g-2の格子理論計算

Taku Izubuchi (RBC&UKQCD collaboration)

Contents & References

- g-2 Hadronic Vacuum Polarization (HVP) Phys. Rev. Lett. 121 (2018) 022003
- g-2 Hadronic Light-by-Light (HLbL)
 Phys. Rev. D96 (2017) 034515
 Phys. Rev. Lett. 118 (2017) 022005
- Luchang Jin, Christoph Lehner, Aaron Meyer, talks at Lattice 2019
- Tom Blum, talk at Anomalies 2019

Collaborators / Machines

g-2 DWF HVP & HLbL Tom Blum (Connecticut)

Peter Boyle (Edinburgh)

Norman Christ (Columbia)

Vera Guelpers (Southampton)

Masashi Hayakawa (Nagoya)

James Harrison (Southampton)

Taku Izubuchi (BNL/RBRC)

Christoph Lehner (BNL)

Kim Maltman (York)

Chulwoo Jung (BNL)

Andreas Jüttner (Southampton)

Luchang Jin (BNL)

Antonin Portelli (Edinburgh)

tau input for g-2 HVP & **HVP GEVP**

tau decay

Mattia Bruno (CERN)

Aaron Meyer (BNL)

Peter Boyle (Edinburgh)

Taku Izubuchi (BNL/RBRC)

Christoph Lehner (BNL)

Kim Maltman (York)

Antonin Portelli (Edinburgh)

Christoph Lehner (BNL & Regensburg)

Taku Izubuchi (BNL & RBRC)

Renwick James Hudspith (York)

Andreas Ju ttner(Southampton)

Randy Lewis (Southampton)

Hiroshi Ohki (RBRC/Nara Women)

Matthew Spraggs (Edinburgh)

Part of related calculation are done by resources from USQCD (DOE), XSEDE, ANL BG/Q Mirá (DOE, ALCC), Edinburgh BG/Q, BNL BG/Q, RIKEN BG/Q and Cluster (RICC, HOKUSAI)

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK)
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Meifeng Lin
Aaron Meyer
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni

UC Boulder

Oliver Witzel

CERN

Mattia Bruno

Columbia University

Ryan Abbot Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Yidi Zhao

University of Connecticut

Tom Blum
Dan Hoying (BNL)
Luchang Jin (RBRC)
Cheng Tu

Edinburgh University

Peter Boyle
Luigi Del Debbio
Felix Erben
Vera Gülpers
Tadeusz Janowski
Julia Kettle
Michael Marshall
Fionn Ó hÓgáin
Antonin Portelli
Tobias Tsang
Andrew Yong
Azusa Yamaguchi

KEK Julien Frison

University of Liverpool

Nicolas Garron

<u>MIT</u>

David Murphy

Peking University

Xu Feng

University of Regensburg

Christoph Lehner (BNL)

University of Southampton

Nils Asmussen Jonathan Flynn Ryan Hill Andreas Jüttner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

Anomalous magnetic moment

Fermion's energy in the external magnetic field:

$$V(x) = -\vec{\mu}_l \cdot \vec{B} \qquad \vec{\mu}_l = g_l \frac{e}{2m_l} \vec{S}_l$$

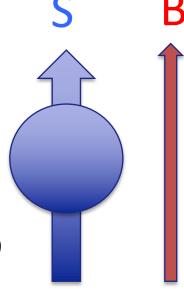
- Magnetic moment Lande g-factor tree level value 2
- 1928 P.A.M. Dirac "Quantum Theory of Electron"
 Dirac equation (relativity, minimal gauge interaction)

$$i[\partial_{\mu} - ieA_{\mu}(x)]\gamma^{\mu}\psi(x) = m\psi(x)$$

Non-relativistic and weak constant magnetic field limits of the Dirac equation:

$$-i\hbar\frac{\partial\psi}{\partial t} = \left[\frac{\nabla^2}{2m} + \frac{e}{2m}\left(\vec{L} + \mathbf{2}\vec{S}\right)\cdot\vec{B}\right]\psi$$

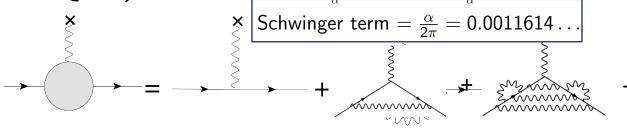
$$g_l=2$$
 (for Dirac Fermion I = e, μ , τ ,)



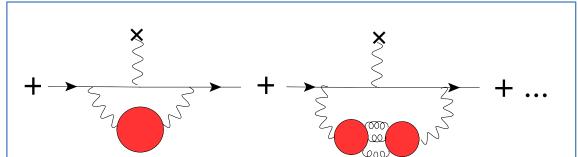
SM Theory

$$\gamma^{\mu} \rightarrow \Gamma^{\mu}(q) = \left(\gamma^{\mu} F_1(q^2) + \frac{i \sigma^{\mu\nu} q_{\nu}}{2m} F_2(q^2)\right)$$

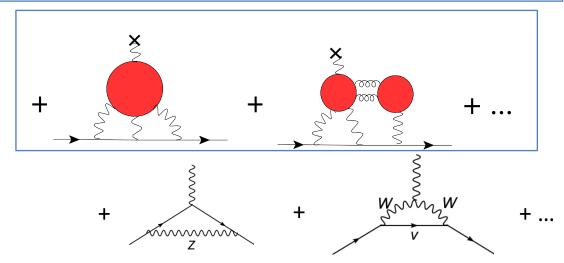
QED, hadronic, EW contributions



QED (5-loop) Aoyama Hayakawa, Kinoshita, Nio PRL109,111808 (2012)



Hadronic vacuum polarization (HVP)



Hadronic light-by-light (Hlbl)

Electroweak (EW) Knecht et al 02 Czarnecki et al. 02

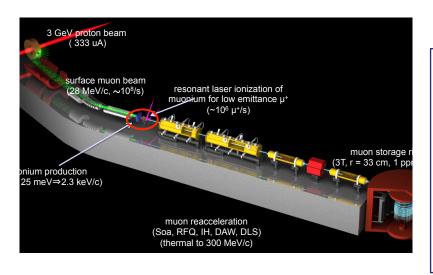
• • • •

muon anomalous magnetic moment



BNL g-2 till 2004 : $\sim 3.7 \sigma$ larger than SM prediction

Contribution	$Value imes \! 10^{10}$	Uncertainty $ imes 10^{10}$
QED (5 loops)	11 658 471.895	0.008
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	2.6
Total SM prediction	11 659 181.5	4.9
BNL E821 result	11 659 209.1	6.3
FNAL E989/J-PARC E34 goal		pprox 1.6



$$a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = 27.4 \underbrace{(2.7)}_{\text{HVP HLbL other EXP}} \underbrace{(6.3)}_{\text{EXP}} \times 10^{-10}$$

FNAL E989 (began 2017-)

2019: BNL level error : $(6.3) -> 4.5 \times 10^{-10}$

2022(?): 1.6 10⁻¹⁰ x4 precise 0.14ppm

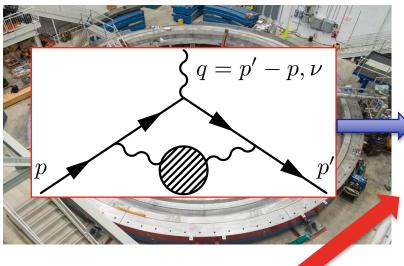
J-PARC E34 (IMPORTANT different systematics!)

ultra-cold muon beam

0.37 ppm then 0.1 ppm, also EDM

/

muon anomalous magnetic moment



BNL g-2 till 2004 : \sim 3.7 σ larger than SM prediction

Contribution	$Value imes \! 10^{10}$	Uncertainty $ imes 10^{10}$
QED (5 loops)	11 658 471.895	0.008
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-	by-light 10.5	2.6
Total SM predic	tion 11 659 181.5	4.9
BNL E821 result	11 659 209.1	6.3
FNAL E989/J-PA	RC E34 goal	pprox 1.6

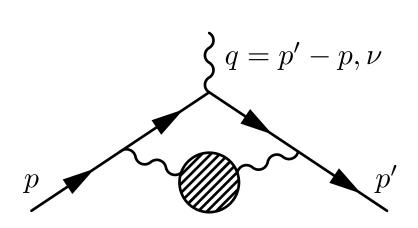
$$a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = 27.4 \underbrace{(2.7)}_{\text{HVP HLbL other EXP}} \underbrace{(6.3)}_{\text{EXP}} \times 10^{-10}$$

muon reacceleration
(Soa, RFQ, IH, DAW, DLS)
(thermal to 300 MeV/c)

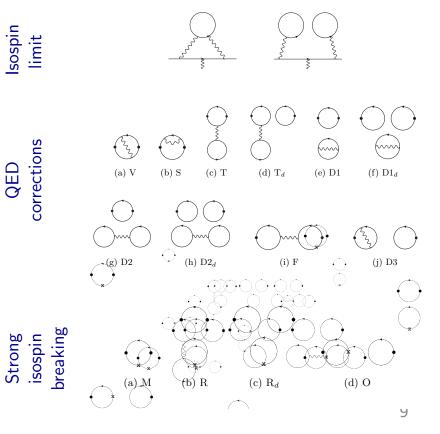
FNAL E989 (began 2017-)
2019: BN1 level error : (6.3) -> 4.5x10⁻¹⁰
2022(?): 1.6 10⁻¹⁰ x4 precise 0.14ppm

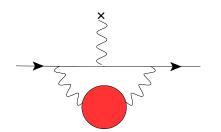
J-PARC E34 (IMPORTANT different systematics !) ultra-cold muon beam 0.37 ppm then 0.1 ppm, also EDM

Hadronic Vacuum Polarization (HVP) contribution to g-2

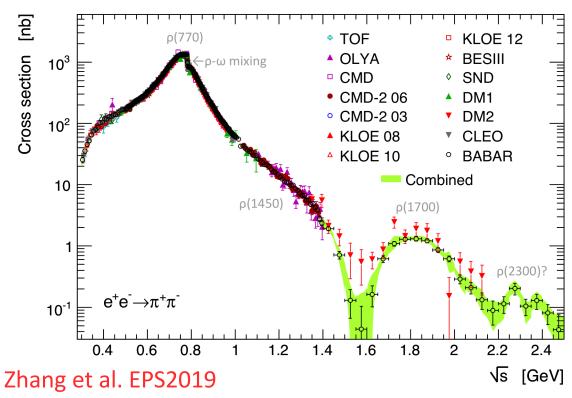


Quark & anti-quark contribution





g-2 from R-ratio



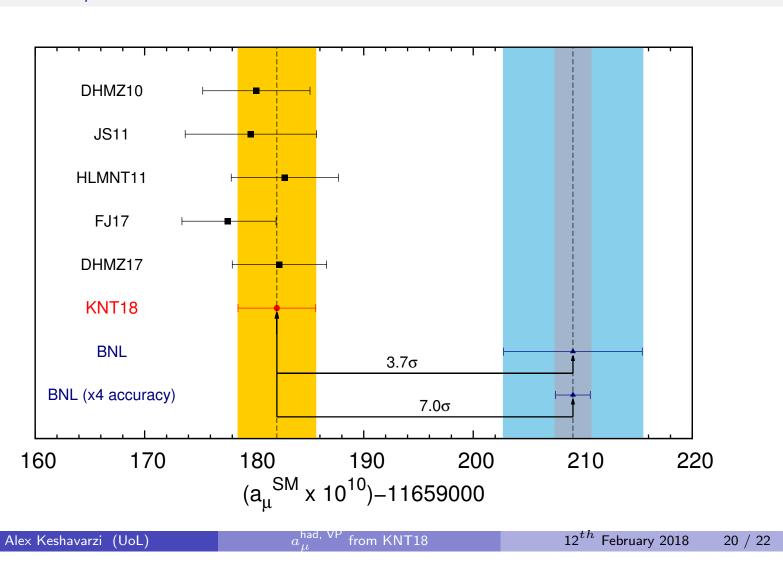
From experimental e+ e- inclusive hadron decay cross section $\sigma_{total}(s)$ in time-like $s = q^2 > 0$, and dispersion relation, optical theorem



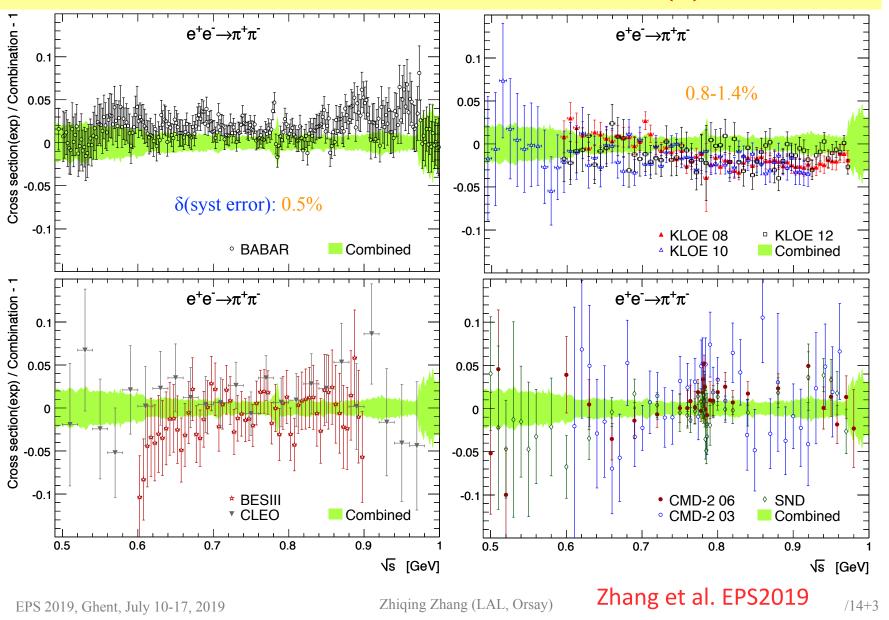
Results

KNT18 update

KNT18 $a_{\mu}^{\rm SM}$ update

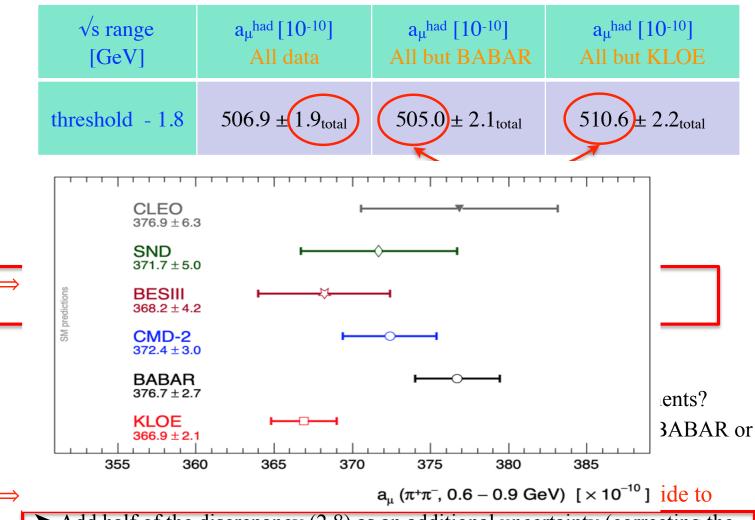


The Dominant $\pi^+\pi^-$ Channel (2)



BABAR & KLOE dominates 0.6-0.9 GeV $\pi\pi$ data, Has a large discrepancy between BABAR & KLOE -> inflate error (dominant)

Combined Results Fit [<0.6 GeV] + Data [0.6-1.8 GeV]



- ➤ Add half of the discrepancy (2.8) as an additional uncertainty (correcting the local PDG inflation to avoid double counting)
- ➤ Take the mean value "All but BABAR" and "All but KLOE" as our central value

Include other contributions in unit of 10⁻¹⁰:

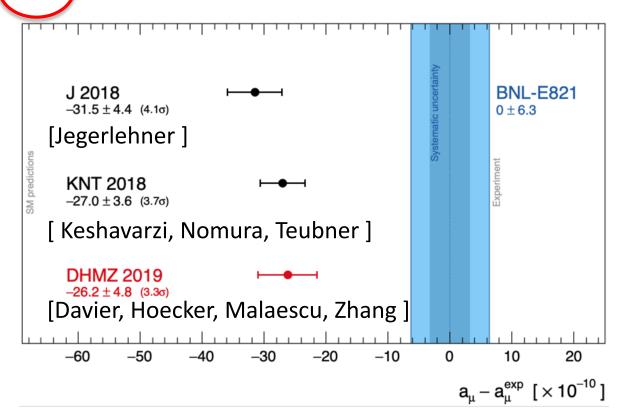
QCD NLO: -9.87 ± 0.07 ; NNLO: 1.24 ± 0.01 ; LBL: 10.5 ± 2.6

EW: 15.29 ± 0.10 ; QED: 11 658 471.895 ± 0.008

 \Rightarrow a_{\mu} = 11 659 182.9 \pm 4.8_{total}

In comparison with the direct measurement: $11 659 209.1 \pm 6.3_{total}$

 \Rightarrow 26.2 \pm 7.9 (3.3 σ)



Zhang et al. EPS2019

DHMZ19 added half of discrepancy b/w BABAR and KLOE, 2.8x10⁻¹⁰, as an additional uncertainty

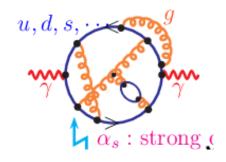
→ Unless this discrepancy is understood, this limits the precision of dispersive analysis

g-2 HVP from Lattice

[Bernecker Meyer 2011, Feng et al. 2013]

In Euclidean space-time, project verctor 2 pt to zero spacial momentum, $\vec{p}=0$:

$$C(t) = \frac{1}{3} \sum_{x,i} \langle j_i(x) j_i(0) \rangle$$

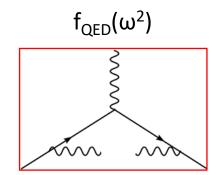


g-2 HVP contribution is

$$w(t) \sim t^4$$

$$a_{\mu}^{HVP} = \sum_t w(t)C(t)$$

$$w(t) = 2 \int_0^{\infty} \frac{d\omega}{\omega} f_{\rm QED}(\omega^2) \left[\frac{\cos \omega t - 1}{\omega^2} + \frac{t^2}{2} \right]$$



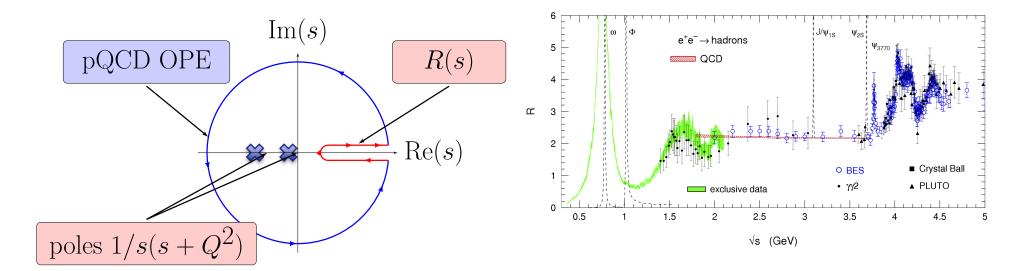
Subtraction $\Pi(0)$ is performed. Noise/Signal $\sim e^{(E_{\pi\pi}-m_\pi)t}$, is improved [Lehner et al. 2015] .

Euclidean time correlation from $e^+e^-\ R(s)$ data

From $e^+e^-\ R(s)$ ratio, using disparsive relation, zero-spacial momentum projected Euclidean correlation function C(t) is obtained

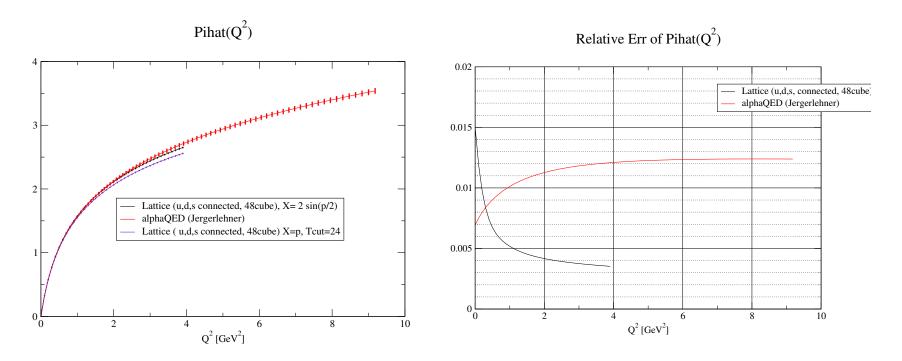
$$\hat{\Pi}(Q^2) = Q^2 \int_0^\infty ds \frac{R(s)}{s(s+Q^2)}$$
 Lattice can compute Integral of Inclusive cross sections accurately
$$C^{\text{R-ratio}}(t) = \frac{1}{12\pi^2} \int_0^\infty \frac{d\omega}{2\pi} \hat{\Pi}(\omega^2) e^{i\omega t} = \frac{1}{12\pi^2} \int_0^\infty ds \, \sqrt{s} R(s) e^{-\sqrt{s}t}$$

- C(t) or w(t)C(t) are directly comparable to Lattice results with the proper limits $(m_q \to m_q^{\rm phys}, a \to 0, V \to \infty, QED ...)$
- Lattice: long distance has large statistical noise, (short distance: discretization error, removed by $a \to 0$ and/or pQCD)
- R-ratio: short distance has larger error

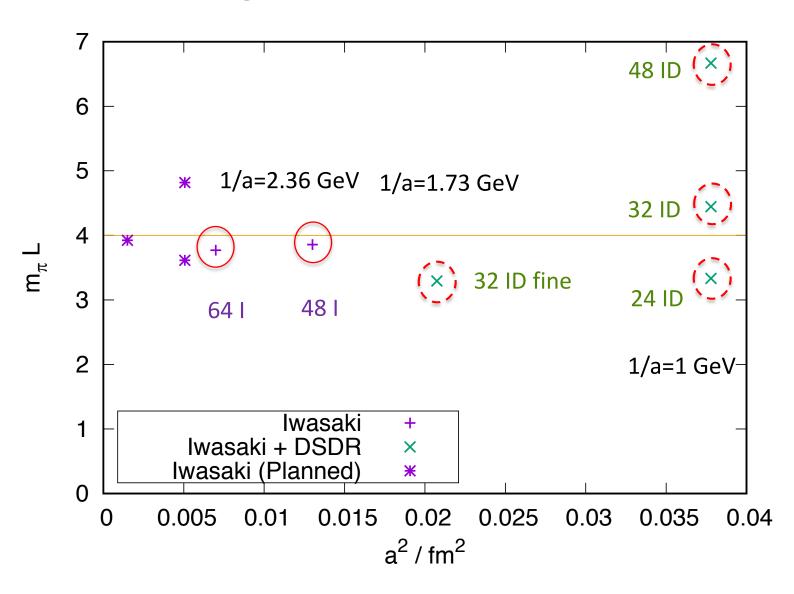


$$\hat{\Pi}(Q^2) = Q^2 \int_0^\infty ds \frac{R(s)}{s(s+Q^2)}$$
 (1/a = 1.78 GeV,

Relative statistical error)



Nf=2+1 DWF QCD ensemble at physical quark mass

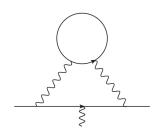


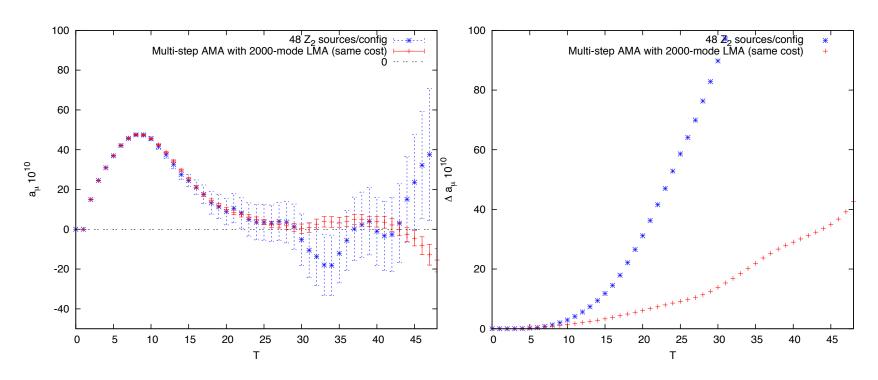
New Data since 2018

RBC/UKQCD 2019 (data for light quarks, changes from 2018):

- ▶ A2A data for connected isospin symmetric: 48I (127 conf \rightarrow 400 conf), 64I (160 conf \rightarrow 250 conf), 24ID (new 130 conf, multi mass), 32ID (new 88 conf, multi mass)
- ► A2A data (tadpole fields) for disconnected: 48I (33 conf), 24ID (new 260 conf, multi mass), 32IDf (new 103 conf)
- ▶ QED and SIB corrections to meson and Ω masses, Z_V : 48I (30 conf) and 64I (new 30 conf)
- QED and SIB from HLbL point sources on 48I, 24ID, 32ID, 32IDf (on order of 20 conf each, 2000 points per config)
- Distillation data on 48I (33 conf), 64I (in progr.), 24ID (33 conf), 32ID (11 conf, multi-mass)
- New Ω mass operators (excited states control): 48I (130 conf)

DWF light HVP [2016 Christoph Lehner]



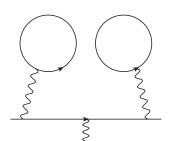


120 conf (a=0.11fm), 80 conf (a=0.086fm) physical point Nf=2+1 Mobius DWF 4D full volume LMA with 2,000 eigen vector (of e/o preconditioned zMobius D⁺D) EV compression (1/10 memory) using local coherence [C. Lehner Lat2017 Poster] In addition, 50 sloppy / conf via multi-level AMA

more than x 1,000 speed up compared to simple CG

disconnected quark loop contribution

- [C. Lehner et al. (RBC/UKQCD 2015, arXiv:1512.09054, PRL)]
- Very challenging calculation due to statistical noise
- Small contribution, vanishes in SU(3) limit,Qu+Qd+Qs = 0

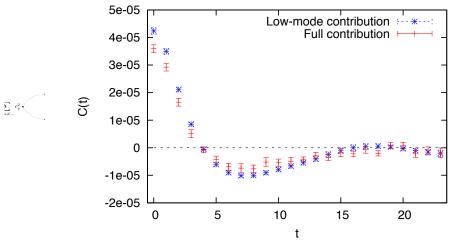


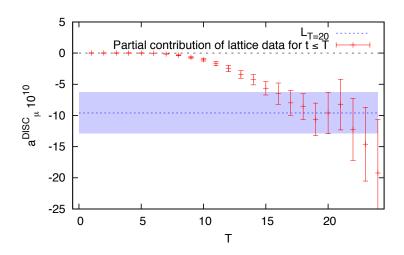
- Use low mode of quark propagator, treat it exactly (all-to-all propagator with sparse random source)
- First non-zero signal

$$a_{\mu}^{\mathrm{HVP\ (LO)\ DISC}} = -9.6(3.3)_{\mathrm{stat}}(2.3)_{\mathrm{sys}} \times 10^{-10}$$

Sensitive to m_{π}

crucial to compute at physical mass





HVP QED+ strong IB corrections

- HVP is computed so far at Iso-symmetric quark mass, needs to compute isospin breaking corrections: Qu, Qd, mu-md ≠0
- u,d,s quark mass and lattice spacing are re-tuned using {charge,neutral} x{pion,kaon} and (Omega baryon masses)
- For now, V, S, F, M are computed: assumes EM and IB of sea quark and also shift to lattice spacing is small (correction to disconnected diagram)

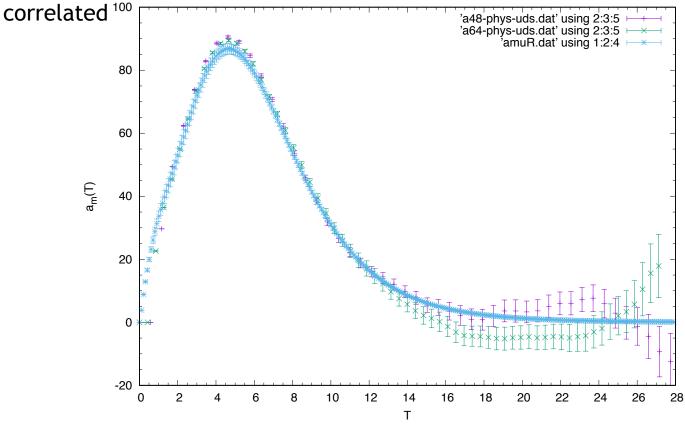
Point-source method: stochastically sample pair of 2 EM vertices a la important sampling with exact photon

(a) V (b) S (c) T (d) D1 (e) D2 (a) M (b) R (c) O

22

Comparison of R-ratio and Lattice [F. Jegerlehner alphaQED 2016]

Covariance matrix among energy bin in R-ratio is not available, assumes 100%



$$a_{\mu}^{HVP} = \sum_{t} w(t)C(t)$$

$$w(t) = 2 \int_{0}^{\infty} \frac{d\omega}{\omega} f_{\text{QED}}(\omega^{2}) \left[\frac{\cos \omega t - 1}{\omega^{2}} + \frac{t^{2}}{2} \right]$$

$$C(t) = \frac{1}{3} \sum_{x,i} \langle j_i(x) j_i(0) \rangle$$

Combine R-ratio and Lattice [Christoph Lehner et al PRL18]

450

0.5

1.5

t / fm

 Use short and long distance from R-ratio using smearing function, and mid-distance from lattice

$$\Theta(t,\mu,\sigma) \equiv \left[1 + \tanh\left[(t-\mu)/\sigma\right]\right]/2$$

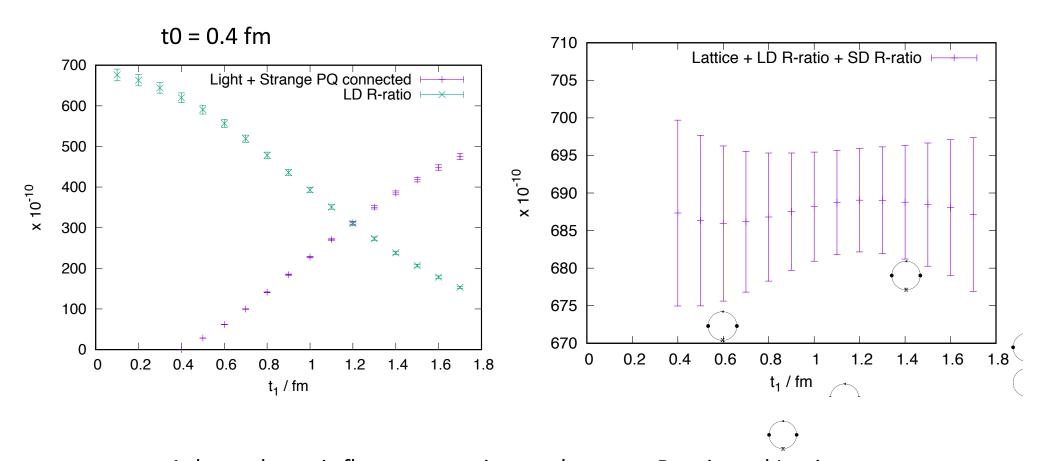
$$a_{\mu} = \sum_{t} w_{t}C(t) \equiv a_{\mu}^{\mathrm{SD}} + a_{\mu}^{\mathrm{W}} + a_{\mu}^{\mathrm{LD}}$$

$$a_{\mu}^{\mathrm{SD}} = \sum_{t} C(t)w_{t}[1 - \Theta(t,t_{0},\Delta)],$$

$$a_{\mu}^{\mathrm{W}} = \sum_{t} C(t)w_{t}[\Theta(t,t_{0},\Delta) - \Theta(t,t_{1},\Delta)],$$

$$a_{\mu}^{\mathrm{LD}} = \sum_{t} C(t)w_{t}\Theta(t,t_{1},\Delta)$$

R-ratio + Lattice

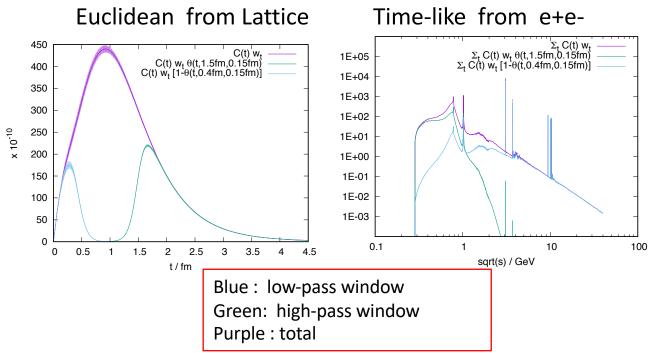


t1 dependence is flat => a consistency between R-ratio and Lattice

t1 = 1.2 fm, R-ratio : Lattice = 50:50

t1=1.2 fm current error (note 100% correlation in R-ratio) is minimum

How does this translate to the time-like region?



Most of $\pi\pi$ peak is captured by window from $t_0=0.4$ fm to $t_1=1.5$ fm, so replacing this region with lattice data reduces the dependence on

BaBar versus KLOE data sets.

Current status & Improvements

[Christoph Lehner Lattice2019]

The pure lattice calculation of RBC/UKQCD 2018:

$$10^{10} imes a_{\mu}^{
m HVP\ LO} = 715.4(18.7)$$
 [RBC/UKQCD, PRL 121 (2018) 022003]
$$= 715.4(16.3)_{
m S}(7.8)_{
m V}(3.0)_{
m C}(1.9)_{
m A}(3.2)_{
m other}$$

(S) statistics, (V) finite-volume errors, (C) the continuum limit extrapolation, (A) scale setting uncertainty; other ⊃ neglected diagrams for QED and SIB, estimate of bottom quark contribution

Statistical noise mostly from isospin symmetric light quark connected (14.2) and disconnected (3.3), QED (5.7), SIB (4.3)

RBC/UKQCD 2019 update (in preparation):

- Improved methodology
- A lot of new data

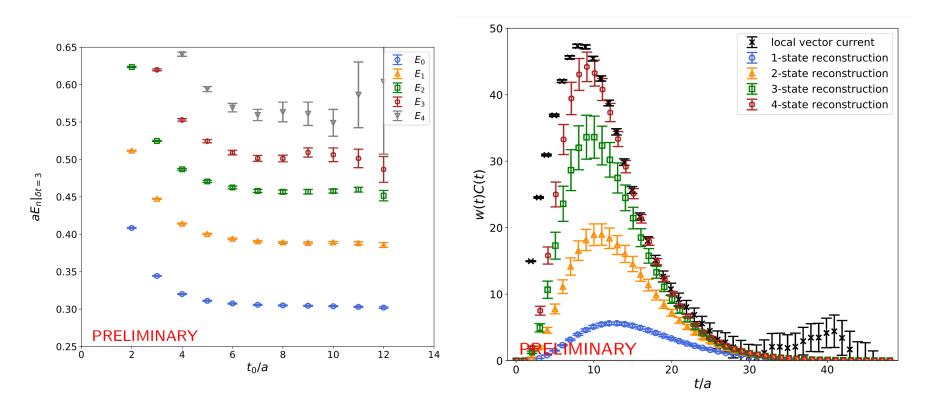
[Aaron Meyer LATTICE2019] Reconstruction of HVP from multi-channel Greens function

- Correlation function among N operators O_n, n=0,1,..., N-1
- Point (or smeared) vector $\mathcal{O}_0 = \sum_x \bar{\psi}(x) \gamma_\mu \psi(x), \ \mu \in \{1, 2, 3\}$
- $\mathcal{O}_n = \left| \sum_{xyz} \bar{\psi}(x) f(x-z) e^{-i\vec{p}_\pi \cdot \vec{z}} \gamma_5 f(z-y) \psi(y) \right|^2$ 2 π operator
- 4 π operator $\mathcal{O}_{4\pi} = \left| \sum_{xyz} \bar{\psi}(x) f(x-z) e^{-i\vec{p}_{\pi} \cdot \vec{z}} \gamma_5 f(z-y) \psi(y) \right|^2 \left| \sum_{xy} \bar{\psi}(x) f(x-y) \gamma_5 \psi(y) \right|^2$
- NxN correlation function $< O_i(t) O_j(0) >$ (using distillation)
- Solve NxN spectrum E_n of eigenstates | E_n > and Overwrap factors $\langle E_n | O_0 | 0 \rangle$ (GEVP)
- Reconstruct V-V correlator, and bound contribution from the (N+1)-th states and above

$$\langle O_0(t)O_0^{\dagger}(0)\rangle = \sum_{n=0}^{N-1} |\langle 0|O_0|n\rangle|^2 e^{-E_n t} + (\text{contributions from} \quad n \ge N \quad \text{states}$$

[Aaron Meyer LATTICE2019]

GEVP & Reconstruct I=1 VV



6-operator basis on 48I ensemble: local+smeared vector, $4\times(2\pi)$

$$C(t) V = C(t + \delta t) V \Lambda(\delta t), \quad V_{im} \propto \langle \Omega | \mathcal{O}_i | m \rangle$$

Bounds for a_{μ}

Upper & lower bounds from unitarity

$$\widetilde{C}(t; t_{\mathsf{max}}, E) = \left\{ egin{array}{ll} C(t) & t < t_{\mathsf{max}} \ C(t_{\mathsf{max}}) e^{-E(t-t_{\mathsf{max}})} & t \geq t_{\mathsf{max}} \end{array}
ight.$$

Upper bound: $E = E_0$, lowest state in spectrum

Lower bound: $E = \log[\frac{C(t_{\text{max}})}{C(t_{\text{max}}+1)}]$

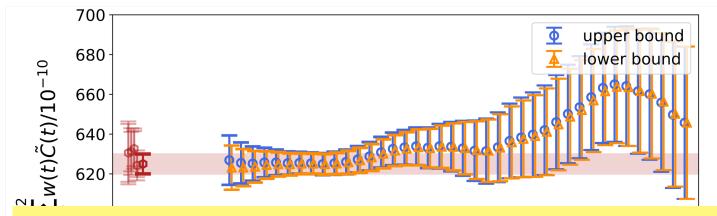
Also bounds for the n in [N+1, ∞] states contribution

Replace
$$C(t) \rightarrow C(t) - \sum_{n=1}^{N} |c_n|^2 e^{-E_n t}$$

- \implies Long distance convergence now $\propto e^{-E_{N+1}t}$
- ⇒ Smaller overall contribution from neglected states

test of GEVP+Bounding method [A. Meyer]

Bounding Method Results - 481



a factor of 2.5 smaller statistical error by bounding method

a factor of 7 smaller statistical error by bounding method + 4 state reconstruction

```
No bounding method: a_{\mu}^{HVP}=646(38) Bounding method t_{\text{max}}=3.3~\text{fm}, no reconstruction: a_{\mu}^{HVP}=631(16) Bounding method t_{\text{max}}=3.0~\text{fm}, 1 state reconstruction: a_{\mu}^{HVP}=631(12) Bounding method t_{\text{max}}=2.9~\text{fm}, 2 state reconstruction: a_{\mu}^{HVP}=633(10) Bounding method t_{\text{max}}=2.2~\text{fm}, 3 state reconstruction: a_{\mu}^{HVP}=624.3(7.5) Bounding method t_{\text{max}}=1.8~\text{fm}, 4 state reconstruction: a_{\mu}^{HVP}=625.0(5.4)
```

Bounding method gives factor of 2 improvement over no bounding method Improving the bounding method increases gain to factor of 7, including systematics

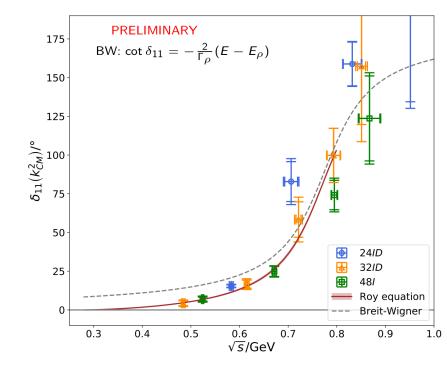
Aaron S. Meyer

Finite Volume correction estimates

- L=6.22 fm (24cube) bax vs L=4.66 fm (32cube)
- scalar QED
- Using pion form factor (Gounaris-Sakurai parametrization) & Lellouche Luscher's FV formula

$$a_{\mu}^{HVP}(L=6.22~{
m fm})-a_{\mu}^{HVP}(L=4.66~{
m fm})$$

$$= \left\{ \begin{array}{ccc} 12.2 \times 10^{-10} & \text{sQED} \\ 21.6(6.3) \times 10^{-10} & \text{LQCD} \\ 20(3) \times 10^{-10} & \text{GSL} \end{array} \right.$$

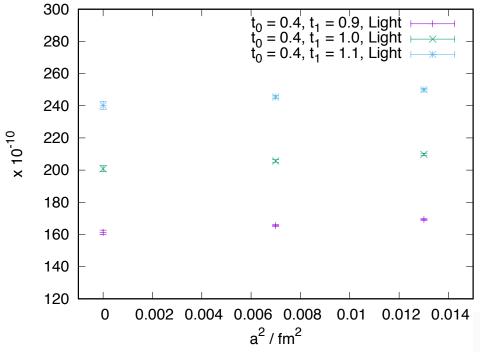


Revised FV estimation :

$$a_{\mu}^{HVP}(L=\infty) - a_{\mu}^{HVP}(L=5.47 \text{ fm}) = 22(1) \times 10^{-10}$$

Continuum limit of a^w

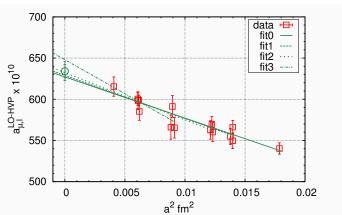
Continuum limit of a_{μ}^{W} from our lattice data; below $t_0=0.4$ fm and $\Delta=0.15$ fm



RBC/UKQCD [C. Lehner Lat17]

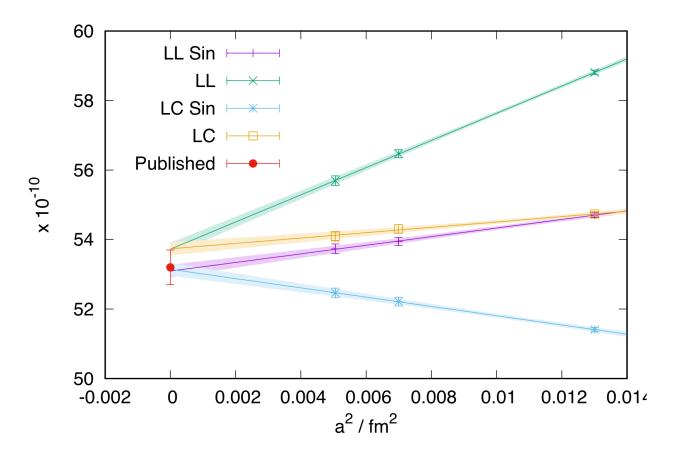
Continuum extrapolation is mild

c.f BMWc [K. Miura Lat17]



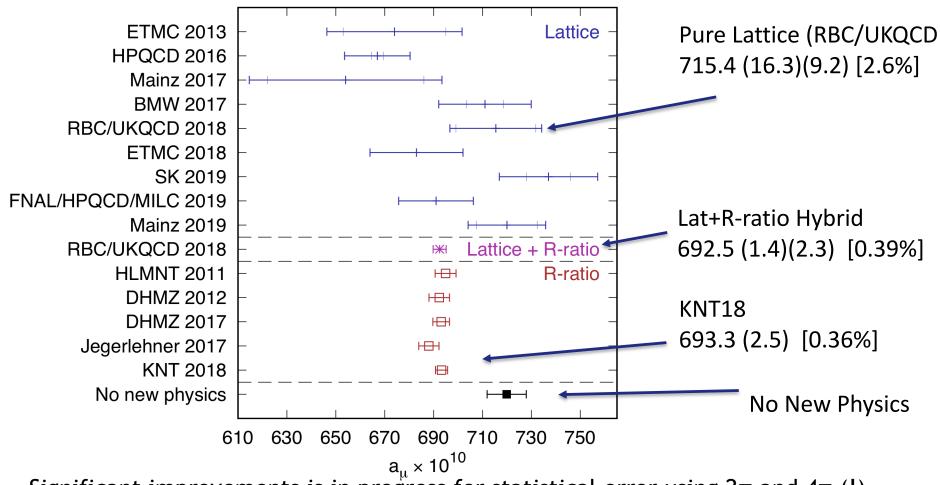
Add $a^{-1} = 2.77$ GeV lattice spacing

Third lattice spacing for strange data ($a^{-1} = 2.77$ GeV with $m_{\pi} = 234$ MeV with sea light-quark mass corrected from global fit):



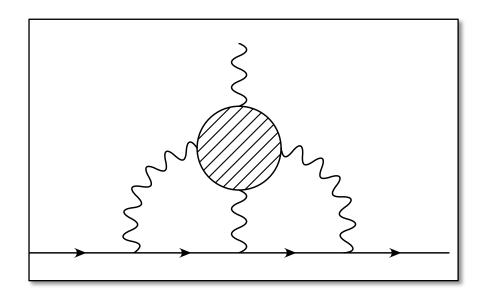
For light quark need new ensemble at physical pion mass. Started run on Summit Machine at Oak Ridge this year ($a^{-1}=2.77$ GeV with $m_{\pi}=139$ MeV).

HVP results [Christoph Lehner Lat19]



- Significant improvements is in progress for statistical error using 2π and 4π (!) states in addition to EM current (GEVP, GS-parametrization)
- Pure Lattice HVP 5x10⁻¹⁰ this year, 1x10⁻¹⁰ for long term
- Check BABAR-KLOE tention by windown method, consolidate error at 3x10⁻¹⁰

Hadronic Light-by-Light (HLbL) contributions

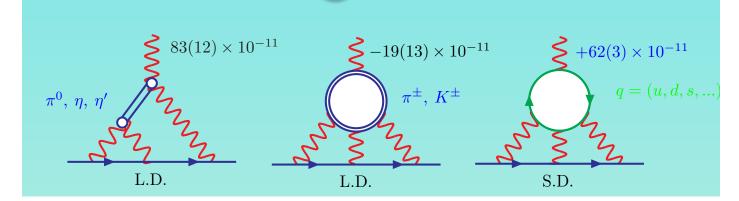


HLbL from Models

Model estimate with non-perturbative constraints at the chiral / low energy limits using anomaly: (9-12) x 10-10 with 25-40%

uncertainty

$$a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = 27.4 \underbrace{(2.7)(2.6)(0.1)}_{\text{HVP}} \underbrace{(6.3)}_{\text{HLbL}} \times 10^{-10}$$



F. Jegerlehner, $x 10^{11}$

Contribution	BPP	HKS	KN	MV	PdRV	N/JN
π^0,η,η'	85±13	82.7±6.4	83±12	114±10	114±13	99±16
π, K loops	-19 ± 13	-4.5 ± 8.1	_	0±10	-19±19	-19±13
axial vectors	2.5 ± 1.0	1.7 ± 1.7	_	22 ± 5	15±10	22 ± 5
scalars	-6.8 ± 2.0	_	_	_	-7 ± 7	-7 ± 2
quark loops	21 ± 3	9.7±11.1	-	-	2.3	21 ± 3
total	83±32	89.6±15.4	80±40	136±25	105±26	116±39

Hadronic Light-by-Light

- 4pt function of EM currents
- No direct experimental data available
- Dispersive approach

$$\Gamma_{\mu}^{\text{(HIbl)}}(p_{2}, p_{1}) = ie^{6} \int \frac{d^{4}k_{1}}{(2\pi)^{4}} \frac{d^{4}k_{2}}{(2\pi)^{4}} \frac{\Pi_{\mu\nu\rho\sigma}^{(4)}(q, k_{1}, k_{3}, k_{2})}{k_{1}^{2} k_{2}^{2} k_{3}^{2}} \times \gamma_{\nu} S^{(\mu)}(\not p_{2} + \not k_{2}) \gamma_{\rho} S^{(\mu)}(\not p_{1} + \not k_{1}) \gamma_{\sigma}$$

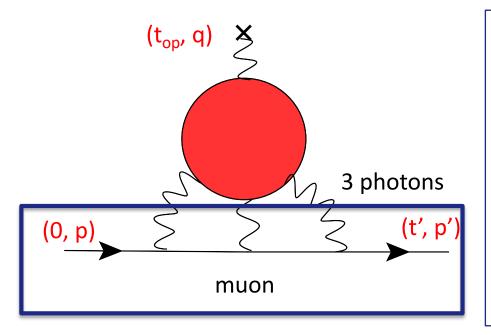
$$\Pi_{\mu\nu\rho\sigma}^{(4)}(q, k_{1}, k_{3}, k_{2}) = \int d^{4}x_{1} d^{4}x_{2} d^{4}x_{3} \exp[-i(k_{1} \cdot x_{1} + k_{2} \cdot x_{2} + k_{3} \cdot x_{3})] \times \langle 0|T[j_{\mu}(0)j_{\nu}(x_{1})j_{\rho}(x_{2})j_{\sigma}(x_{3})]|0\rangle$$

Form factor:
$$\Gamma_{\mu}(q) = \gamma_{\mu} F_1(q^2) + \frac{\imath \sigma^{\mu\nu} q_{\nu}}{2 \, m_l} \, F_2(q^2)$$

Our Basic strategy: Lattice QCD+QED system

- 4pt function has too much information to parameterize (?)
- Do Monte Carlo integration for QED two-loop with 4 pt function $π^{(4)}$ which is sampled in lattice QCD with chiral quark (Domain-Wall fermion)
- Photon & lepton part of diagram is derived either in lattice QED+QCD [Blum et al 2014] (stat noise from QED), or exactly derive for loop momenta / location at currents [L. Jin et al 2015] (no noise from QED+lepton).

$$\Gamma_{\mu}^{(\text{Hlbl})}(p_2, p_1) = ie^6 \int \frac{d^4k_1}{(2\pi)^4} \frac{d^4k_2}{(2\pi)^4} \Pi_{\mu\nu\rho\sigma}^{(4)}(q, k_1, k_2, k_3) \times [S(p_2)\gamma_{\nu}S(p_2 + k_2)\gamma_{\rho}S(p_1 + k_1)\gamma_{\sigma}S(p_1) + (\text{perm.})]$$



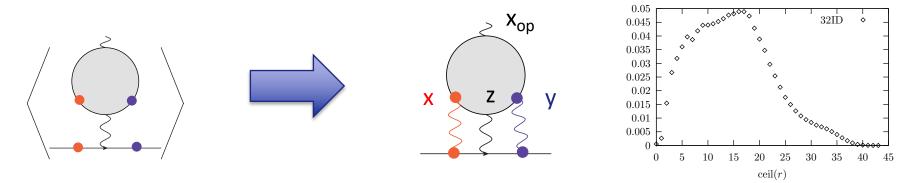
- set spacial momentum for

 external EM vertex q
 in- and out- muon p, p'
 q = p-p'
- set time slice of muon source(t=0), sink(t') and operator (t_{op})
- take large time separation for ground state matrix element

Coordinate space Point photon method

[Luchang Jin et al. , PRD93, 014503 (2016)]

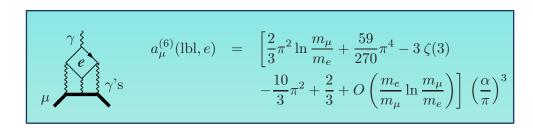
- Treat all 3 photon propagators exactly (3 analytical photons), which makes the quark loop and the lepton line connected:
 - disconnected problem in Lattice QED+QCD -> connected problem with analytic photon
- QED 2-loop in coordinate space. Stochastically sample, two of quark-photon vertex location x,y,z and x_{op} is summed over space-time exactly



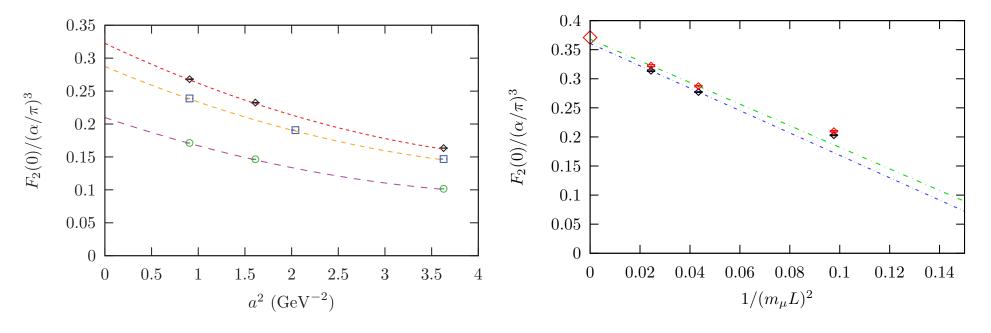
- Short separations, Min[|x-z|,|y-z|,|x-y|] < R ~ O(0.5) fm, which has a large contribution due to confinement, are summed for all pairs</p>
- longer separations, Min[|x-z|,|y-z|,|x-y|] >= R, are done stochastically with a probability shown above (Adaptive Monte Carlo sampling)

Systematic effects in QED only study

- muon loop, muon line
- $a = a m_{\mu} / (106 \text{ MeV})$
- L= 11.9, 8.9, 5.9 fm



known result : F2 = 0.371 (diamond) correctly reproduced (good check)



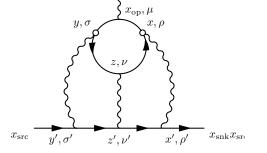
FV and discretization error could be as large as 20-30 %, similar discretization error seen from QCD+QED study

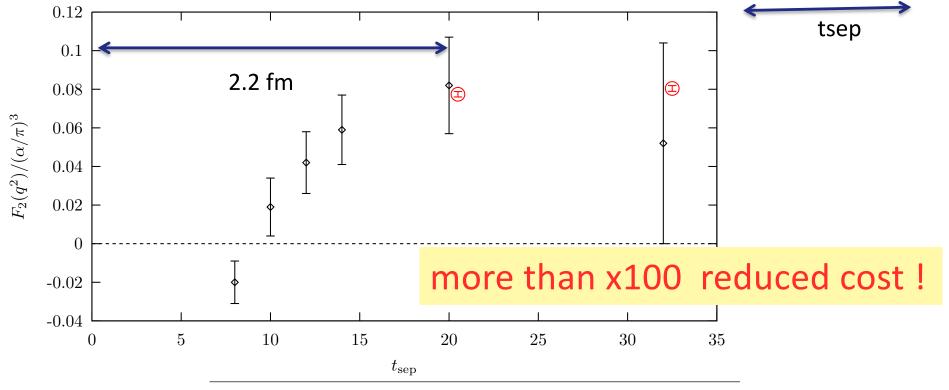
Dramatic Improvement!

Luchang Jin

a=0.11 fm, 24^3x64 (2.7 fm)³, m_{π} = 329 MeV, m_{μ} =~ 190 MeV, e=1

$$\begin{array}{c} q = 2\pi/L \ N_{\text{prop}} = 81000 \ \longmapsto \\ q = 0 \ N_{\text{prop}} = 26568 \ \longmapsto \end{array}$$

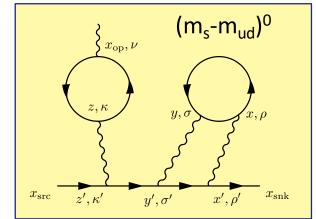


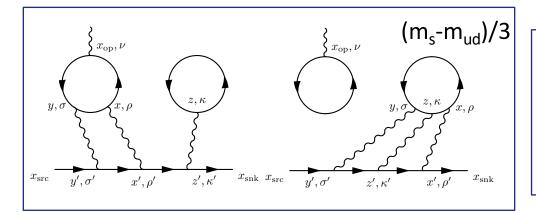


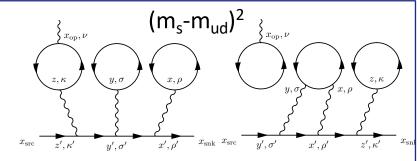
Method	$F_2/(\alpha/\pi)^3$	$N_{ m conf}$	$N_{ m prop}$	\sqrt{Var}
Conserved	0.0825(32)	12	$(118+128)\times2\times7$	0.65
Mom.	0.0804(15)	18	$(118+128)\times2\times3$	0.24

SU(3) hierarchies for d-HLbL

- At $m_s = m_{ud}$ limit, following type of disconnected HLbL diagrams survive $Q_u + Q_d + Q_s = 0$
- Physical point run using similar techniques to c-HLbL.
- other diagrams suppressed by $O(m_s-m_{ud})/3$ and $O((m_s-m_{ud})^2)$



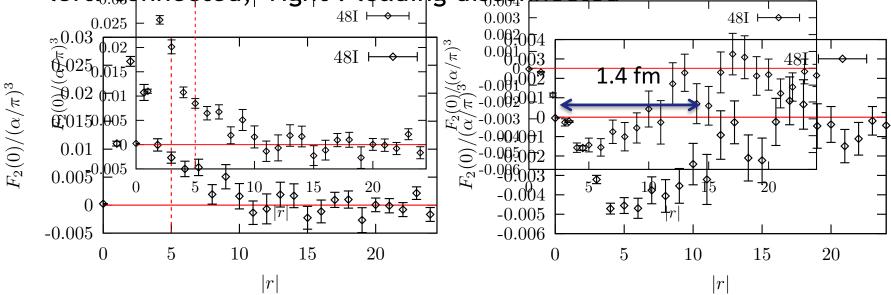




140 MeV Pion, connected and disconnected LbL results

[Luchang Jin et al. , Phys.Rev.Lett. 118 (2017) 022005]

left: gonnected, right: leading disconnected



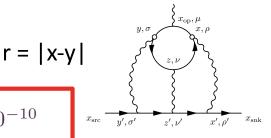
Using AMA with 2,000 zMobius low modes, AMA

(statistical error only)

$$\frac{g_{\mu} - 2}{2} \Big|_{\text{cHLbL}} = (0.0926 \pm 0.0077) \times \left(\frac{\alpha}{\pi}\right)^3 = (11.60 \pm 0.96) \times 10^{-10}$$

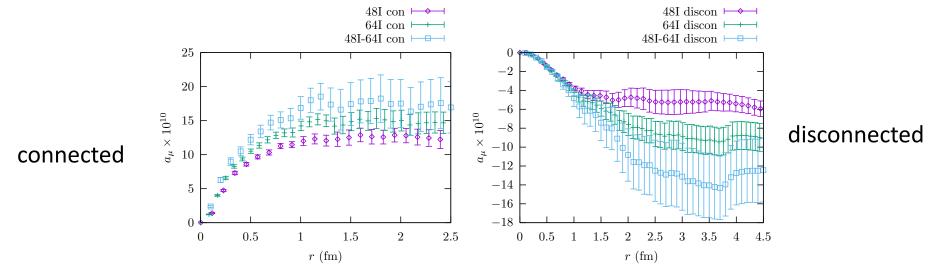
$$\frac{g_{\mu} - 2}{2} \Big|_{\text{dHLbL}} = (-0.0498 \pm 0.0064) \times \left(\frac{\alpha}{\pi}\right)^3 = (-6.25 \pm 0.80) \times 10^{-10}$$

$$\frac{g_{\mu} - 2}{2} \Big|_{\text{HLbL}} = (0.0427 \pm 0.0108) \times \left(\frac{\alpha}{\pi}\right)^3 = (5.35 \pm 1.35) \times 10^{-10}$$

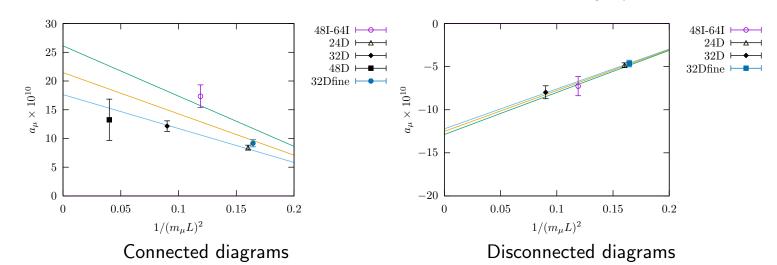


Continuum / infinite volume extrapolation

Discretization error 1/a = 2.7, 1.4 GeV at physical quark mass



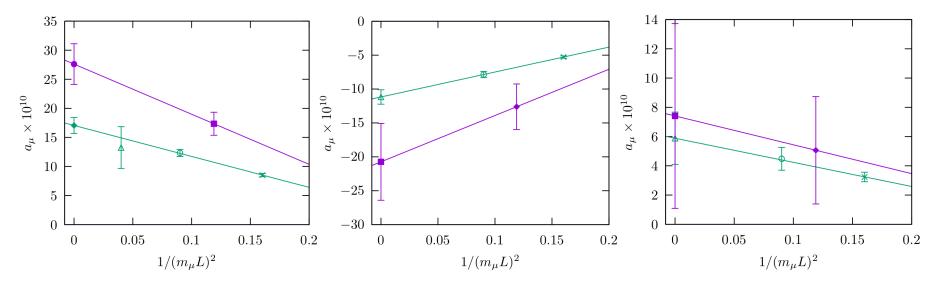
Finite volume L = 4.8, 6.4, 9.6 fm at 1/a=1 GeV at physical mass



[Blum et al. Moriond2019]

Using QED_L
[Hayakawa Uno PTP 2008]

QED_L continuum and infinite volume extrapolation [Blum et al., 2019] (preliminary)



- Iwasaki ensembles: $a \to 0$ ($c_2 = 0$, conn. extrap.: up to 1 fm, 48^3 for r > 1 fm)
- I-DSDR ensembles: $L o \infty$ ($b_2 = 0$)

$$a_{\mu}^{cHLbL} = (27.61 \pm 3.51_{\mathrm{stat}} \pm 0.32_{\mathrm{sys},a^2}) \times 10^{-10}$$
 $a_{\mu}^{dHLbL} = -20.20 \pm 5.65_{\mathrm{stat}} \times 10^{-10}$
 $a_{\mu}^{HLbL} = 7.41 \pm 6.32_{\mathrm{stat}} \pm 0.32_{\mathrm{sys},a^2} \times 10^{-10}$

$$F_2(a,L) = F_2 \left(1 - \frac{c_1}{(m_\mu L)^2}\right) (1 - c_2 a^2)$$

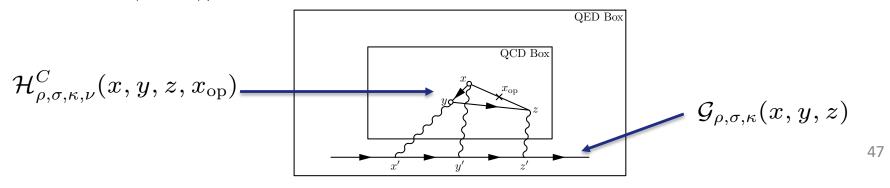
Infinite Volume Photon and Lepton QED $_{\infty}$

[Feynman, Schwinger, Tomonaga]

- Instead of, or, in addition to, larger QED box, one could use infinite volume QED to compute $\mathcal{G}_{\rho,\sigma,\kappa}(x,y,z)$.
- Hadron part $\mathcal{H}^{C}_{
 ho,\sigma,\kappa,\nu}(x,y,z,x_{
 m op})$ has following features due to the mass gap :
 - ▶ For large distance separation, the 4pt Green function is exponentially suppressed: $\mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}(x,y,z,x_{\sf op})\sim \exp[-m_\pi \times {\sf dist}(x,y,z,x_{\sf op})]$
 - ▶ For fixed (x, y, z, x_{op}) , FV error (wraparound effect etc.) is exponentially suppressed: $\mathcal{H}_{\rho,\sigma,\kappa,\nu}^C|_V \mathcal{H}_{\rho,\sigma,\kappa,\nu}^C|_\infty \sim \exp[-m_\pi \times L]$
- By using QED_{∞} weight function $\mathcal{G}_{\rho,\sigma,\kappa}(x,y,z)$, which is not exponentially growing, asymptotic FV correction is exponentially suppressed

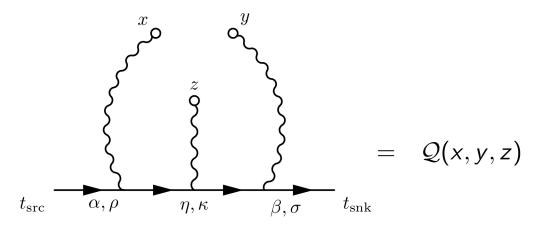
$$\Delta_V \left[\sum_{x,y,z,x_{\sf op}} \mathcal{G}_{
ho,\sigma,\kappa}(x,y,z) \mathcal{H}^{C}_{
ho,\sigma,\kappa,
u}(x,y,z,x_{\sf op})]
ight] \sim \exp[-m_\pi L]$$

 $(x_{\text{ref}} = (x + y)/2 \text{ is at middle of QCD box using transnational invariance})$



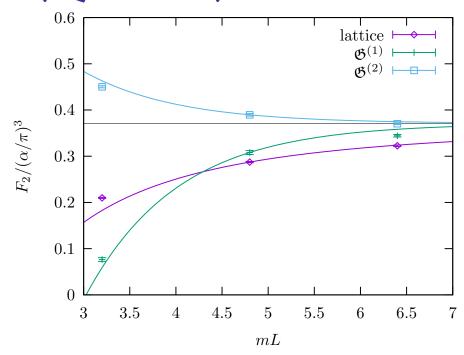
Infinite volume QED_{∞} [Green et al., 2015, Asmussen et al., 2016, Lehner and Izubuchi, 2015, Jin et al., 2015, Blum et al., 2017b]

QCD in finite volume, QED in ∞ volume



- ullet Mainz group first proposed QED $_{\infty}$ method
- QED $_{\infty}$: muon, photons computed in infinite volume, continuum (c.f. HVP)
- QED "weight" function Q(x, y, z) pre-computed
- subtract terms that vanish as $a \to 0$, $L \to \infty$ to reduce $O(a^2)$ errors
- Leading FV error is exponentially suppressed (c.f. HVP) instead of $O(1/L^2)$
 - QCD mass gap: $\mathcal{H}(x, y, z, x_{\text{op}}) \sim \exp{-m_{\pi} \times \operatorname{dist}(x, y, z, x_{\text{op}})}$
 - QED weight function does not grow exponentially

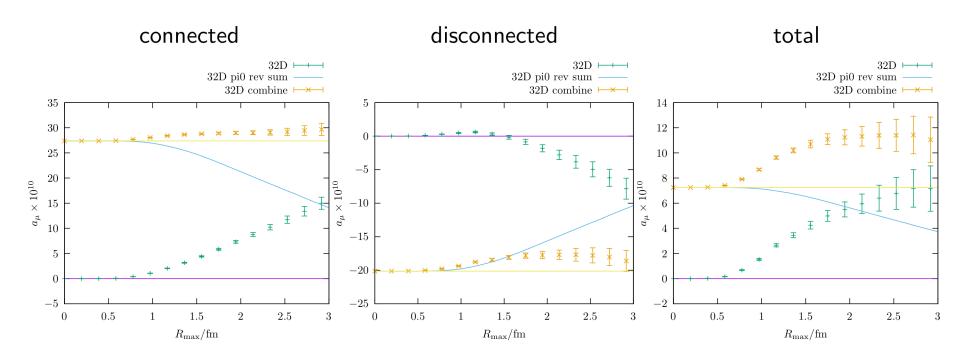
Results, QED case, Finite Volume Error



- QED weight : QED_L (purple diamond), QED $_{\infty}$ without subtraction (green plus), with subtraction (blue square)
- Curves correspond to expected finite volume scaling $(0.371 + k/L^2)$ and infinite volume scaling $(0.371 + ke^{-mL})$, where the coefficient k is chosen to match the data at mL = 4.8.
- The right most point for the finite volume weighting function lies a bit off its scaling curve because the discretization error has not been completely removed, and the coefficient k does not contain any possible volume dependence.

[Tom Blum et al. Anomalies 2019]

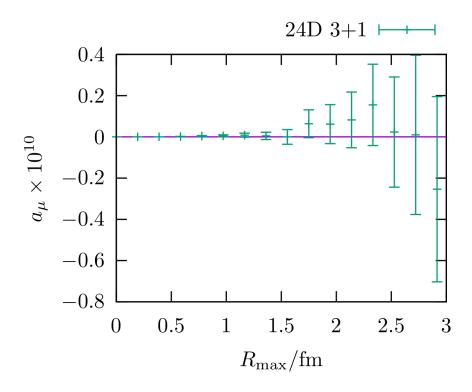
QED_{∞} , 139 MeV pion, a = 0.2 fm, L = 6.4 fm (preliminary)



Combine full lattice result, up to R_{max} , with π^0 contribution from model or lattice from R_{max} to ∞ for most precise result (c.f., QED_L result)

[Tom Blum et al. Anomalies 2019]

dHLbL, QED $_{\infty}$ (non-leading diagram), $m_{\pi}=139$ MeV, a=0.2 fm $_{ ext{(preliminary)}}$



negligible contribution compared to error on leading contributions

Summary & Perspectives

HVP

- R-ratio has 2.5-4.0 x10-¹⁰ [0.35-0.58 %], BABAR-KLOE discrepancy, New data coming (e.g. Belle-II)
- Significant improvements is in progress for statistical error using 2π and 4π (!) states in addition to EM current (GEVP, GS-parametrization)
- Pure Lattice HVP 5x10⁻¹⁰ [0.7%] this year possible, ~1x10⁻¹⁰ [0.14%] for long term
- consolidate error of R-ratio + Lattice at 3x10⁻¹⁰ [0.4%]
- Check BABAR-KLOE tention by windown method, AND different lattice group results!

HLbL

- computing connected and leading disconnected diagrams, take continue & infinite volume limits
- QED_L and QED_m Long distance from neutral pion pole, cross-check each other, Mainz group
- pi0 pole contribution & higher order disconnected diagrams are in progress
- preliminary result not very different from the model results (Glasgow consensus)
- Unlikely explain the exp-theory 3+ σ discrepancy
- Discrepancy between SM and Exp ~ 3.3 3.7 σ , New physics, or ?
- Also τ lepton hadronic decay (Belle-2, x50 statistics),
 for CKM physics (V_{us}) [H. Ohki et al Phys.Rev.Lett. 121 (2018) 202003]
 new physics and g-2 inputs Γ M. Bruno. PoS Lattice 2018 (2018) 135 1

Subtraction using current conservation

• From current conservation, $\partial_{\rho}V_{\rho}(x)=0$, and mass gap, $\langle xV_{\rho}(x)\mathcal{O}(0)\rangle\sim |x|^n\exp(-m_{\pi}|x|)$

$$\sum_{x} \mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}(x,y,z,x_{\text{op}}) = \sum_{x} \langle V_{\rho}(x)V_{\sigma}(y)V_{\kappa}(z)V_{\nu}(x_{\text{op}})\rangle = 0$$
$$\sum_{z} \mathcal{H}_{\rho,\sigma,\kappa,\nu}^{C}(x,y,z,x_{\text{op}}) = 0$$

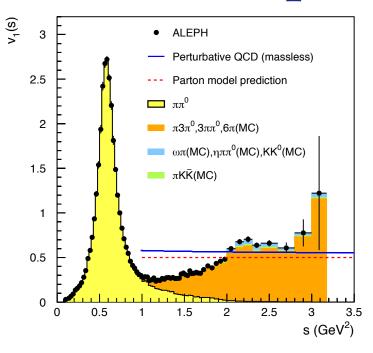
at $V \to \infty$ and $a \to 0$ limit (we use local currents).

We could further change QED weight

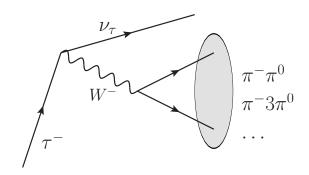
$$\mathfrak{G}_{\rho,\sigma,\kappa}^{(2)}(x,y,z) = \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(x,y,z) - \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(y,y,z) - \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(x,y,y) + \mathfrak{G}_{\rho,\sigma,\kappa}^{(1)}(y,y,y)$$
 without changing sum $\sum_{x,y,z} \mathfrak{G}_{\rho,\sigma,\kappa}(x,y,z) \mathcal{H}_{\rho,\sigma,\kappa,\nu}^C(x,y,z,x_{\mathrm{op}})$.

- Subtraction changes discretization error and finite volume error.
- Similar subtraction is used for HVP case in TMR kernel, which makes FV error smaller.
- Also now $\mathfrak{G}^{(2)}_{\sigma,\kappa,\rho}(z,z,x)=\mathfrak{G}^{(2)}_{\sigma,\kappa,\rho}(y,z,z)=0$, so short distance $\mathcal{O}(a^2)$ is suppressed.
- The 4 dimensional integral is calculated numerically with the CUBA library cubature rules. (x,y,z) is represented by 5 parameters, compute on N^5 grid points and interpolates. (|x-y|<11 fm).

Tau input for g-2 HVP

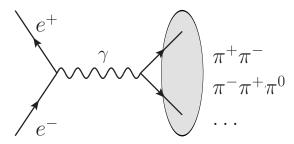


[M. Bruno et al, arXiv:1811.00508]



V-A current

Final states I=1 charged



EM current

Final states I = 0, 1 neutral

au data can improve $a_{\mu}[\pi\pi]$

 $\rightarrow 72\%$ of total Hadronic LO

or $a_{\mu}^{ee} \neq a^{\tau} \rightarrow \text{NP}$ [Cirigliano et al '18]

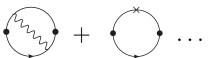
amu & isospin components

Isospin decomposition of u, d current

$$G_{01}^{\gamma} \leftarrow \langle j_k^{(0)}(x)j_k^{(1)}(0)\rangle =$$

$$G_{11}^{\gamma} \leftarrow \langle j_k^{(1)}(x)j_k^{(1)}(0)\rangle = +$$

Decompose
$$a_{\mu} = a_{\mu}^{(0,0)} + a_{\mu}^{(0,1)} + a_{\mu}^{(1,1)}$$



difference b/w tau decay and e+e-

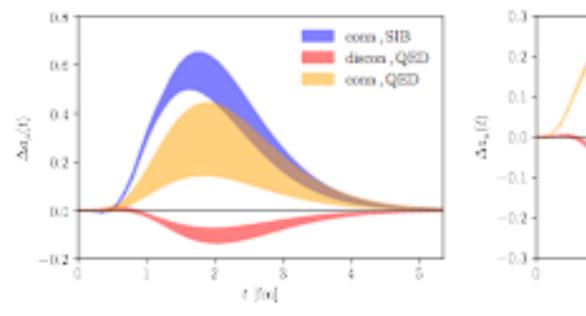
$$\begin{split} &\sum_{u,d} \sqrt{\frac{1}{u}} \sqrt{\frac{1}{u}$$

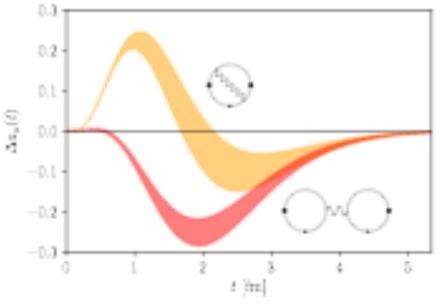
= subleading diagrams currently not included

Δa_{μ} (Preliminary)

 Δa_{μ} from G_{01}^{γ} (QED and SIB):

Pure I = 1 only $O(\alpha)$ terms:



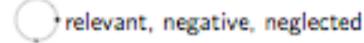


$$V = {}^{\bullet}$$

$$F = \bigcirc \vee \bigcirc$$

$$S = {}^{(i_W \delta)}$$

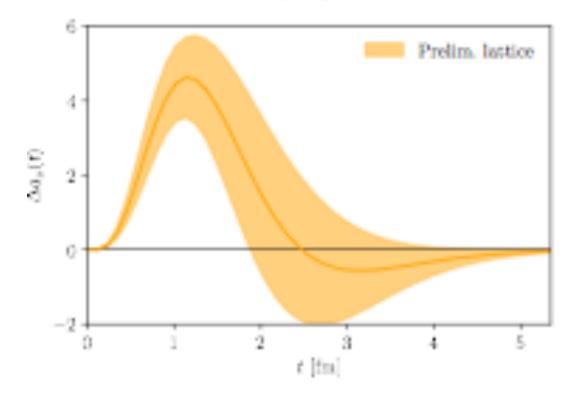
$$M = \bigcirc$$



Tau spectral function (vector, Strange=0) is very welcome!

$$\Delta a_{\mu}[\pi\pi, \tau] = 4\alpha^2 \sum_{t} w_{t} \times \left[G_{01}^{\gamma}(t) + G_{11}^{\gamma}(t) - G_{11}^{W}(t) \right]$$

Preliminary lattice (full) calculation: $G_{01}^{\gamma} + \delta G$



Not included:

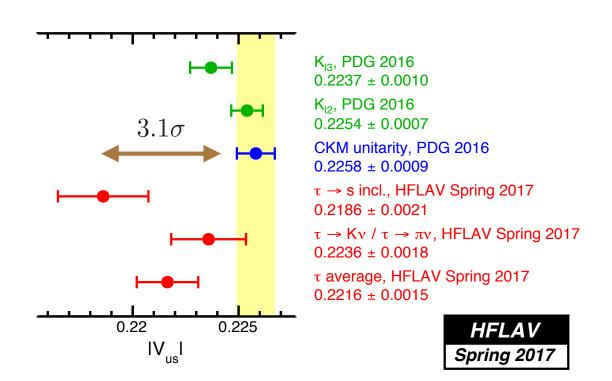
- relevant
- 2. sub-leading $1/N_c$, $1/N_f$
- finite-volume errors
- 4. discretization errors

CKM V_{us} from Inclusive tau decay

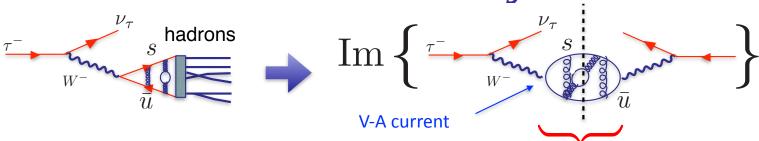
Yet another by-product of muon g-2 HVP

Phys.Rev.Lett. 121 (2018) 202003

[Hiroshi Ohki et al.]



Tau decay

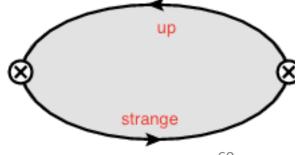


• Experiment side : au o
u + had (Hadronic) vacuum polarization function $\Pi(Q^2)$ correction S_{EW}

$$egin{array}{lll} R_{ij} &=& rac{\Gamma(au^-
ightarrow ext{hadrons}_{ij} \;
u_ au)}{\Gamma(au^-
ightarrow e^- ar{
u}_e
u_ au)} \ &=& rac{12\pi |V_{ij}|^2 S_{EW}}{m_ au^2} \int_0^{m_ au^2} \left(1 - rac{s}{m_ au^2}
ight) \left[\left(1 + 2rac{s}{m_ au^2}
ight) ext{Im} \Pi^{(1)}(s) + ext{Im} \Pi^{(0)}(s)
ight]} \ &\equiv & ext{Im} \; \Pi(s) \end{array}$$

 Lattice side: The Spin=0 and 1, vacuum polarization, Vector(V) or Axial (A) currentcurrent two point

$$\Pi_{ij;V/A}^{\mu\nu}(q^2) = i \int d^4x e^{iqx} \left\langle 0 | T J_{ij;V/A}^{\mu}(x) J_{ij;V/A}^{\dagger\mu}(0) | 0 \right\rangle$$
$$= (q^{\mu}q^{\nu} - q^2 g^{\mu\nu}) \Pi_{ij;V/A}^{(1)}(q^2) + q^{\mu}q^{\nu} \Pi_{ij;V/A}^{(0)}(q^2)$$



Finite Energy Sum Rule (FESR)

[Shifman, Vainstein, Zakharov 1979]

- FESR = Optical theorem (Unitarity) + Dispersion relation (Analyticity)
- Optical theorem relate S=-1 spectral function $ho_{V/A,ij}^{0/1}(s)$ and HVP $\Pi_{V/A,ij}^{0/1}(s)$ for given quantum number: flavor (us or ud), spin (0 or 1), parity (V or A)

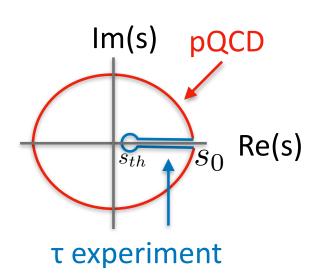
$$\frac{1}{\pi} \mathrm{Im} \Pi(s) = \rho(s)$$

ullet Do finite radius contour integral for arbitrary regular weight function w(s)

$$\int_{s_{th}}^{s_0} ds \rho(s) w(s) = +\frac{i}{2\pi} \oint_{|s|=s_0} ds \Pi(s) w(s)$$

ullet Real axis integral is extracted from experimental decay energy distribution $dR_{ au}/ds$

$$rac{dR_{ij;V/A}}{ds} = rac{12\pi^2 |V_{ij}|^2 S_{EW}}{m_ au^2} \omega_ au(s)
ho(s)$$



$|V_{us}|$ determination from FESR

[E. Gamiz, et al., 2003, 2005, Maltman et al 2006]

ullet Inclusive differencial au decay rate with wieght w(s)

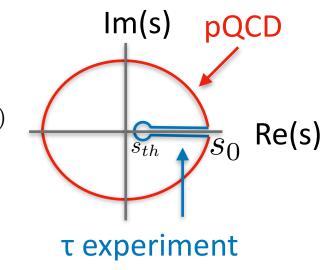
$$R^{\omega}_{ij}(\mathbf{s_0}) \equiv \int_{s_{th}}^{s_0} ds \frac{dR_{ij}}{ds} \frac{\omega(s/s_0)}{\omega_{\tau}(s/m_{\tau}^2)}$$

Take difference between up-down and up-strange channel

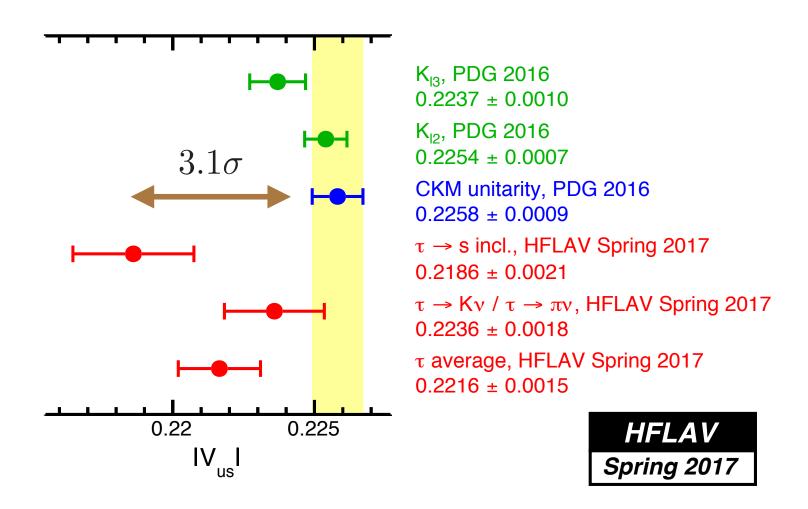
$$\Delta R^{\omega} = \frac{R_{ud}^{\omega}}{|V_{ud}|^2} - \frac{R_{us}^{\omega}}{|V_{us}|^2}$$

ullet $|V_{ud}|$ and m_s as input, selecting $s_0=m_ au^2, \omega=\omega_ au(s/s_0)$

$$|V_{us}| = \sqrt{rac{R_{us}^{\omega}(s_0)}{rac{|V_{ud}|^2}{|V_{ud}|^2} - \left[\Delta R^{\omega}(s_0)
ight]^{ extsf{pQCD}}}$$



• For $s>s_0$, fixed-order or contour-improved pQCD is used. OPE condensations at dim=4,6 ... are input/assumed. (a source of unaccounted uncertainties)



- τ result v.s. non- τ result : more than 3 σ deviation : |Vusl puzzle
- new physics effect?
- incl. analysis uses Finite energy sum rule (FESR)
- pQCD and higher order OPE for FESR:
 underestimation of truncation error and/or non-perturbative effects?
 (c.f. alternative FESR approach, R. Hudspith et. al arXiv:1702.01767)

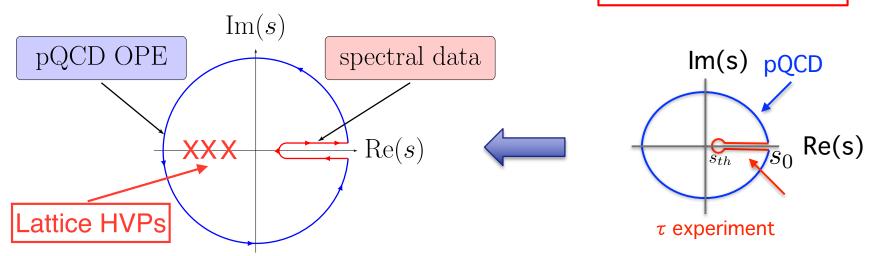
Our new method: Combining FESR and Lattice

• If we have a reliable estimate for $\Pi(s)$ in Euclidean (space-like) points, $s=-Q_k^2<0$, we could extend the FESR with weight function w(s) to have poles there,

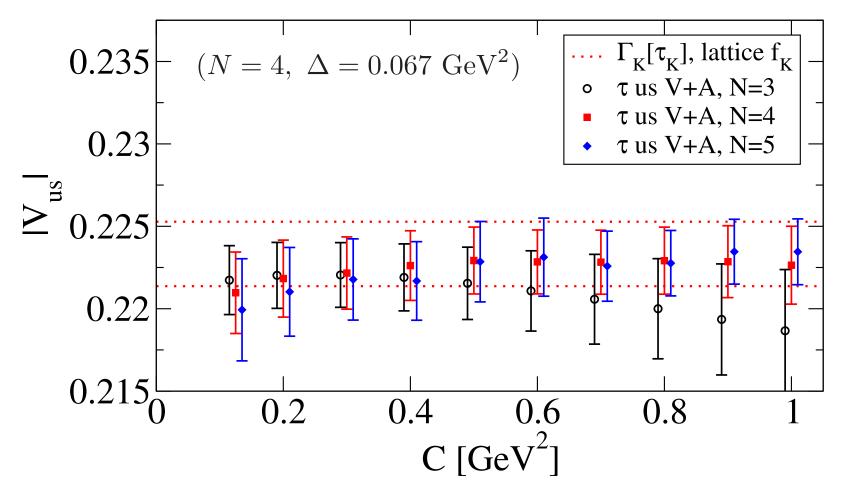
$$\begin{split} \int_{s_{th}}^{\infty} w(s) \mathrm{Im}\Pi(s) &= \pi \sum_{k}^{N_p} \mathrm{Res}_k [w(s)\Pi(s)]_{s=-Q_k^2} \\ \Pi(s) &= \left(1 + 2\frac{s}{m_{\tau}^2}\right) \mathrm{Im}\Pi^{(1)}(s) + \mathrm{Im}\Pi^{(0)}(s) \propto s \ (|s| \to \infty) \end{split}$$

• For $N_p \geq 3$, the $|s| \to \infty$ circle integral vanishes.

$$w(s) = \prod_{k=0}^{N_p} \frac{1}{(s + Q_k^2)}$$



Lattice Inclusive $|V_{us}|$ determinations

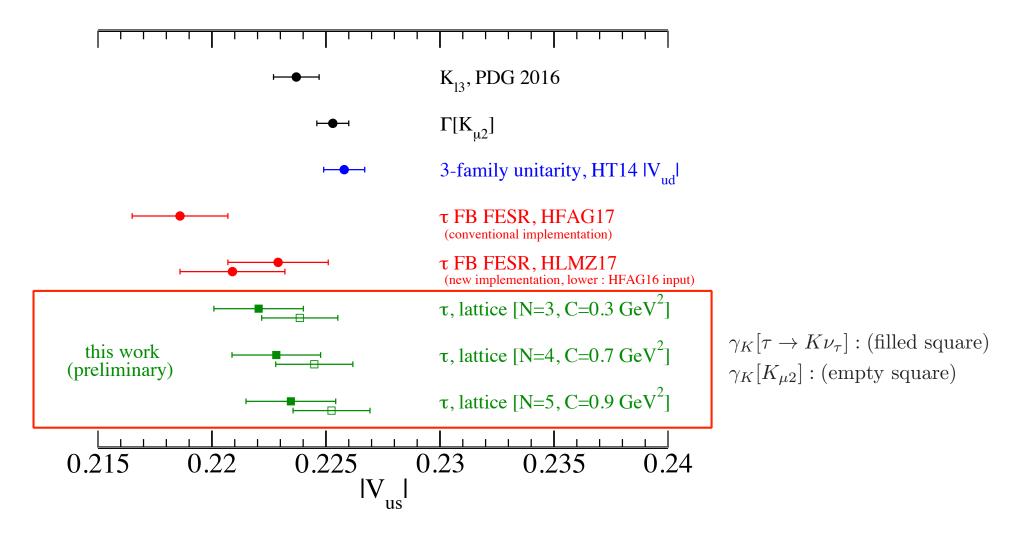


Theory and experimental errors are included.

The result is stable against changes of C and N.

$$N = 4, C = 0.7 [\text{GeV}^2] : |V_{us}| = 0.2228(15)_{exp}(13)_{th}$$
 (0.87% total error)

Comparison to $|V_{us}|$ from others



Tau spectral function (vector/axial, Strange=-1) is very welcome!

[Luchang Jin's analogy] Precession of Mercury and GR

Amount (arc- sec/century)	Cause
5025.6	Coordinate (due to precession of equinoxes)
531.4	Gravitational tugs of the other planets
0.0254	Oblateness of the sun (quadrupole moment)
42.98±0.04	General relativity
5600.0	Total
5599.7	Observed

discrepancy recognized since 1859

Known physics

1915 by-then New physics GR revolution

http://worldnpa.org/abstracts/abstracts_6066.pdf precession of perihelion

