{\rho, \sigma, \kappa}^{(1)}(x, y, z)-\mathfrak{G}_{\rho, \sigma, \kappa}^{(1)}(y, y, z)-\mathfrak{G}_{\rho, \sigma, \kappa}^{(1)}(x, y, y)+\mathfrak{G}_{\rho, \sigma, \kappa}^{(1)}(y, y, y)$
without changing sum $\sum_{x, y, z} \mathfrak{G}_{\rho, \sigma, \kappa}(x, y, z) \mathcal{H}_{\rho, \sigma, \kappa, \nu}^{C}\left(x, y, z, x_{\mathrm{op}}\right)$.
- Subtraction changes discretization error and finite volume error.
- Similar subtraction is used for HVP case in TMR kernel, which makes FV error smaller.
- Also now $\mathfrak{G}_{\sigma, \kappa, \rho}^{(2)}(z, z, x)=\mathfrak{G}_{\sigma, \kappa, \rho}^{(2)}(y, z, z)=0$, so short distance $\mathcal{O}\left(a^{2}\right)$ is suppressed.
- The 4 dimensional integral is calculated numerically with the CUBA library cubature rules. (x, y, z) is represented by 5 parameters, compute on N^{5} grid points and interpolates. ($|x-y|<11 \mathrm{fm}$).

Tau input for g-2 HVP

[M. Bruno et al, arXiv:1811.00508]

$$
V-A \text { current }
$$

Final states $I=1$ charged
$\rightarrow 72 \%$ of total Hadronic LO

$$
\text { or } a_{\mu}^{e e} \neq a^{\tau} \rightarrow \mathrm{NP} \quad \text { [Cirigliano et al '18] }
$$

amu \& isospin components

Isospin decomposition of u, d current

$$
\begin{aligned}
& \quad j_{\mu}^{\gamma}=\frac{i}{6}\left(\bar{u} \gamma_{\mu} u+\bar{d} \gamma_{\mu} d\right)+\frac{i}{2}\left(\bar{u} \gamma_{\mu} u-\bar{d} \gamma_{\mu} d\right)=j_{\mu}^{(0)}+j_{\mu}^{(1)} \\
& G_{00}^{\gamma} \leftarrow\left\langle j_{k}^{(0)}(x) j_{k}^{(0)}(0)\right\rangle= \\
& G_{01}^{\gamma} \leftarrow\left\langle j_{k}^{(0)}(x) j_{k}^{(1)}(0)\right\rangle= \\
& G_{11}^{\gamma} \leftarrow\left\langle j_{k}^{(1)}(x) j_{k}^{(1)}(0)\right\rangle= \\
& \text { Decompose } a_{\mu}=a_{\mu}^{(0,0)}+a_{\mu}^{(0,1)}+a_{\mu}^{(1,1)}
\end{aligned}
$$

difference b/w tau decay and e+e-

$$
\begin{aligned}
& \text { Isospin } 1 \text { charged correlator } G_{11}^{W}=\frac{1}{3} \sum_{k} \int d \vec{x}\left\langle j_{k}^{(1,+)}(x) j_{k}^{(1,-)}(0)\right\rangle \\
& \overline{\delta G^{(1,1)} \equiv G_{11}^{\gamma}-G_{11}^{W}} \Delta a_{\mu}[\pi \pi, \tau]=4 \alpha^{2} \sum_{t} w_{t} \times\left[G_{01}^{\gamma}(t)+G_{11}^{\gamma}(t)-G_{11}^{W}(t)\right] \\
& =Z_{V}^{4}(4 \pi \alpha) \frac{\left(Q_{\mathrm{u}}-Q_{\mathrm{d}}\right)^{4}}{4}\left[\sigma^{\circ}+\infty\right]
\end{aligned}
$$

$$
\begin{aligned}
& +Z_{V}^{2} \frac{Q_{u}^{2}-Q_{d}^{2}}{2}\left(m_{u}-m_{d}\right)[2 \times \circlearrowleft+\ldots] \\
& \ldots=\text { subleading diagrams currently not included }
\end{aligned}
$$

$\Delta \mathrm{a}_{\mu} \quad$ (Preliminary)

Δa_{μ} from G_{01}^{γ} (QED and SIB):

Pure $I=1$ only $O(\alpha)$ terms:

$V=F \quad F=O M, S$
$M=\fallingdotseq \quad O=\fallingdotseq$ relevant, negative, neglected

Tau spectral function (vector, Strange=0) is very welcome!

$$
\Delta a_{\mu}[\pi \pi, \tau]=4 \alpha^{2} \sum_{t} w_{t} \times\left[G_{01}^{\gamma}(t)+G_{11}^{\gamma}(t)-G_{11}^{W}(t)\right]
$$

Preliminary lattice (full) calculation: $G_{01}^{\gamma}+\delta G$

Not included:
1.
 relevant
2. sub-leading $1 / N_{\text {c. }}, 1 / N_{f}$
3. finite-volume errors
4. discretization errors

CKM V ${ }_{\text {us }}$ from Inclusive tau decay

Yet another by-product of muon g-2 HVP

Phys.Rev.Lett. 121 (2018) 202003
 [Hiroshi Ohki et al.]


```
K
0.2237\pm0.0010
K12,PDG }201
0.2254 \pm0.0007
    CKM unitarity, PDG }201
    0.2258 }\pm0.000
    \tau -> s incl., HFLAV Spring 2017
    0 . 2 1 8 6 \pm 0 . 0 0 2 1
    \tau K Kv / \tau -> \piv, HFLAV Spring 2017
    0.2236 }\pm0.001
    \tau average, HFLAV Spring 2017
    0.2216 }\pm0.001
    HFLAV
    Spring 2017
```


Tau decay

- Experiment side $: \tau \rightarrow \nu+h a d$ (Hadronic) vacuym polarization function V-A vertex. EW correction $\left.\Pi_{E W}{ }^{2}\right)$

$$
\begin{aligned}
R_{i j} & =\frac{\Gamma\left(\tau^{-} \rightarrow \text { hadrons }_{i j} \nu_{\tau}\right)}{\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right)} \\
& =\frac{12 \pi\left|V_{i j}\right|^{2} S_{E W}}{m_{\tau}^{2}} \int_{0}^{m_{\tau}^{2}}\left(1-\frac{s}{m_{\tau}^{2}}\right) \underbrace{\left[\left(1+2 \frac{s}{m_{\tau}^{2}}\right) \operatorname{Im}^{(1)}(s)+\operatorname{Im}^{(0)}(s)\right]}_{\equiv \operatorname{Im} \Pi(s)}
\end{aligned}
$$

- Lattice side : The Spin=0 and 1, vacuum polarization, Vector(V) or Axial (A) currentcurrent two point

$$
\begin{aligned}
\Pi_{i j ; V / A}^{\mu \nu}\left(q^{2}\right) & =i \int d^{4} x e^{i q x}\langle 0| T J_{i j ; V / A}^{\mu}(x) J_{i j ; V / A}^{\dagger \mu}(0)|0\rangle \\
& =\left(q^{\mu} q^{\nu}-q^{2} g^{\mu \nu}\right) \Pi_{i j ; V / A}^{(1)}\left(q^{2}\right)+q^{\mu} q^{\nu} \Pi_{i j ; V / A}^{(0)}
\end{aligned}
$$

Finite Energy Sum Rule (FESR)

[Shifman, Vainstein, Zakharov 1979]

- FESR = Optical theorem (Unitarity) + Dispersion relation (Analyticity)
- Optical theorem relate $\mathrm{S}=-1$ spectral function $\rho_{V / A, i j}^{0 / 1}(s)$ and $\mathrm{HVP} \Pi_{V / A, i j}^{0 / 1}(s)$ for given quantum number: flavor (us or ud), spin (0 or 1), parity (V or A)

$$
\frac{1}{\pi} \operatorname{Im} \Pi(s)=\rho(s)
$$

- Do finite radius contour integral for arbitrary regular weight function $w(s)$

$$
\int_{s_{t h}}^{s_{0}} d s \rho(s) w(s)=+\frac{i}{2 \pi} \oint_{|s|=s_{0}} d s \Pi(s) w(s)
$$

- Real axis integral is extracted from experimental decay energy distribution $d R_{\tau} / d s$

$$
\frac{d R_{i j ; V / A}}{d s}=\frac{12 \pi^{2}\left|V_{i j}\right|^{2} S_{E W}}{m_{\tau}^{2}} \omega_{\tau}(s) \rho(s)
$$

τ experiment

$\left|V_{u s}\right|$ determination from FESR

[E. Gamiz, et al., 2003, 2005, Maltman et al 2006]

- Inclusive differencial τ decay rate with wieght $w(s)$

$$
R_{i j}^{\omega}\left(s_{0}\right) \equiv \int_{s_{t h}}^{s_{0}} d s \frac{d R_{i j}}{d s} \frac{\omega\left(s / s_{0}\right)}{\omega_{\tau}\left(s / m_{\tau}^{2}\right)}
$$

- Take difference between up-down and up-strange channel

$$
\Delta R^{\omega}=\frac{R_{u d}^{\omega}}{\left|V_{u d}\right|^{2}}-\frac{R_{u s}^{\omega}}{\left|V_{u s}\right|^{2}}
$$

- $\left|V_{u d}\right|$ and m_{s} as input, selecting $s_{0}=m_{\tau}^{2}, \omega=\omega_{\tau}\left(s / s_{0}\right)$

$$
\left|V_{u s}\right|=\sqrt{\frac{R_{u s}^{\omega}\left(s_{0}\right)}{\frac{R_{u d}^{\omega}\left(s_{0}\right)}{\left|V_{u d}\right|^{2}}-\left[\Delta R^{\omega}\left(s_{0}\right)\right]^{\mathrm{pQCD}}}}
$$

- For $s>s_{0}$, fixed-order or contour-improved PQCD is used. OPE condensations at dim=4,6 \ldots are input/assumed. (a source of unaccounted uncertainties)

- τ result v.s. non- τ result : more than 3σ deviation : $|V u s|$ puzzle
- new physics effect?
- incl. analysis uses Finite energy sum rule (FESR)
- pQCD and higher order OPE for FESR:
underestimation of truncation error and/or non-perturbative effects? (c.f. alternative FESR approach, R. Hudspith et. al arXiv:1702.01767)

Our new method : Combining FESR and Lattice

- If we have a reliable estimate for $\Pi(s)$ in Euclidean (space-like) points, $s=-Q_{k}^{2}<0$, we could extend the FESR with weight function $w(s)$ to have poles there,

$$
\begin{aligned}
& \qquad \int_{s_{t h}}^{\infty} w(s) \operatorname{Im} \Pi(s)=\pi \sum_{k}^{N_{p}} \operatorname{Res}_{k}[w(s) \Pi(s)]_{s=-Q_{k}^{2}} \\
& \Pi(s)=\left(1+2 \frac{s}{m_{\tau}^{2}}\right) \operatorname{Im} \Pi^{(1)}(s)+\operatorname{Im} \Pi^{(0)}(s) \propto s \quad(|s| \rightarrow \infty) \\
& \text { - For } N_{p} \geq 3 \text {, the }|s| \rightarrow \infty \text { circle integral vanishes. } w(s)=\prod_{k}^{N_{p}} \frac{1}{\left(s+Q_{k}^{2}\right)}
\end{aligned}
$$

Lattice Inclusive $\left|V_{u s}\right|$ determinations

Theory and experimental errors are included.
The result is stable against changes of C and N .

$$
N=4, C=0.7\left[\mathrm{GeV}^{2}\right]:\left|V_{u s}\right|=0.2228(15)_{\exp }(13)_{t h} \quad \text { (0.87\% total error) }
$$

Comparison to $\left|V_{u s}\right|$ from others

Tau spectral function (vector/axial, Strange=-1) is very welcome!

[Luchang Jin's analogy] Precession of Mercury and GR

Amount (arc- sec/century)	Cause
5025.6	Coordinate (due to precession of equinoxes)
531.4	Gravitational tugs of the other planets
$\mathbf{0 . 0 2 5 4}$	Oblateness of the sun (quadrupole moment)
42.98 ± 0.04	General relativity
5600.0	Total
5599.7	Observed

discrepancy recognized since 1859

Known physics
1915 by-then New physics GR revolution
http://worldnpa.org/abstracts/abstracts_6066.pdf precession of perihelion

