標準模型•SO（I0）カイラルゲージ理論の格子定式化

\＆
 符号問題へのアプローチ

Y．Kikukawa

Institute of Physics，University of Tokyo

the Standard Model / SO(10) chiral gauge theory

$\mathrm{SU}(3) \times S U(2) \times U(1) \times U(1)$ b-L
$(\underline{3}, \underline{2}) 1 / 6$
$(\mathbf{1}, \mathbf{2})-1 / 2$
$\left(3^{*}, 1\right)-2 / 3\left(3^{*}, 1\right) 1 / 3$
(\mathbf{I}, \mathbf{I}) । $(\mathbf{I}, \underline{\mathbf{I}}) 0$

SO(10)
16

- Complex, but free from gauge anomalies, both local and global ones

$$
\begin{array}{ll}
\operatorname{Tr}\left\{\mathrm{P}_{+} \Sigma_{a_{1} b_{1}}\left[\Sigma_{a_{2} b_{2}} \Sigma_{a_{3} b_{3}}+\Sigma_{a_{3} b_{3}} \Sigma_{a_{2} b_{2}}\right]\right\}=0 & \Sigma_{a b}=-\frac{i}{4}\left[\Gamma^{a}, \Gamma^{b}\right] \quad\left\{\Gamma^{a} \mid a=1,2, \cdots, 10\right\} \\
& \mathrm{P}_{+}=\frac{1+\Gamma^{11}}{2}, \quad \Gamma^{11}=-i \Gamma^{1} \Gamma^{2} \cdots \Gamma^{10}
\end{array}
$$

$\left.\Omega^{\text {spin }_{5}(B S p i n}(10)\right)=0$
$\Omega_{5}\left(\operatorname{Spin}(5) \times \operatorname{Spin}(10) / Z_{2}\right)=Z_{2}$
[Garcia-Etxebarria-Montero, Wang-Wen-Witten (2018)]

- U(I) fermion symmetry broken by chiral anomaly => zero modes ($4 \times \mathrm{m} / \mathrm{SU}(2)$ instanton) => <0|'t Hooft vertex |0>
-'t Hooft vertex for $16: \underline{16} \times \underline{16} \times \underline{16} \times \underline{16}=>\underline{1}$

A Non-Perturbative Definition of the Standard Model J.Wang and X.-G.Wen, arXiv:I809.III7Iv2 [hep-th]

A gauge-invarinat path-integral measure for the overlap Weyl fermions in 16 of SO(10) Y. K., arXiv:I710.11618 [hep-lat]

A lattice non-perturbative definition of an SO(10) chiral gauge theory and its induced standard model X.-G.Wen, arXiv:I305.1045 [hep-lat]

Plan

I．格子フェルミオン問題に関する近年の発展

- Doubling，NN定理，GW関係式，Domain－wall fermion，overlap fermion
- free \＆interacting SPT phases of matter，gapped boundary phase／Kitaev－Wen機構
－the Standard Model／SO（IO）chiral gauge theory old \＆new approaches：
－Eichten－Preskill model
－DW model with EP boundary int．（Creutz，Rebbi）
－Mirror Overalp fermion model（Poppitz et al．）
－4D TSC with Gapped Boundary Phase（Wen，Wang）
II．符号問題へのアプローチ cf．CL，TNRG，etc
- Lefschetz－Thimble法（LTM）
- 一般化法（GLTM），交換モンテカルロ・テンパリング法（TLTM）

III．議論•展望

格子フェルミオンの問題

Dirac 方程式の離散化

$$
\mathcal{H}=\sum_{k=1}^{3} \alpha_{k} \frac{1}{i} \frac{\partial}{\partial x_{k}}+\beta m \Longrightarrow \mathcal{H}_{\text {lat }}=\sum_{k=1}^{3} \alpha_{k} \frac{1}{2 i}\left(\partial_{k}-\partial_{k}^{\dagger}\right)+\beta m
$$

$\mathcal{H}_{\text {lat }}$ の固有値

$$
E= \pm \sqrt{\sum_{k=1}^{3} \frac{1}{a^{2}} \sin ^{2}\left(p_{k} a\right)+m^{2}}, \quad p_{1}, p_{2}, p_{3} \in\left[-\frac{\pi}{a}, \frac{\pi}{a}\right]
$$

species doublers

$$
p_{k}=\pi / a+q_{k}, \quad\left|q_{k}\right| \ll \pi / a
$$

$$
\alpha_{k} \sin \left(p_{k} a\right) \simeq\left(-\alpha_{k}\right) q_{k}
$$

$$
\gamma_{5}=(-i) \alpha_{1} \alpha_{2} \alpha_{3} \Rightarrow(-1)^{n} \times(-i) \alpha_{1} \alpha_{2} \alpha_{3}
$$

Wilsonフェルミオン

$S_{\mathrm{w}}=a^{4} \sum_{x} \bar{\psi}(x)\left(\gamma_{\mu} \frac{1}{2}\left(\nabla_{\mu}-\nabla_{\mu}^{\dagger}\right)+\frac{a}{2}\left(\nabla_{\mu} \nabla_{\mu}^{\dagger}\right)+m_{0}\right) \psi(x)$
doublerの質量 ：$\quad m_{0}+\sum_{\mu} \frac{a}{2}\left(\frac{2}{a} \sin \frac{k_{\mu} a}{2}\right)^{2} \simeq m_{0}+\frac{2 n}{a} \quad n=$ numbers of π

Nielsen－Ninomiya（No－Go）定理

$S=a^{4} \sum_{x} \bar{\psi}(x) D \psi(x)=\int_{-\pi / a}^{\pi / a} \frac{d^{4} k}{(2 \pi)^{4}} \bar{\psi}(-k) \tilde{D}(k) \psi(k)$
I．$\tilde{D}(k)$ is a periodic and analytic function of momentum k_{μ}
2．$\tilde{D}(k) \propto i \gamma_{\mu} k_{\mu}$ for $\left|k_{\mu}\right| \ll \pi / a$
3．$\tilde{D}(k)$ is invertible for all k_{μ} except $k_{\mu}=0$
4．$\gamma_{5} \tilde{D}(k)+\tilde{D}(k) \gamma_{5}=0$
解析性と局所性：$\frac{\partial^{l}}{\partial k^{l}} \tilde{D}(k)=\sum_{x} e^{i k x}(i x)^{l} D(x)<\infty \quad \Longrightarrow \quad\|D(x)\|<C e^{-\gamma|x|}$

Ginsparg－Wilson 関係式 Ginsparg－Wilson（1982）

Block－spin変換

$$
\psi^{\prime}\left(x^{\prime}\right) \Leftarrow \frac{Z}{2^{4}} \sum_{x \in b\left(x^{\prime}\right)} \psi(x)=\Psi\left(x^{\prime} ; \psi\right)
$$

$$
\begin{aligned}
e^{-S^{\prime}\left[\psi^{\prime}, \bar{\psi}^{\prime}\right]}=\int & \prod_{x} d \psi(x) d \bar{\psi}(x) e^{-S_{W}[\psi, \bar{\psi}]} \times \\
& \exp \left\{-\alpha_{0} \sum_{x^{\prime}}\left(\bar{\psi}^{\prime}\left(x^{\prime}\right)-\bar{\Psi}\left(x^{\prime} ; \bar{\psi}\right)\right)\left(\psi^{\prime}\left(x^{\prime}\right)-\Psi\left(x^{\prime} ; \psi\right)\right)\right\}
\end{aligned}
$$

IR fixed point ：

$$
\begin{array}{ll}
S^{*}=a^{4} \sum_{x} \bar{\psi}(x) D^{*} \psi(x) & \text { (局所的な低エネルギー有効作用) } \\
\gamma_{5} D^{*-1}+D^{*-1} \gamma_{5}=\frac{2}{\alpha_{0}} a \gamma_{5} \delta_{x y} & \\
\hline
\end{array}
$$

Chiral 対称性（cf．NN定理）

$$
\delta_{\alpha} \psi(x)=i \alpha \gamma_{5}(1-2 a D) \psi(x), \quad \delta_{\alpha} \bar{\psi}(x)=i \alpha \bar{\psi}(x) \gamma_{5}
$$

Domain－wall fermion Kaplan（1992）Shamir（1993）

$$
\begin{gathered}
Z_{\mathrm{DW}}=\operatorname{det}\left(D_{\mathrm{w}}^{(5)}-m_{0} \epsilon\left(t_{5}\right) / a\right) \\
\sim\langle\mathcal{V}+\mid \mathcal{V}-\rangle=\operatorname{det}\left(v_{+i}^{\dagger} v_{-j}\right) \\
\hat{H}_{\mathrm{w} \pm}|\mathcal{V} \pm\rangle=E_{0}|\mathcal{V} \pm\rangle
\end{gathered}
$$

$$
\begin{aligned}
Z_{\mathrm{DW}}^{\prime}= & \operatorname{det}\left(D_{\mathrm{w}}^{(5)}-m_{0} / a\right) \\
= & \operatorname{det} D_{\mathrm{eff}} \times\left.\operatorname{det}\left(D_{\mathrm{w}}^{(5)}-m_{0} / a\right)\right|_{\mathrm{AP}} \\
& \lim _{N \rightarrow \infty} D_{\mathrm{eff}}=\frac{1}{2 a}\left(1+\gamma_{5} \frac{H_{\mathrm{w}}}{\sqrt{H_{\mathrm{w}}^{2}}}\right)
\end{aligned}
$$

Overlap Dirac operator ：ゲージ共変なGW rel．の解 Neuberger（1998）

$$
\begin{aligned}
D=\frac{1}{2 a}\left(1+X \frac{1}{\sqrt{X^{\dagger} X}}\right), \quad X & =a D_{\mathrm{w}}-m_{0}, \quad X^{\dagger}=\gamma_{5} X \gamma_{5} \\
D_{\mathrm{w}} & =\sum_{\mu=1}^{4}\left\{\gamma_{\mu} \frac{1}{2}\left(\nabla_{\mu}-\nabla_{\mu}^{\dagger}\right)+\frac{a}{2} \nabla_{\mu} \nabla_{\mu}^{\dagger}\right\} \quad H_{\mathrm{w}}=\gamma_{5}\left(D_{\mathrm{w}}-m_{0} / a\right)
\end{aligned}
$$

局所的低エネルギー有効作用－＞Dirac operator w／GW rel．\＆gauge covariance

Index theorem

$$
D=\frac{1}{2 a}\left(1+\gamma_{5} \frac{H_{\mathrm{w}}}{\sqrt{H_{\mathrm{w}}^{2}}}\right)
$$

Zero modes :

$$
\begin{aligned}
& D \psi_{0}=0 \quad \gamma_{5} \psi_{0}= \pm \psi_{0} \\
& \quad \because D \gamma_{5} \psi_{0}=\left(-\gamma_{5} D+2 a D \gamma_{5} D\right) \psi_{0}=0
\end{aligned}
$$

Index :

$\operatorname{Index}(D)=n_{+}-n_{-}$

$$
\operatorname{Index}(D)=\operatorname{Tr} \gamma_{5}(1-a D)(=Q)
$$

Topological charge = chiral anomaly

$$
Q=-\frac{1}{2} \operatorname{Tr}\left\{\frac{H_{\mathrm{w}}}{\sqrt{H_{\mathrm{w}}^{2}}}\right\}
$$

cf. Iwasaki, Yoshie, Ito (I987)

Overlap Weyl fermion

$$
\begin{aligned}
& \hat{\gamma}_{5}=\gamma_{5}(1-2 a D) \quad \hat{\gamma}_{5}^{2}=\mathbb{I} \quad \hat{P}_{ \pm}=\left(\frac{1 \pm \hat{\gamma}_{5}}{2}\right), \quad P_{ \pm}=\left(\frac{1 \pm \gamma_{5}}{2}\right) \\
& \psi_{-}(x)=\hat{P}_{-} \psi(x) \quad \bar{\psi}_{-}(x)=\bar{\psi}(x) P_{+} \\
& S_{\mathrm{w}}=a^{4} \sum_{x} \bar{\psi}_{-}(x) D \psi_{-}(x)
\end{aligned}
$$

Path Integral measure

"determinant line bundle"
(matrix shape is variable, can be rectangular)
the chiral determinant as vacuum overlap zero-modes
VEV of 't Hooft vertex.

$$
\begin{aligned}
& \psi_{-}(x)=\sum_{j} v_{j}(x) c_{j}, \quad \bar{\psi}_{-}(x)=\sum_{k} \bar{c}_{k} \bar{v}_{k}(x) \\
& v_{j}(x) \rightarrow \tilde{v}_{j}(x)=v_{l}(x) Q_{l j}^{-1}[U] \\
& \prod_{j} d c_{j} \rightarrow \prod_{j} d \tilde{c}_{j}=\prod_{j} d c_{j} \times \operatorname{det} Q[U]
\end{aligned}
$$

Luscher's approach: reconstruct the chiral basis

- locality
- lattice symmetries
- gauge-invariance
successful for the $U(I), S U(2)\llcorner x U(I) y$ cases, but not yet for non-Abelian cases.

$$
\begin{aligned}
& \mathcal{D}_{\star}\left[\psi_{-}\right] \mathcal{D}_{\star}\left[\psi_{-}\right] \equiv \prod_{j} d c_{j} \prod_{k} d \bar{c}_{k} \\
& \mathrm{e}^{\Gamma_{W}[U]} \equiv \int \mathcal{D}\left[\psi_{-}\right] \mathcal{D}\left[\bar{\psi}_{-}\right] \mathrm{e}^{-S_{W}\left[\psi_{-}, \bar{\psi}_{-}\right]} \\
& =\operatorname{det}(\bar{v} D v) \\
& (\bar{v} D v)_{k i} \quad(k=1, \cdots, n / 2 ; i=1, \cdots, n / 2+8 Q)
\end{aligned}
$$

Topological Insulators/Superconductors

Symmetry Protected Topological (SPT) Phases of Matter

D=4 IQHE w/ TRS
[Creutz, Horvath(1994)] [Qi, Hughes, Zhang(2008)]

$$
\begin{array}{lll}
Z_{\mathrm{DW}}^{\prime} & =\left.\operatorname{det}\left(D_{\mathrm{w}}^{(5)}-m_{0} / a\right)\right|_{\text {Dir. }} \\
\hat{H}_{4 \mathrm{DTI}} & =\sum_{i=1}^{\nu} \sum_{p} \hat{a}_{i}(p)^{\dagger}\left\{\sum_{k=1}^{4} \alpha_{k} \sin \left(p_{k}\right)+\beta\left(\left[\sum_{k=1}^{4} \cos \left(p_{k}\right)-4\right]+m\right)\right\} \hat{a}_{i}(p) & \overline{\mathcal{T}=K\left(i I \otimes \sigma_{2}\right)} \\
\hat{H}_{3 \mathrm{D}}^{(\mathrm{bd})} & =\sum_{i=1}^{\nu} \int d^{3} x \hat{\psi}_{i}(x)^{\dagger}\left\{\sum_{l=1}^{3}(-i) \sigma_{l} \partial_{l}\right\} \hat{\psi}_{i}(x) & \overline{\mathcal{T}=K\left(i \sigma_{2}\right)}
\end{array}
$$

"Periodic table" for TI, TSC / Effect of interaction
[Kitaev (2009)][Morimoto et al (2015)]

Class	T	C	Γ_{5}	V_{d}	$d=1$	$d=2$	$d=3$	$d=4$	$d=5$	$d=6$	$d=7$	$d=8$
A	0	0	0	C_{0+d}	0	$\begin{aligned} & \mathbb{Z} \\ & (\mathrm{IOHE}) \\ & 0 \end{aligned}$	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	C_{1+d}	\mathbb{Z}_{4}		\mathbb{Z}_{8}	0	\mathbb{Z}_{16}	0	\mathbb{Z}_{32}	0
AI	+1	0	0	R_{0-d}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	+1	+1	1	R_{1-d}	$\begin{aligned} & \mathbb{Z}_{8}, \mathbb{Z}_{4} \quad{ }^{0} \\ & \text { (Ma, } \mathbb{Z}_{2}{ }_{2}^{2 n a n a} \text { chain) } \end{aligned}$		0	0	$\mathbb{Z}_{16}, \mathbb{Z}_{8}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	+1	0	R_{2-d}			0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII		+1	1	R_{3-d}	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \mathbb{Z}_{8}$) 0	0	0	\mathbb{Z}_{32}	0
AII	-1	0	0	R_{4-d}	0	$\mathbb{Z}_{2}{ }^{\mathbb{L}_{8}}$	$\mathbb{Z}_{2}{ }^{\left({ }^{\prime} \mathbb{Z}_{8}\right.}$	$\mathbb{Z}_{\text {(IQHE) }}$		0	0	\mathbb{Z}
CII	-1	-1	1	R_{5-d}	$\mathbb{Z}_{2}, \mathbb{Z}_{2}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	$\mathbb{Z}_{16}, \mathbb{Z}_{16}$	0	0	0
C	0	-1	0	R_{6-d}	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
CI	+1	-1	1	R_{7-d}	0	0	\mathbb{Z}_{4}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{32}	0

Table 2: Interacting Fermionic SPT Phases

$d=D+1$	no symmetry	$T^{2}=1$	$T^{2}=(-1)^{F}$	unitary \mathbb{Z}_{2}
1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	0	\mathbb{Z}_{2}^{2}
2	\mathbb{Z}_{2}	\mathbb{Z}_{8}	\mathbb{Z}_{2}	\mathbb{Z}_{2}^{2}
3	\mathbb{Z}	0	\mathbb{Z}_{2}	$\mathbb{Z}_{8} \times \mathbb{Z}$
4	0	0	\mathbb{Z}_{16}	0
5	0	0	0	0
6	0	\mathbb{Z}_{16}	0	0
7	\mathbb{Z}^{2}	0	0	$\mathbb{Z}_{16} \times \mathbb{Z}^{2}$
8	0	\mathbb{Z}_{2}^{2}	$\mathbb{Z}_{2} \times \mathbb{Z}_{32}$	0
9	\mathbb{Z}_{2}^{2}	\mathbb{Z}_{2}^{2}	0	\mathbb{Z}_{2}^{4}
10	\mathbb{Z}_{2}^{2}	$\mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{128}$	\mathbb{Z}_{2}^{3}	\mathbb{Z}_{2}^{4}

[Kapustin et al (2015)]

Table 1: Spin and Pin $^{ \pm}$Bordism Groups				
$d=D+1$	$\Omega_{d}^{\text {Spin }}(p t)$	$\Omega_{d}^{\text {Pin }^{-}}(p t)$	$\Omega_{d}^{\text {Pin }^{+}}(p t)$	$\Omega_{d}^{\text {Spin }}\left(B \mathbb{Z}_{2}\right)$
1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	0	\mathbb{Z}_{2}^{2}
2	\mathbb{Z}_{2}	\mathbb{Z}_{8}	\mathbb{Z}_{2}	\mathbb{Z}_{2}^{2}
3	0	0	\mathbb{Z}_{2}	\mathbb{Z}_{8}
4	\mathbb{Z}	0	\mathbb{Z}_{16}	\mathbb{Z}
5	0	0	0	0
6	0	\mathbb{Z}_{16}	0	0
7	0	0	0	\mathbb{Z}_{16}
8	\mathbb{Z}^{2}	\mathbb{Z}_{2}^{2}	$\mathbb{Z}_{2} \times \mathbb{Z}_{32}$	\mathbb{Z}^{2}
9	\mathbb{Z}_{2}^{2}	\mathbb{Z}_{2}^{2}	0	\mathbb{Z}_{2}^{4}
10	$\mathbb{Z}_{2}^{2} \times \mathbb{Z}$	$\mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{128}$	\mathbb{Z}_{2}^{3}	$\mathbb{Z}_{2}^{4} \times \mathbb{Z}$

$$
\begin{aligned}
& \hat{H}_{\alpha}=\frac{i}{2}\left(u \sum_{l=1}^{n} \hat{c}_{2 l-1}^{\alpha} \hat{c}_{2 l}^{\alpha}+v \sum_{l=1}^{n-1} \hat{c}_{2 l}^{\alpha} \hat{c}_{2 l+1}^{\alpha}\right)
\end{aligned} \begin{aligned}
& \hat{c}_{2 j}=-i\left(a_{j}-a_{j}^{\dagger}\right) \\
& \hat{c}_{2 j-1}=\left(a_{j}+a_{j}^{\dagger}\right)
\end{aligned} \quad \begin{gathered}
W_{\mathrm{tot}}=W+W^{\prime} \\
T=\sum_{i=1}^{8} i \hat{c}_{i} \hat{c}_{i}^{\prime} \\
\hat{\psi}_{l}^{\alpha}=\left(\hat{c}_{2 l}^{\alpha}, \hat{c}_{2 l-1}^{\alpha}\right)^{T} \quad v=2 z \quad u / v=1+m_{0} \\
\hat{H}_{\alpha}=\sum_{l=1}^{n} \frac{z}{2} \hat{\psi}_{l}^{\alpha T}\left\{\alpha \frac{1}{2 i}\left(\nabla-\nabla^{\dagger}\right)+\beta \frac{1}{2} \nabla \nabla^{\dagger}+\beta m_{0}\right\} \hat{\psi}_{l}^{\alpha} \\
\hat{H}=\sum_{\alpha=1}^{8} \hat{H}_{\alpha}+\hat{V} \\
\hat{V}=\sum_{l=1}^{n}\left(\hat{W}_{2 l-1}+\hat{W}_{2 l}\right) \quad \hat{W}_{m}=\left.\hat{W}\right|_{\hat{c}^{\alpha} \rightarrow \hat{c}_{m}^{\alpha}} \\
\hat{W}=-\frac{1}{4!}\left(\sum_{a=1}^{7} \hat{c}^{T} \gamma^{a} \hat{c} \hat{c}^{T} \gamma^{a} \hat{c}-16\right) \quad \mathrm{SO}(7) \\
\left\{\gamma^{a} \mid a=1, \cdots, 7\right\} \quad \gamma^{a T}=-\gamma^{a}
\end{gathered}
$$

$$
\hat{V}=-\frac{1}{4!} \sum_{l=1}^{n}\left\{\sum_{a=1}^{7}\left(\hat{\psi}_{l}^{T} \tilde{P}_{+} \gamma^{a} \hat{\psi}_{l}\right)^{2}+\sum_{a=1}^{7}\left(\hat{\psi}_{l}^{T} \tilde{P}_{-} \gamma^{a} \hat{\psi}_{l}\right)^{2}-32\right\}
$$

FIG. 1: Eigenvalues of $H=t T+(1-t) W_{\text {tot }}$ as a function of t. The system remains gapped throughout the path.
$\mathcal{H}_{\nu}^{(\mathrm{dyn})}(\tau, x):=\left[-\mathrm{i} \partial_{x} \tau_{3}+m(x) \tau_{2}\right] \otimes \mathbb{1}+\mathcal{V}(\tau, x)$

$$
\mathcal{V}(\tau, x):=\tau_{1} \otimes \gamma^{\prime}(\tau, x), \quad \gamma^{\prime}(\tau, x):=\mathrm{i} M(\tau, x) \quad M(\tau, x)=M^{*}(\tau, x), \quad M(\tau, x)=-M^{\top}(\tau, x)
$$

$\mathrm{D}=0$ Edge modes (\mathbf{v})

$$
M(\tau, x)=-M(-\tau, x)
$$

$$
\mathcal{H}_{\mathrm{bd} \nu}^{(\mathrm{dyn})}(\tau) \equiv \gamma^{\prime}(\tau):=\mathrm{i} M(\tau)
$$

$\mathrm{D}=0+\mathrm{I} \mathrm{NL} \sigma$ model

$$
V_{\nu}=O(\nu) / U(\nu / 2)
$$

D	$\pi_{D}\left(R_{2}\right)$	ν	Topological obstruction
0	\mathbb{Z}_{2}	2	Domain wall
1	0		
2	\mathbb{Z}	4	WZ term
3	0		(Haldane phase of spin- I chain, $\Theta=\boldsymbol{\pi}$)
4	0		
5	0		None
6	\mathbb{Z}	8	
7	\mathbb{Z}_{2}		

- V=8 : No Topological obstruction in "dynamical mass matrix"
- Disorderd and Gapped phase
- Kitaev-Wen機構

$d=|+|$ Euclidean formulation of Majorana Chain（v＝8，SO（7））

$$
\begin{aligned}
& S_{\mathrm{MC}}=\sum_{x}\left\{\frac{z}{2} \psi_{M}(x)^{T} c_{D} \mathrm{C}\left(D_{\mathrm{w}}^{(2)}-m_{0}\right) \psi_{M}(x)-\lambda\left(\psi_{M}(x)^{T} i \gamma_{3} c_{D} \mathrm{C} \Gamma^{a} \psi_{M}(x)\right)^{2}\right\} \\
& S_{\mathrm{MC}}^{\prime}=\sum_{x}\left\{\frac{z}{2} \psi_{M}(x)^{T} c_{D} \mathrm{C}\left(D_{\mathrm{w}}^{(2)}-m_{0}\right) \psi_{M}(x)-\lambda\left(\psi_{M}(x)^{T} i \gamma_{3} c_{D} \mathrm{C} \Gamma^{a} \psi_{M}(x)\right) E^{a}(x)\right\} \quad E^{a}(x) E^{a}(x)=1
\end{aligned}
$$

－$\lambda=>\infty, Z=1$ ，gapped completely path－integralはfour－fermi（yukawa）operatorでsaturate
－parity－flavor sym．の破れは起きない：order parameter なし，Aoki phase は存在しない
－edge modeは 0＋I MW fermion
－ $\mathrm{SO}(7)>\mathrm{SO}(6), \quad 0+$ Id overlap $\mathrm{D}=\mathrm{Dw}$ ，path－integralはfour－fermi（yukawa）op．でsaturate

$\mathrm{d}=0+\mathrm{l}$ Edge modes $\left(\mathrm{v}=8, \mathrm{SO}(7)>\mathrm{SO}(6) ; 8(\mathrm{MJ})=4+\right.$ 4＊$^{*}($ Dirac $\left.)\right)$
$-\left.\lambda\left[\psi(x)^{T} i \gamma_{3} c_{D} C \Gamma^{a^{\prime}} \psi(x)\right]^{2}\right|_{b d-}$

$$
\begin{aligned}
& \operatorname{pf}\left\{c_{D} C\left(D_{w}^{(2)}-m_{0}\right)\right\}=\operatorname{pf}\left\{c_{D}\left(D_{w}^{(2)}-m_{0}\right)\right\}^{8}=\operatorname{det}\left(D_{w}^{(2)}-m_{0}\right)^{4} \\
& \operatorname{pf}\left\{c_{D} C\left(D_{w}^{(2)}-m_{0}\right)-\left.\lambda i \gamma_{3} c_{D} C \Gamma^{a^{\prime}} E^{a^{\prime}}\right|_{b d+}\right\} \sim \operatorname{det}\left(\bar{v} D^{(1)} v\right)^{4}\left\langle\operatorname{pf}\left(u^{T} i \gamma_{3} c_{D} \check{C} \Gamma^{a^{\prime}} E^{a^{\prime}} u\right)\right\rangle_{E / S O(6)} \\
&\left.\lambda\right|_{b d+} \rightarrow \infty \quad D^{(1)}=\frac{1}{2} D_{w}^{(1)} \quad \hat{\gamma}_{1}=\gamma_{1}\left(1-2 D^{(1)}\right)
\end{aligned}
$$

Gapped boundary phase（Kitaev－Wen機構）＜＝＞Path Integral measure の saturation Gapless boundary phase＜＝＞Well－defined Path Integral by Dai－Free theorem

Topological Insulators/Superconductors Symmetry Protected Topological (SPT) Phases of Matter

D=4 IQHE w/TRS

$$
\begin{array}{lll}
Z_{\mathrm{DW}}^{\prime} & =\left.\operatorname{det}\left(D_{\mathrm{w}}^{(5)}-m_{0} / a\right)\right|_{\text {Dir. }} \\
\hat{H}_{4 \mathrm{DTI}} & =\sum_{i=1}^{\nu} \sum_{p} \hat{a}_{i}(p)^{\dagger}\left\{\sum_{k=1}^{4} \alpha_{k} \sin \left(p_{k}\right)+\beta\left(\left[\sum_{k=1}^{4} \cos \left(p_{k}\right)-4\right]+m\right)\right\} \hat{a}_{i}(p) & \overline{\mathcal{T}=K\left(i I \otimes \sigma_{2}\right)} \\
\hat{H}_{3 \mathrm{D}}^{(\mathrm{bd})} & =\sum_{i=1}^{\nu} \int d^{3} x \hat{\psi}_{i}(x)^{\dagger}\left\{\sum_{l=1}^{3}(-i) \sigma_{l} \partial_{l}\right\} \hat{\psi}_{i}(x) & \overline{\mathcal{T}=K\left(i \sigma_{2}\right)}
\end{array}
$$

[Creutz, Horvath(1994)] [Qi, Hughes, Zhang(2008)]
"Periodic table" for TI, TSC / Effect of interaction
[Kitaev (2009)][Morimoto et al (2015)]

Class	T	C	Γ_{5}	V_{d}	$d=1$	$d=2$	$d=3$	$d=4$	$d=5$	$d=6$	$d=7$	$d=8$
A	0	0	0	C_{0+d}	0		0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	C_{1+d}	\mathbb{Z}_{4}	0	\mathbb{Z}_{8}	0	\mathbb{Z}_{16}	0	\mathbb{Z}_{32}	0
AI	+1	0	0	R_{0-d}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
BDI	+1	+1	1	R_{1-d}	$\begin{aligned} & \mathbb{Z}_{8}, \mathbb{Z}_{4} \\ & \text { (Majorana chain岛 } \\ & \mathbb{Z}_{2} \end{aligned}$		0	0	$\mathbb{Z}_{16}, \mathbb{Z}_{8}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
D	0	+1	0	R_{2-d}			0	0	0	\mathbb{Z}	0	\mathbb{Z}_{2}
DIII		+1	1	R_{3-d}	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \mathbb{Z}_{8}$	$\mathbb{Z}_{16}\left({ }^{3} \mathrm{He}-\dot{B}\right)$	0	0	0	\mathbb{Z}_{32}	0
${ }_{\text {AIII }}^{\text {AII }+R}$		0	0	R_{4-d}	0	\mathbb{Z}_{2}			0	0	0	\mathbb{Z}
CII	-1	-1	1	R_{5-d}	$\mathbb{Z}_{2}, \mathbb{Z}_{2}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	$\mathbb{Z}_{16}, \mathbb{Z}_{16}$	0	0	0
C	0	-1	0	R_{6-d}	0	\mathbb{Z}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
CI	+1	-1	1	R_{7-d}	0	0	\mathbb{Z}_{4}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}_{32}	0

the Standard Model / SO(10) chiral gauge theory

$\mathrm{SU}(3) \times S U(2) \times U(1) \times U(1)$ b-L
$(\underline{3}, \underline{2}) 1 / 6$
$(\mathbf{1}, \mathbf{2})-1 / 2$
$\left(3^{*}, \mathbf{I}\right)-2 / 3\left(3^{*}, \mathrm{I}\right) 1 / 3$
(\mathbf{I}, \mathbf{I}) । $(\mathbf{I}, \underline{\mathbf{I}}) 0$

SO(10)
16

- Complex, but free from gauge anomalies, both local and global ones

$$
\begin{array}{ll}
\operatorname{Tr}\left\{\mathrm{P}_{+} \Sigma_{a_{1} b_{1}}\left[\Sigma_{a_{2} b_{2}} \Sigma_{a_{3} b_{3}}+\Sigma_{a_{3} b_{3}} \Sigma_{a_{2} b_{2}}\right]\right\}=0 & \Sigma_{a b}=-\frac{i}{4}\left[\Gamma^{a}, \Gamma^{b}\right] \quad\left\{\Gamma^{a} \mid a=1,2, \cdots, 10\right\} \\
\Omega^{\text {spin }_{5}(\operatorname{BSpin}(I O))=0} & \mathrm{P}_{+}=\frac{1+\Gamma^{11}}{2}, \quad \Gamma^{11}=-i \Gamma^{1} \Gamma^{2} \cdots \Gamma^{10}
\end{array}
$$

$$
\Omega_{5}\left(\operatorname{Spin}(5) \times \operatorname{Spin}(10) / Z_{2}\right)=Z_{2}
$$

[Garcia-Etxebarria-Montero, Wang-Wen-Witten (2018)]

$$
\mathrm{e}^{i \pi \int_{M^{5}} w_{2}(T M) w_{3}(T M)}=1
$$

- $\mathbf{U (I)}$ fermion symmetry broken by chiral anomaly
=> zero modes ($4 \times \mathrm{m} / \mathrm{SU}(2)$ instanton)
=> <0|'t Hooft vertex |0>
't Hooft vertex for $16: 16 \times 16 \times 16 \times 16=>1$

$$
(16 \times 16=>10)
$$

$$
\begin{array}{lll}
T_{-}(x)=\frac{1}{2} V_{-}^{a}(x) V_{-}^{a}(x) & V_{-}^{a}(x)=\psi_{-}(x)^{\mathrm{T}} i \gamma_{5} C_{D} \mathrm{~T}^{a} \psi_{-}(x) & \mathrm{T}^{a}=\mathrm{C}^{a} \quad \mathrm{~T}^{a T}=\mathrm{T}^{a} \\
\bar{T}_{-}(x)=\frac{1}{2} \bar{V}_{-}^{a}(x) \bar{V}_{-}^{a}(x) & \bar{V}_{-}^{a}(x)=\bar{\psi}_{-}(x) i \gamma_{5} C_{D} \mathrm{~T}^{a \dagger} \bar{\psi}_{-}(x)^{\mathrm{T}} &
\end{array}
$$

Eichten-Preskill model
[Eichten-Preskill(1986)] [Golterman-Petcher-Rivas(1986)]

$$
\begin{aligned}
S_{\mathrm{EP}}=\sum_{x} & \left\{\bar{\psi}(x) \gamma_{\mu} P_{-} \frac{1}{2}\left(\nabla_{\mu}-\nabla_{\mu}^{\dagger}\right) \psi(x)\right. \\
& -\frac{\lambda}{24}\left[\psi_{-}(x)^{T} i \gamma_{5} C_{D} \mathrm{~T}^{a} \psi_{-}(x)\right]^{2}-\frac{\lambda}{24}\left[\bar{\psi}_{-}(x) i \gamma_{5} C_{D} \mathrm{~T}^{a} \bar{\psi}_{-}(x)^{T}\right]^{2} \\
& \left.-\frac{\lambda}{48} \Delta\left[\psi_{-}(x)^{T} i \gamma_{5} C_{D} \mathrm{~T}^{a} \psi_{-}(x)\right]^{2}-\frac{\lambda}{48} \triangle\left[\bar{\psi}_{-}(x) i \gamma_{5} C_{D} \mathrm{~T}^{a} \bar{\psi}_{-}(x)^{T}\right]^{2}\right\}
\end{aligned}
$$

qeneralized Wilson-term

$$
\begin{aligned}
& \Delta\{A(x) B(x) C(x) D(x)\} \\
& \equiv+\frac{1}{2} \sum_{\mu}\left\{\left(\nabla_{\mu} \nabla_{\mu}^{\dagger} A(x)\right) B(x) C(x) D(x)+A(x)\left(\nabla_{\mu} \nabla_{\mu}^{\dagger} B(x)\right) C(x) D(x)\right. \\
& \left.\quad+A(x) B(x)\left(\nabla_{\mu} \nabla_{\mu}^{\dagger} C(x)\right) D(x)+A(x) B(x) C(x)\left(\nabla_{\mu} \nabla_{\mu}^{\dagger} D(x)\right)\right\} .
\end{aligned}
$$

- resolve the degenerated physical and species-doubling modes $\{(16)-+(16)+\} \times 8 \rightarrow$ light (16)- + heavy $\{$ (16) $-\times 7+(16)+x 8\}$
fine-tune to the massless limit within a $\mathrm{SO}(\mathrm{IO})$-symmetric phase

$$
\begin{aligned}
S_{\mathrm{EP} / \mathrm{WY}}=\sum_{x} & \left\{\bar{\psi}(x) \gamma_{\mu} P_{-} \frac{1}{2}\left(\nabla_{\mu}-\nabla_{\mu}^{\dagger}\right) \psi(x)\right. \\
& -y\left[\psi_{-}(x)^{T} i \gamma_{5} C_{D} \mathrm{~T}^{a} \psi_{-}(x)+\bar{\psi}_{-}(x) i \gamma_{5} C_{D} \mathrm{~T}^{a} \bar{\psi}_{-}(x)^{T}\right] E^{a}(x) \\
& \left.-w \triangle\left[\psi_{-}(x)^{T} i \gamma_{5} C_{D} \mathrm{~T}^{a} \psi_{-}(x)+\bar{\psi}_{-}(x) i \gamma_{5} C_{D} \mathrm{~T}^{a} \bar{\psi}_{-}(x)^{T}\right] E^{a}(x)\right\}
\end{aligned}
$$

The saturation of lattice fermion measures due to 't Hooft vertices

for the naive Weyl fermion with species doublers

$$
\psi_{+}(x)=P_{+} \psi(x) \quad \bar{\psi}_{+}(x)=\bar{\psi}(x) P_{-} \quad \text { in } \underline{16}
$$

$$
\int \prod_{x \in \Lambda} \prod_{\alpha=1}^{2} \prod_{s=1}^{16} d \psi_{\alpha s}(x) \prod_{x \in \Lambda} \frac{4!}{8!12!}\left\{\frac{1}{2} \psi(x)^{\mathrm{T}} P_{+} i \gamma_{5} C_{D} \mathrm{~T}^{a} \psi(x) \quad \psi(x)^{\mathrm{T}} P_{+} i \gamma_{5} C_{D} \mathrm{~T}^{a} \psi(x)\right\}^{8}=1
$$

$$
\int \prod_{x \in \Lambda} \prod_{\alpha=3}^{4} \prod_{s=1}^{16} d \bar{\psi}_{\alpha s}(x) \prod_{x \in \Lambda} \frac{4!}{8!12!}\left\{\frac{1}{2} \bar{\psi}(x) P_{-} i \gamma_{5} C_{D} \mathrm{~T}^{a} \bar{\psi}(x)^{\mathrm{T}} \bar{\psi}(x) P_{-} i \gamma_{5} C_{D} \mathrm{~T}^{a} \bar{\psi}(x)^{\mathrm{T}}\right\}^{8}=\mathbf{1}
$$

32-components at a site!

Mirror DW(TSC)/Overlap fermion models

[Creutz et al (1997)]

[Wen(20I3), You-BenTov-Xu(20I4), You-Xu (2015)]
[Poppitz et al (2006)]

$$
\begin{aligned}
q(x) & =\psi_{-}(x, 1)+\psi_{+}\left(x, L_{5}\right) \\
\bar{q}(x) & =\bar{\psi}_{-}(x, 1)+\bar{\psi}_{+}\left(x, L_{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
S_{\mathrm{DW} / \mathrm{Mi}}^{\prime} & =\sum_{t=1}^{L_{5}} \sum_{x \in \Lambda} \bar{\psi}(x, t)\left\{\left[1+a_{5}^{\prime}\left(D_{4 \mathrm{w}}-m_{0}\right)\right] \delta_{t t^{\prime}}-P_{-} \delta_{t+1, t^{\prime}}-P_{+} \delta_{t, t^{\prime}+1}\right\} \psi\left(x, t^{\prime}\right) \\
& -\sum_{x \in \Lambda}\left\{y X^{a}(x) q_{+}^{\mathrm{T}}(x) i \gamma_{5} C_{D} \mathrm{~T}^{a} P_{+} q_{+}(x)+\bar{y} \bar{X}^{a}(x) \bar{q}_{+}(x) P_{-} i \gamma_{5} C_{D} \mathrm{~T}^{a \dagger} \bar{q}_{+}(x)^{T}\right\}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
S_{\mathrm{Ov} / \mathrm{Mi}}^{\prime}\left[\psi, \bar{\psi}, X^{a}, \bar{X}^{a}\right]= & \sum_{x \in \Lambda}
\end{array}\left\{\bar{\psi}_{-}(x) D \psi_{-}(x)+z_{+} \bar{\psi}_{+}(x) D \psi_{+}(x)\right\}, \sum_{x \in \Lambda}\left\{y X^{a}(x) \psi_{+}^{\mathrm{T}}(x) i \gamma_{5} C_{D} \mathrm{~T}^{a} P_{+} \psi_{+}(x)\right\}+\bar{y} \bar{X}^{a}(x) \bar{\psi}_{+}(x) P_{-} i \gamma_{5} C_{D} \mathrm{~T}^{a \dagger} \bar{\psi}_{+}(x)^{T}\right\} .
$$

Topological Insulators/Superconductors Symmetry Protected Topological (SPT) Phases of Matter

D=4 IQHE w/ TRS
[Wen(20I3), You-BenTov-Xu(20I4), You-Xu (2015)]

$$
\begin{aligned}
& \hat{H}_{4 \mathrm{DTI}}=\sum_{i=1}^{\nu} \sum_{p} \hat{a}_{i}(p)^{\dagger}\left\{\sum_{k=1}^{4} \alpha_{k} \sin \left(p_{k}\right)+\beta\left(\left[\sum_{k=1}^{4} \cos \left(p_{k}\right)-4\right]+m\right)\right\} \hat{a}_{i}(p) \\
& \begin{aligned}
& \hat{H}_{3 \mathrm{D}}^{(\mathrm{bd})}= \sum_{i=1}^{\nu} \int d^{3} x \hat{\psi}_{i}(x)^{\dagger}\left\{\sum_{l=1}^{3}(-i) \sigma_{l} \partial_{l}\right\} \hat{\psi}_{i}(x) \\
& \hat{H}_{3 \mathrm{D}, 10}=\int d^{3} x\left\{\hat{\psi}(x)^{T} i \sigma_{2} \check{\mathrm{~T}}^{a} \phi^{a}(x) \hat{\psi}(x)\right. \\
&\left.\quad-\hat{\psi}(x)^{\dagger} i \sigma_{2} \check{\mathrm{~T}}^{\dagger} \phi^{a}(x) \hat{\psi}(x)^{\dagger}+\mathcal{H}\left[\phi^{a}(x)\right]\right\}
\end{aligned}
\end{aligned}
$$

$\Pi_{d}\left(S^{9}\right)=0(d=0, \ldots, 9)$
No topological obstructions/singularity No massless excitations around topol. singularity
[Wen(20I3), Furusaki et al (20I5)]

A gauge invariant path-integral measure for the overlap Weyl fermions in 16 of SO(10)

$$
\begin{aligned}
\mathcal{D}\left[\psi_{-}\right] \mathcal{D}\left[\bar{\psi}_{-}\right] \equiv \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \prod_{x \in \Lambda} F\left(T_{+}(x)\right) \prod_{x \in \Lambda} F\left(\bar{T}_{+}(x)\right) \\
\mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \equiv \prod_{x \in \Lambda} \prod_{\alpha=1}^{4} \prod_{s=1}^{16} d \psi_{\alpha s}(x) \prod_{x \in \Lambda} \prod_{\alpha=1}^{4} \prod_{s=1}^{16} d \bar{\psi}_{\alpha s}(x) \quad{ }_{\psi_{+}(x)=\hat{P}_{+} \psi(x) \quad \bar{\psi}(x)} \\
T_{+}(x)=\frac{1}{2} V_{+}^{a}(x) V_{+}^{a}(x), \quad V_{+}^{a}(x)=\psi_{+}(x)^{\mathrm{T}} i \gamma_{5} C_{D} \mathrm{~T}^{a} \psi_{+}(x) \quad \mathrm{T}^{a}=\mathrm{C}^{a} \\
\bar{T}_{+}(x)=\frac{1}{2} \bar{V}_{+}^{a}(x) \bar{V}_{+}^{a}(x), \quad \bar{V}_{+}^{a}(x)=\bar{\psi}_{+}(x) i \gamma_{5} C_{D} \mathrm{~T}^{a} \bar{\psi}_{+}(x)^{\mathrm{T}} \quad \mathrm{~T}^{a T}=\mathrm{T}^{a} \\
\quad \operatorname{cf.} \hat{P}_{+}^{T} i \gamma_{5} C_{D} P_{+} \mathrm{T}^{a} E^{a}(x) \hat{P}_{+}=(1-D)^{T} i \gamma_{5} C_{D} P_{+} \mathrm{T}^{a} E^{a}(x)(1-D)
\end{aligned}
$$

$$
\left.F(w) \equiv 4!(z / 2)^{-4} I_{4}(z)\right|_{(z / 2)^{2}=w}=4!\sum_{k=0}^{\infty} \frac{w^{k}}{k!(k+4)!}
$$

$$
\left.F(w)\right|_{w=(1 / 2) u^{a} u^{a}}=\left(\pi^{5} / 12\right)^{-1} \int \prod_{a=1}^{10} d e^{a} \delta\left(\sqrt{e^{b} e^{b}}-1\right) \mathrm{e}^{e^{c} u^{c}}
$$

The saturation of the "right-handed" measures due to 't Hooft vertices

$$
\begin{aligned}
& \mathrm{e}^{\Gamma_{W}[U]} \equiv \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \prod_{x} F\left[T_{+}(x)\right] \prod_{x} F\left[\bar{T}_{+}(x)\right] \mathrm{e}^{-S_{W}\left[\psi_{-}, \bar{\psi}_{-}\right]} \\
& \equiv \int \mathcal{D}_{\star}\left[\psi_{-}\right] \mathcal{D}_{\star}\left[\bar{\psi}_{-}\right] \mathrm{e}^{-S_{W}\left[\psi_{-}, \bar{\psi}_{-}\right]} \times \int \mathcal{D}_{\star}\left[\psi_{+}\right] \prod_{x} F\left[T_{+}(x)\right] \times \int \mathcal{D}_{\star}\left[\bar{\psi}_{+}\right] \prod_{x} F\left[\bar{T}_{+}(x)\right] \\
& \psi_{+}(x)=\sum_{j} u_{j}(x) b_{j}, \quad \bar{\psi}_{+}(x)=\sum_{k} \bar{b}_{k} \bar{u}_{k}(x) \quad \mathcal{D}_{\star}\left[\psi_{+}\right] \equiv \prod_{j} d b_{j} \\
& \mathcal{D}_{\star}\left[\bar{\psi}_{+}\right] \equiv \prod_{k} d \bar{b}_{k}=\prod_{x} \prod_{\alpha=3}^{4} \prod_{s=1}^{16} d \bar{\psi}_{\alpha s}(x) \\
& \int \mathcal{D}_{\star}\left[\psi_{+}\right] \prod_{x} F\left[T_{+}(x)\right]=\int \mathcal{D}\left[E^{a}\right] \operatorname{pf}\left(u^{T} i \gamma_{5} C_{D} T^{a} E^{a} u\right) \quad(\neq 0) \\
& \int \mathcal{D}_{\star}\left[\bar{\psi}_{+}\right] \prod_{x} F\left[\bar{T}_{+}(x)\right]=1 \\
& \left(E^{a}(x) E^{a}(x)=1\right) \\
& 16 \text { has 32-components at a site! } \\
& \int \prod_{x \in \Lambda} \prod_{\alpha=3}^{4} \prod_{s=1}^{16} d \bar{\psi}_{\alpha s}(x) \prod_{x \in \Lambda} \frac{4!}{8!12!}\left\{\frac{1}{2} \bar{\psi}(x) P_{-} i \gamma_{5} C_{D} \mathrm{~T}^{a} \bar{\psi}(x)^{\mathrm{T}} \bar{\psi}(x) P_{-} i \gamma_{5} C_{D} \mathrm{~T}^{a} \bar{\psi}(x)^{\mathrm{T}}\right\}^{8}=1 \\
& \text { [Eichten-Preskill(1986)] }
\end{aligned}
$$

More on the saturation of the Right-handed measures

 due to 't Hooft vertices (cont'd)the trivial link field (in the weak gauge-coupling limit)

$$
U(x, \mu)=1
$$

the $\mathbf{S U}(2)$ link fields representing the topological sectors $\mathfrak{U}[Q]$

$$
U(x, \mu)=\mathrm{e}^{i \theta_{12}(x, \mu) \Sigma^{12}} \quad \text { in } \quad \mathfrak{U}[Q] \quad \text { with } \quad Q=2 m_{01} m_{23}\left(m_{01}, m_{23} \in \mathbb{Z}\right):
$$

where

$$
\begin{array}{ll}
\theta_{12}(x, 0)=\left\{\begin{array}{cc}
0 & \left(x_{0}<L-1\right) \\
-F_{01} L x_{1} & \left(x_{0}=L-1\right),
\end{array}\right. & \theta_{12}(x, 1)=F_{01} x_{0} \\
\theta_{12}(x, 3)=\left\{\begin{array}{cc}
0 & \left(x_{2}<L-1\right) \\
-F_{23} L x_{3} & \left(x_{2}=L-1\right),
\end{array}\right. & \theta_{12}(x, 4)=F_{23} x_{2}
\end{array}
$$

$$
F_{01}=\frac{4 \pi m_{01}}{L^{2}}, \quad F_{23}=\frac{4 \pi m_{23}}{L^{2}}
$$

More on the saturation of the Right-handed measures due to 't Hooft vertices

as long as the link field $U(x, \mu)$ is in $\mathrm{SO}(9)$ subgroup

$$
\begin{aligned}
& \begin{array}{c}
u_{j}(x)^{T} i \gamma_{5} C_{D} \mathrm{C} \Gamma^{10}=\mathcal{C}_{j k} u_{k}(x)^{\dagger} \\
\begin{array}{c}
\mathcal{C}^{-1}=\mathcal{C}^{\dagger}=\mathcal{C}^{T}=-\mathcal{C} .
\end{array} \quad \mathcal{C}_{j k}=\left(u^{T} i \gamma_{5} C_{D} \mathrm{C} \Gamma^{10} u\right)_{j k} \\
\begin{array}{c}
\left(u^{\mathrm{T}} i \gamma_{5} C_{D} \mathrm{~T}^{a} E^{a} u\right) \\
=\mathcal{C} \times\left(u^{\dagger} \Gamma^{10} \Gamma^{a} E^{a} u\right) \\
\\
=\left(u^{\dagger} \Gamma^{10} \Gamma^{a} E^{a} u\right)^{T} \times \mathcal{C}
\end{array} \\
\left\{\left(\tilde{\lambda}_{i},-\tilde{\lambda}_{i}\right) \mid i=1, \cdots, n / 4-4 Q\right\} \quad\left\{\left(\lambda_{i}, \lambda_{i}\right) \mid i=1, \cdots, n / 4-4 Q\right\}
\end{array}
\end{aligned}
$$

$$
\operatorname{pf}\left(u^{\mathrm{T}} i \gamma_{5} C_{D} \mathrm{~T}^{a} E^{a} u\right)=\operatorname{pf}\left(u^{T} i \gamma_{5} C_{D} \mathrm{C} \Gamma^{10} u\right) \times \prod_{i=1}^{n / 4-4 Q} \lambda_{i}
$$

More on the saturation of the Right-handed measures due to 't Hooft vertices (cont'd)

$$
U(x, \mu)=1
$$

Figure 2. The eigenvalue spectra of the matrices $\left(u^{\mathrm{T}} i \gamma_{5} C_{D} \mathrm{~T}^{a} E^{a} u\right)$ and $\left(u^{\dagger} \Gamma^{10} \Gamma^{a} E^{a} u\right)$ with a randomly generated spin-field configuration for the case of the trivial link field. The lattice size is $L=4$ and the boundary condition for the fermion field is periodic. For reference, the eigenvalue spectrum of the matrix $\left(\bar{v}_{k} D v_{i}\right)$ is also shown with green x symbol for the same boundary condition.

$$
\text { cf. } \quad\left\{\lambda, \lambda, \lambda^{*}, \lambda^{*}\right\}
$$

More on the saturation of the Right-handed measures

 due to 't Hooft vertices (cont'd)$$
U(x, \mu)=\mathrm{e}^{i \theta_{12}(x, \mu) \Sigma^{12}}
$$

Figure 5. The eigenvalue spectra of the matrices $\left(u^{\mathrm{T}} i \gamma_{5} C_{D} \mathrm{~T}^{a} E^{a} u\right)$ and $\left(u^{\dagger} \Gamma^{10} \Gamma^{a} E^{a} u\right)$ with a randomly generated spin-field configuration for the case of the representative $\mathrm{SU}(2)$ link field of the topological sector with $Q=-2$. The lattice size is $L=4$ and the boundary condition for the fermion field is periodic.

$$
\text { cf. } \quad\left\{\lambda, \lambda, \lambda^{*}, \lambda^{*}\right\}
$$

More on the saturation of the Right-handed measures

 due to 't Hooft vertices (cont'd)$$
m_{0} \rightarrow+0 ;+0 \rightarrow-0 ;-0 \rightarrow-\infty
$$

$$
U(x, \mu)=1
$$

Figure 6. The eigenvalue spectra of $\left(u^{\dagger} \Gamma^{10} \Gamma^{a} E^{a} u\right)$ in the limit $m_{0} \rightarrow \mp 0$ with a randomly generated spin configuration for the trivial link field. The interpolation parameter θ_{α} is chosen as $\theta_{\alpha}=0,3 \pi / 12,4 \pi / 12,5 \pi / 12, \pi / 2$ for the top-left, bottom-left, bottom-middle, bottom-right, topright figures, respectively. The lattice size is $L=4$ and the boundary condition for the fermion field is periodic.

Right-handed sector is in PMS phase / a gapped boundary phase !?

- Fermion two-point correlation functions: short-range in the right-handed sector!

$$
\begin{aligned}
\left\langle\psi_{-}(x) \bar{\psi}_{-}(y)\right\rangle_{F} & =\hat{P}_{-} D^{-1} P_{+}(x, y)\langle 1\rangle_{F}, & & \text { 16. 16.* } \\
\left\langle\psi_{+}(y)\left[\psi_{+}^{\mathrm{T}} i \gamma_{5} C_{D} \mathrm{~T}^{a} E^{a} \hat{P}_{+}(x)\right]\right\rangle_{F} & =-\frac{1}{2} \hat{P}_{+}(y, x)\langle 1\rangle_{F}, & & 16_{+} \\
\left\langle\left[P_{-} i \gamma_{5} C_{D} \mathrm{~T}^{a \dagger} \bar{E}^{a} \bar{\psi}_{+}^{\mathrm{T}}(x)\right] \bar{\psi}_{+}(y)\right\rangle_{F} & =-\frac{1}{2} P_{-} \delta_{x y}\langle 1\rangle_{F}, & & \mathbf{1 6}_{+}^{*}
\end{aligned}
$$

- SO(10)-vector spin field dynamics: disordered (in a saddle point analysis)

$$
\begin{aligned}
\langle 1\rangle_{E} & =\int \mathcal{D}[E] \operatorname{pf}\left(u^{\mathrm{T}} i \gamma_{5} C_{D} \mathrm{~T}^{a} E^{a} u\right) \\
& =\int \mathcal{D}[X] \mathcal{D}[\lambda] \operatorname{pf}\left(u^{\mathrm{T}} i \gamma_{5} C_{D} \mathrm{~T}^{a} X^{a} u\right) \mathrm{e}^{i \sum_{x} \lambda(x)\left(X^{a}(x) X^{a}(x)-1\right)} \\
X_{0}^{a} & \neq 0 \quad X_{0}^{c} X_{0}^{c}=1-\frac{9}{32} \frac{1}{V} \sum_{k \neq 0} \frac{4}{-\tilde{D}(k)+2} \\
f\left(m_{0}\right) & \equiv 1-\frac{9}{32} \frac{1}{V} \sum_{k \neq 0} \frac{4}{-\tilde{D}(k)+2} \quad \leq 0 \text { for } m_{0}<2
\end{aligned}
$$

$\pi_{d}\left(S^{9}\right)=0 \quad(d=0, \ldots, 9)$
No topological obstructions/singularity
No massless excitations around topol. singularity
[Wen(2013), Furusaki et al (2015)]

$$
\mathrm{e}^{\left.\mathrm{r}_{W}[]\right]} \equiv \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \prod_{x} F\left[T_{+}(x)\right] \prod_{x} F\left[\bar{T}_{+}(x)\right] \mathrm{e}^{-S_{W}\left[\psi, \bar{\psi}_{-}\right]}
$$

$$
\begin{aligned}
S_{\mathrm{Ov}}\left[\psi, \bar{\psi}, E^{a}, \bar{E}^{a}\right] & =\sum_{x \in \Lambda} \bar{\psi}_{-}(x) D \psi_{-}(x) \\
& -\sum_{x \in \Lambda}\left\{E^{a}(x) \psi_{+}^{\mathrm{T}}(x) i \gamma_{5} C_{D} \mathrm{~T}^{a} \psi_{+}(x)+\bar{E}^{a}(x) \bar{\psi}_{+}(x) i \gamma_{5} C_{D} \mathrm{~T}^{a \dagger} \bar{\psi}_{+}(x)^{T}\right\}
\end{aligned}
$$

Decoupling limit of the mirror (right-handed) Overlap Weyl fermions

$$
\begin{aligned}
& y=\bar{y}, \quad \frac{z_{+}}{\sqrt{y \bar{y}}} \rightarrow 0 \\
& v=\bar{v}=1, \quad \lambda^{\prime}=\bar{\lambda}^{\prime} \rightarrow \infty \\
& \kappa=\bar{\kappa} \rightarrow 0
\end{aligned}
$$

$E^{a}(x) E^{a}(x)=1$
(PMS phase)

$$
S_{\mathrm{DW} / \mathrm{Mi}}=\sum_{t=1}^{L_{5}} \sum_{x \in \Lambda} \bar{\psi}(x, t)\left\{\left[1+a_{5}^{\prime}\left(D_{4 \mathrm{w}}-m_{0}\right)\right] \delta_{t t^{\prime}}-P_{-} \delta_{t+1, t^{\prime}}-P_{+} \delta_{t, t^{\prime}+1}\right\} \psi\left(x, t^{\prime}\right)
$$

$$
+\sum_{x \in \Lambda}\left(z_{+}-1\right) \bar{\psi}\left(x, L_{5}\right) P_{-}\left[1+a_{5}^{\prime}\left(D_{4 \mathrm{w}}-m_{0}\right)\right] \psi\left(x, L_{5}\right)
$$

$$
-\sum_{x \in \Lambda}\left\{y X^{a}(x) \psi^{\mathrm{T}}\left(x, L_{5}\right) i \gamma_{5} C_{D} \mathrm{~T}^{a} \psi\left(x, L_{5}\right)\right.
$$

$$
\left.+\bar{y} \bar{X}^{a}(x) \bar{\psi}\left(x, L_{5}\right) P_{-} i \gamma_{5} C_{D} \mathrm{~T}^{a \dagger} \bar{\psi}\left(x, L_{5}\right)^{T}\right\}
$$

$$
+S_{X}\left[X^{a}\right]
$$

$$
\text { cf. } \begin{aligned}
& q(x)=\psi_{-}(x, 1)+\psi_{+}\left(x, L_{5}\right) \\
& \bar{q}(x)=\bar{\psi}_{-}(x, 1)+\bar{\psi}_{+}\left(x, L_{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& S_{\mathrm{Ov} / \mathrm{Mi}}\left[\psi, \bar{\psi}, X^{a}, \bar{X}^{a}\right]=\sum_{x \in \Lambda}\left\{\bar{\psi}_{-}(x) D \psi_{-}(x)+z_{+} \bar{\psi}_{+}(x) D \psi_{+}(x)\right\} \\
& -\sum_{x \in \Lambda}\left\{y X^{a}(x) \psi_{+}^{\mathrm{T}}(x) i \gamma_{5} C_{D} \mathrm{~T}^{a} \psi_{+}(x)+\bar{y} \bar{X}^{a}(x) \bar{\psi}_{+}(x) i \gamma_{5} C_{D} \mathrm{~T}^{a \dagger} \bar{\psi}_{+}(x)^{T}\right\} \\
& +S_{X}\left[X^{a}\right] \quad \text { cf. } \hat{P}_{+}^{T} i \gamma_{5} C_{D} P_{+} \mathrm{T}^{a} E^{a}(x) \hat{P}_{+}=(1-D)^{T} i \gamma_{5} C_{D} P_{+} \mathrm{T}^{a} E^{a}(x)(1-D)
\end{aligned}
$$

$$
\begin{aligned}
& S_{\mathrm{w}}=a^{4} \sum_{x} \bar{\psi}_{-}(x) D \psi_{-}(x) \\
& \psi_{-}(x)=\hat{P}_{-} \psi(x) \quad \bar{\psi}_{-}(x)=\bar{\psi}(x) P_{+} \\
& \psi_{+}(x)=\hat{P}_{+} \psi(x) \quad \bar{\psi}_{+}(x)=\bar{\psi}(x) P_{-}
\end{aligned}
$$

Path Integral measure for the 16

$$
\mathrm{e}^{\Gamma_{W}[U]} \equiv \int \mathcal{D}\left[\psi_{-}\right] \mathcal{D}\left[\bar{\psi}_{-}\right] \mathrm{e}^{-S_{W}\left[\psi_{-}, \bar{\psi}_{-}\right]}
$$

$$
\begin{aligned}
& \mathcal{D}\left[\psi_{-}\right] \mathcal{D}\left[\bar{\psi}_{-}\right] \equiv \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \prod_{x} F\left[T_{+}(x)\right] \prod_{x} F\left[\bar{T}_{+}(x)\right] \\
& \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \equiv \prod_{x \in \Lambda} \prod_{\alpha=1}^{4} \prod_{s=1}^{16} d \psi_{\alpha s}(x) \prod_{x \in \Lambda} \prod_{\alpha=1}^{4} \prod_{s=1}^{16} d \bar{\psi}_{\alpha s}(x) \\
& T_{+}(x)=\frac{1}{2} V_{+}^{a}(x) V_{+}^{a}(x), \quad V_{+}^{a}(x)=\psi_{+}(x)^{\mathrm{T}} i \gamma_{5} C_{D} \mathrm{~T}^{a} \psi_{+}(x) \\
& \bar{T}_{+}(x)=\frac{1}{2} \bar{V}_{+}^{a}(x) \bar{V}_{+}^{a}(x), \quad \bar{V}_{+}^{a}(x)=\bar{\psi}_{+}(x) i i_{5} C_{D} \mathrm{~T}^{a} \bar{\psi}_{+}(x)^{\mathrm{T}} \\
& \left.F(w) \equiv 4!(z / 2)^{-4} I_{4}(z)\right|_{(z / 2)^{2}=w}
\end{aligned}
$$

$$
\begin{gathered}
D=\frac{1}{2 a}\left(1+X \frac{1}{\sqrt{X^{\dagger} X}}\right), \quad X=a D_{\mathrm{w}}-m_{0} \\
\gamma_{5} D+D \gamma_{5}=2 a D \gamma_{5} D \\
\hat{\gamma}_{5}=\gamma_{5}(1-2 a D) \quad \hat{\gamma}_{5}^{2}=\mathbb{I} \\
\hat{P}_{ \pm}=\left(\frac{1 \pm \hat{\gamma}_{5}}{2}\right), \quad P_{ \pm}=\left(\frac{1 \pm \gamma_{5}}{2}\right)
\end{gathered}
$$

16×3 (three families) $\mathrm{SO}(10) \longrightarrow \mathrm{SU}(3) \times S U(2) \times U(1)$ Higgs scalar (1,2)//2 \& Yukawa int.

$$
\begin{aligned}
S_{Y}=\sum_{x} & {\left[y_{u} \bar{q}_{-}^{i}(x) \tilde{\phi}(x) u_{+}^{i}(x)+y_{u}^{*} \bar{u}_{+}^{i}(x) \tilde{\phi}(x)^{\dagger} q_{-}^{i}(x)\right.} \\
& +y_{d} \bar{q}_{-}^{i}(x) \phi(x) d_{+}^{i}(x)+y_{d}^{*} \bar{d}_{+}^{i}(x) \phi(x)^{\dagger} q_{-}^{i}(x) \\
& \left.+y_{l} \bar{l}_{-}(x) \phi(x) e_{+}(x)+y_{l}^{*} \bar{e}_{+}(x) \phi(x)^{\dagger} l_{-}(x)\right]
\end{aligned}
$$

Exact gauge inv. is manifest and CP violations comes from KM, PMNS matrixes and theta terms.

$$
\left.F(w)\right|_{w=(1 / 2) u^{a} u^{a}}=\left(\pi^{5} / 12\right)^{-1} \int \prod_{a=1}^{10} d e^{a} \delta\left(\sqrt{e^{b} e^{b}}-1\right) \mathrm{e}^{e^{c} u^{c}}
$$

cf. [Ishibashi-Fujikawa-Suzuki(2002)]

The SM / SO(IO) chiral lattice gauge theory with I6s

 in the framework of overlap fermion/the Ginsparg-Wilson rel.- manifestly gauge-invariant by using full Dirac-field measure, but saturating the right-handed part with 't Hooft vertices completely !
- all possible topological sectors
- zero modes, 't Hooft vertex VEV, fermion number non-conservation
- CP invariance $\Gamma_{W}\left[U^{\mathrm{CP}}\right]=\Gamma_{W}[U]$
- locality/smoothness Issues

Testable: To see if it works, examine $\quad\left\langle\psi_{+}(y)\left[\psi_{+}^{\mathrm{T}} i \gamma_{5} C_{D} \mathrm{~T}^{a} E^{a} \hat{P}_{-}(x)\right]\right\rangle_{F}$
MC studies in weak gauge-coupling limit feasible without sign problem
Analytic studies desirable

- $\quad \ggg>S U(5), S U(4) \times S U(2) L \times S U(2)_{R}, S U(3)_{c} \times S U(2) L \times U(I)_{Y}\left(+V_{R}\right)$
- Making the 't Hooft vertex terms well-defined in large coupling limit, Established the relations with GW Mirror-fermion model

DW fermion with boundary EP terms
4D TI/TSC with Gapped boundary phase explicitly
gradient flow approach について
［Kaplan－Graboska ］

［Ago，Y．K．（20｜9）］

Applications of lattice Standard Model/ SO(10) CGTs

I)Phase transitions, Phase structures
in EW theory \& GUT theories
2) Realizations of gauge and flavors symmetries in EW theory \& GUT theories
3)Baryon \& Lepton numbers generations [cf. 16×3 (three families)]
a. B symmetry violation/chiral anomaly, CP violation, non-equilibrium process
b. Chern\# diffusion process, Sphaleron process
4)Phase transitions in the early Universe, Dynamics of Inflation
and so on

- Schwinger-Keldysh formalism for lattice gauge theories real-time, non-equilibrium dynamics / finite-temperature • density
- Lefschetz-Thimble methods
sign problem
generalized method(GLTM), tempered method(tLTM)

符号問題へのアプローチ

Lefschetz thimble による経路積分

$$
Z=\int_{\mathcal{C}_{\mathbb{R}}} \mathcal{D}[x] \exp \{-S[x]\}=\int_{\mathcal{C}} \mathcal{D}[z] \exp \{-S[z]\}
$$

$$
\begin{aligned}
x \in \mathcal{C}_{\mathbb{R}}\left(\subseteq \mathbb{R}^{n}\right) & \longrightarrow x+i y=z \in \mathbb{C}^{n} \\
S[x] & \rightarrow S[x+i y]=S[z] \quad\left(\mathcal{D}[x]=d^{n} x\right)
\end{aligned}
$$

the contour of path－integration is selected based on the result of Morse theory［ F．Pham（1983）］

$$
\mathcal{C}_{\mathbb{R}}=\sum_{\sigma \in \Sigma} n_{\sigma} \mathcal{J}_{\sigma}, \quad n_{\sigma}=\left\langle\mathcal{C}_{\mathbb{R}}, \mathcal{K}_{\sigma}\right\rangle
$$

$$
\begin{aligned}
& h \equiv-\operatorname{Re} S[z] \\
& \frac{d}{d t} z(t)=\frac{\partial \bar{S}[\bar{z}]}{\partial \bar{z}}, \quad \frac{d}{d t} \bar{z}(t)=\frac{\partial S[z]}{\partial z}, \quad t \in \mathbb{R}
\end{aligned}
$$

critical points $\mathbf{z}_{\mathbf{\sigma}}:\left.\frac{\partial S[z]}{\partial z}\right|_{z=z_{\sigma}}=0$
Lefschetz thimble $\quad \mathcal{J}_{\sigma}\left(\mathcal{K}_{\sigma}\right)$（n－dim．real mfd．）
$=$ the union of all down（up）ward flows which
Lefschetz thimble $\quad \mathcal{J}_{\sigma}\left(\mathcal{K}_{\sigma}\right)$（n－dim．real mfd．）
$=$ the union of all down（up）ward flows which trace back to Z_{σ} in the limit t goes to $-\infty$

F．Pham（I983）；
E．Witten，arXiv：I00I．2933；
L．Scorzato et al．
Phys．Rev．D 86， 074506 （20I2）， arXiv：I 205.3996

$\left\langle\mathcal{J}_{\sigma}, \mathcal{K}_{\tau}\right\rangle=\delta_{\sigma \tau}$（intersection numbers）

Lefschetz thimble による経路積分

$$
Z=\int_{\mathcal{C}_{\mathbb{R}}} \mathcal{D}[x] \exp \{-S[x]\}=\int_{\mathcal{C}} \mathcal{D}[z] \exp \{-S[z]\}
$$

$$
\begin{aligned}
x \in \mathcal{C}_{\mathbb{R}}\left(\subseteq \mathbb{R}^{n}\right) & \rightarrow x+i y=z \in \mathbb{C}^{n} \\
S[x] & \rightarrow S[x+i y]=S[z] \quad\left(\mathcal{D}[x]=d^{n} x\right)
\end{aligned}
$$

the contour of path－integration is selected based on the result of Morse theory［ F．Pham（1983）］

$$
\mathcal{C}_{\mathbb{R}}=\sum_{\sigma \in \Sigma} n_{\sigma} \mathcal{J}_{\sigma}, \quad n_{\sigma}=\left\langle\mathcal{C}_{\mathbb{R}}, \mathcal{K}_{\sigma}\right\rangle
$$

$$
\begin{aligned}
& h \equiv-\operatorname{Re} S[z] \\
& \frac{d}{d t} z(t)=\frac{\partial \bar{S}[\bar{z}]}{\partial \bar{z}}, \quad \frac{d}{d t} \bar{z}(t)=\frac{\partial S[z]}{\partial z}, \quad t \in \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t} h=-\frac{1}{2}\left\{\frac{\partial S[z]}{\partial z} \cdot \frac{d}{d t} z(t)+\frac{\partial \bar{S}[\bar{z}]}{\partial \bar{z}} \cdot \frac{d}{d t} \bar{z}(t)\right\}=-\left|\frac{\partial S[z]}{\partial z}\right|^{2} \leq 0 \\
& \frac{d}{d t} \operatorname{Im} S[z]=\frac{1}{2 i}\left\{\frac{\partial S[z]}{\partial z} \cdot \frac{d}{d t} z(t)-\frac{\partial \bar{S}[\bar{z}]}{\partial \bar{z}} \cdot \frac{d}{d t} \bar{z}(t)\right\}=0
\end{aligned}
$$

F．Pham（I983）；
E．Witten，arXiv：I00I．2933；
L．Scorzato et al．
Phys．Rev．D 86， 074506 （20I2）， arXiv：I205．3996

$\left\langle\mathcal{J}_{\sigma}, \mathcal{K}_{\tau}\right\rangle=\delta_{\sigma \tau}$（intersection numbers）

Partition function

$$
\begin{aligned}
Z & =\sum_{\sigma \in \Sigma} n_{\sigma} \exp \left\{-S\left[z_{\sigma}\right]\right\} Z_{\sigma}, \quad n_{\sigma}=\left\langle\mathcal{C}_{\mathbb{R}}, \mathcal{K}_{\sigma}\right\rangle \\
Z_{\sigma} & =\int_{\mathcal{J}_{\sigma}} \mathcal{D}[z] \exp \left\{-\operatorname{Re}\left(S[z]-S\left[z_{\sigma}\right]\right)\right\}
\end{aligned}
$$

Observables

$$
\begin{aligned}
& \langle O[z]\rangle=\frac{1}{Z} \sum_{\sigma \in \Sigma} n_{\sigma} \exp \left\{-S\left[z_{\sigma}\right]\right\} Z_{\sigma}\langle O[z]\rangle_{\mathcal{J}_{\sigma}} \\
& \langle O[z]\rangle_{\mathcal{J}_{\sigma}}=\frac{1}{Z_{\sigma}} \int_{\mathcal{J}_{\sigma}} \mathcal{D}[z] \exp \left\{-\operatorname{Re}\left(S[z]-S\left[z_{\sigma}\right]\right)\right\} O[z]
\end{aligned}
$$

Monte Carlo on Lefschetz Thimbles:

no `local’ sign-problem, but huge numerical cost multiple Thimbles may contribute, then `global' sign-problem may remains

generalized LTM:

GLTM(contraction algo.) tLTM (parallel tempering)
[Alexandru et al.(2016)]
[Fukuma \& Umeda(2017)]
one-site Hubbard, $0,1,2+I$ massive Thirring, $I+I$ massive Schwinger model $0, I, 3+\mid \lambda \varphi^{4}{ }_{\mu}$ model, I+I massless Schwinger model

Algorithm of HMC on Lefschetz thimbles

the saddle-point structures !
a) To generate a thimble use the parameterization $\quad z\left[e, t^{\prime}\right]:\left(e^{\alpha}, t^{\prime}\right) \rightarrow z \in \mathcal{J}_{\sigma}$ solve the flow eqs. for both $\mathbf{z}\left[\mathbf{e}, \mathbf{t}^{\top}\right] \& \mathbf{V}_{\mathbf{z}}{ }^{\alpha}\left[\mathbf{e}, \mathbf{t}^{\top}\right]$ by 4th-order RK numerically very demanding !
b) To formulate / solve the molecular dynamics introduce a dynamical system constrained to the thimble use 2nd-order constraint-preserving symmetric integrator
c) To measure observables
try to reweight the residual sign factors

$$
\begin{array}{r}
\langle O[z]\rangle_{\mathcal{J}_{\sigma}}=\frac{\left\langle\mathrm{e}^{i \phi_{z}} O[z]\right\rangle_{\mathcal{J}_{\sigma}}^{\prime}}{\left\langle\mathrm{e}^{i \phi_{z}}\right\rangle_{\mathcal{J}_{\sigma}}^{\prime}} \quad \text { where } \quad\langle o[z]\rangle_{\mathcal{J}_{\sigma}}^{\prime}=\frac{1}{N_{\operatorname{conf}}} \sum_{k=1}^{N_{\text {conf }}} o\left[z^{(k)}\right] \\
\mathrm{e}^{i \phi_{z}}=\operatorname{det} U_{z}=\frac{\operatorname{det} V_{z}}{\left|\operatorname{det} V_{z}\right|}
\end{array}
$$

$\left\{\left\langle\mathrm{e}^{i \phi_{z}}\right\rangle_{\mathcal{J}_{\sigma}}^{\prime}\right\}(\sigma \in \Sigma)$ should not be vanishingly small
A possible sign problem: Need a careful and systematic study !

Parametrization of points z on Lefschetz thimbles

Constrained dynamical system

Equations of motion:

$$
\begin{aligned}
\dot{z}_{i} & =w_{i}, \\
\dot{w}_{i} & =-\bar{\partial}_{i} \bar{S}[\bar{z}]-i V_{z i}^{\alpha} \lambda^{\alpha} \quad \lambda^{\alpha} \in \mathbb{R}(\alpha=1, \cdots, n)
\end{aligned}
$$

$z(t) \simeq z_{\sigma}+v^{\alpha} \exp \left(\kappa^{\alpha} t\right) e^{\alpha} ; \quad e^{\alpha} e^{\alpha}=n$ $V_{z}^{\alpha}(t) \simeq v^{\alpha} \exp \left(\kappa^{\alpha} t\right)$,

Constraints:

$$
z_{i}=z_{i}\left[e, t^{\prime}\right] \quad w_{i}=V_{z i}^{\alpha}\left[e, t^{\prime}\right] w^{\alpha}, \quad w^{\alpha} \in \mathbb{R}
$$

A conserved Hamiltonian:

$$
H=\frac{1}{2} \bar{w}_{i} w_{i}+\frac{1}{2}\{S[z]+\bar{S}[\bar{z}]\}
$$

Second-order constraint-preserving symmetric integrator

$$
\begin{aligned}
z^{n} & =z\left[e^{(n)}, t^{\prime(n)}\right], \\
w^{n} & =V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right] w^{\alpha(n)}, \quad w^{\alpha(n)} \in \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
w^{n+1 / 2} & =w^{n} \quad-\frac{1}{2} \Delta \tau \bar{\partial} \bar{S}\left[\bar{z}^{n}\right] \quad-\frac{1}{2} \Delta \tau i V_{z}^{\alpha}\left[e^{(n)}, t^{\prime(n)}\right] \lambda_{[r]}^{\alpha} \\
z^{n+1} & =z^{n} \quad+\Delta \tau w^{n+1 / 2} \\
w^{n+1} & =w^{n+1 / 2}-\frac{1}{2} \Delta \tau \bar{\partial} \bar{S}\left[\bar{z}^{n+1}\right]-\frac{1}{2} \Delta \tau i V_{z}^{\alpha}\left[e^{(n+1)}, t^{(n+1)}\right] \lambda_{[v]}^{\alpha}
\end{aligned}
$$

$\lambda_{[r]}^{\alpha}$ and $\lambda_{[v]}^{\alpha}$ are fixed by

$$
\begin{aligned}
& z^{n+1}=z\left[e^{(n+1)}, t^{\prime(n+1)}\right] \\
& w^{n+1}=V_{z}^{\alpha}\left[e^{(n+1)}, t^{\prime(n+1)}\right] w^{\alpha(n+1)}, \quad w^{\alpha(n+1)} \in \mathbb{R}
\end{aligned}
$$

$$
\Delta \tau w^{n}-\frac{1}{2} \Delta \tau^{2} \bar{\partial} \bar{S}\left[\bar{z}^{n}\right]
$$

Lefschetz thimble上の（H）MCの数値的な負荷 Asymptotic solutions of Flow equations

$$
\begin{aligned}
z(t) & \simeq z_{\sigma}+v^{\alpha} \exp \left(\kappa^{\alpha} t\right) e^{\alpha} ; \quad e^{\alpha} e^{\alpha}=n \\
V_{z}^{\alpha}(t) & \simeq v^{\alpha} \exp \left(\kappa^{\alpha} t\right) \\
\dot{z}_{i}(t) & =\bar{\partial} \bar{S}[\bar{z}(t)] \\
\dot{V}_{i}^{\alpha}(t) & =\bar{V}_{j}^{\alpha}(t) \bar{\partial}_{j} \bar{\partial}_{i} \bar{S}[\bar{z}(t)]
\end{aligned}
$$

$\left\{V^{\alpha}\right\} / \operatorname{Det}\left[V{ }_{i}\right]$ の計算がMetropolis update（MolecularDynamics step）毎に必要 Solving Gradient flow eq．for Tanget vectors

$$
\begin{array}{ll}
\dot{z}_{i}(t)=\bar{\partial} \bar{S}[\bar{z}(t)] & \boldsymbol{\alpha}=\mathrm{I}, 2, \ldots, \mathrm{f} \times \mathrm{L}^{4} \quad \text { 並列に実行可能 } \\
\dot{V}_{i}^{\alpha}(t)=\bar{V}_{j}^{\alpha}(t) \bar{\partial}_{j} \bar{\partial}_{i} \bar{S}[\bar{z}(t)] . & \mathrm{O}\left(\mathrm{~V}^{2} \times \mathrm{n} \text { Lefs }\right)
\end{array}
$$

Computing V^{-1} ，detV（Momentaのtangent－space射影，residual sign factorの計算）

$$
J=\left|\frac{\partial\left(z_{i}\right)}{\partial\left(\xi^{\alpha}\right)}\right|=\operatorname{det}\left[V_{i}^{\alpha}(\tau)\right] \quad \mathrm{O}\left(\mathbf{V}^{3}\right)
$$

Sign problem and Monte Carlo calculations beyond Lefschtez thimbles
Alexandru, G. Basar, P. F. Bedaque, G.W. Ridgway, C.Warrington, arXiv:1605.08764 [hep-lat], JHEP I605(2016) 053

Parallel Tempering algorithm for the integration over
Lefschetz thimbles
M. Fukuma, N. Umeda, arXiv:I703.0086I [hep-lat]

Monte Carlo study of real time dynamics
Alexandru, G. Basar, P. F. Bedaque, S.Vartak, C.Warrington, arXiv:I605.08040v2 [hep-lat], PRL II7(2016) 081602

Schwinger-Keldysh on the lattice: a faster algorithm and its application to field theory
A.Alexandru, G. Basar, P. F. Bedaque, S.Vartak, C.Warrington, arXiv: I704.06404 [hep-lat]

交換モンテカルロ・Parallel Tempering法（TLTM）［M．Fukuma and N．Umeda，arXiv：I703．0086／］

$$
\begin{aligned}
& \mathbb{R}^{N}=\{x\} \\
& \left(\mathbb{R}^{N}\right)^{A+1}=\left\{\left(x_{0}, x_{1}, \ldots, x_{A}\right)\right\} \quad \text { the set of } A+1 \text { replicas } \\
& \\
& \lambda_{\alpha} \quad(\alpha=0,1, \ldots, A)
\end{aligned}
$$

$\prod e^{-S\left(x_{\alpha} ; \lambda_{\alpha}\right)} \quad$ the probability distribution for $\left(x_{0}, x_{1}, \ldots, x_{A}\right)$
swap two configurations of two adjacent replicas α and $\alpha+1$ with the probability

$$
\begin{aligned}
& w_{\alpha}\left(x, x^{\prime}\right)=\min \left(1, \frac{e^{-S\left(x^{\prime} ; \lambda_{\alpha}\right)-S\left(x ; \lambda_{\alpha+1}\right)}}{e^{-S\left(x ; \lambda_{\alpha}\right)-S\left(x^{\prime}, \lambda_{\alpha+1}\right)}}\right) \\
& w_{\alpha}\left(x, x^{\prime}\right) e^{-S\left(x ; \lambda_{\alpha}\right)-S\left(x^{\prime}, \lambda_{\alpha+1}\right)}=w_{\alpha}\left(x^{\prime}, x\right) e^{-S\left(x^{\prime} ; \lambda_{\alpha}\right)-S\left(x, \lambda_{\alpha+1}\right)}
\end{aligned}
$$

[M. Fukuma and N. Matsumoto]

$$
\begin{array}{rlrl}
H= & -\frac{\kappa}{2} \sum_{x, y, \sigma} c_{x \sigma}^{\dagger} K_{x y} c_{y \sigma} & & \text { hopping term } \\
& -\mu \sum_{x, \sigma}\left(n_{x \sigma}-\frac{1}{2}\right) & & \text { chemical potential term } \\
& +U \sum_{x}\left(n_{x \uparrow}-\frac{1}{2}\right)\left(n_{x \downarrow}-\frac{1}{2}\right) \cdots & & \text { interaction term } \\
\text { (four-fermion interaction) }
\end{array}
$$

- exact
- TLTM
- GLTM
- reweighting

Real time dynamics／Schwinger－Keldysh 形式への適用

－ボーズ系（ $\boldsymbol{\lambda} \varphi^{4}{ }_{\mu}$ model $)$ in $0+1$ dim．，$I+1$ dim．
［Alexandru，et al．，arXiv： 1605.08040 ］ ［Alexandru，et al．，arXiv：I704．06404］

FIG．5．Left：real part of the correlator for $\lambda=1.0$ for momentum $p=2 \pi / N_{x}$ ，as produced with the Grady and J_{0} algorithms， compared to the perturbative calculation．The simulation points are offset horizontally for clarity．Right：the results for zero distance correlator as a function of the coupling．The blue points are the results of J_{0} simulation and the curves correspond to zeroth，first，and second order calculation．
[Alexandru, et al., lattice2019]

Results

[Alexandru, et al., lattice2019]
 Sampling method comparison

- Step sizes are chosen to have the acceptance rate broadly around 0.5
- None of the implementations is optimized
- Run times per update are in the rough ratio 1:3:30
- For larger N_{t} Metropolis and Grady autocorrelation times are expected to increase faster than for HMC
- Even for this Nt HMC is about 40 times faster than Grady

$\mathrm{N}_{\mathrm{t}}=12 \mathrm{~N}_{\beta}=4 \mathrm{a}=0.2 \lambda=4$! dof $=28$

Summary

- the Standard Model / SO(IO) chiral gauge theory on the lattice
- Lefschetz-Thimble methods !?
to overcome the sign problem
generalized method(GLTM), tempered method(tLTM) / HMC other methods (Complex Lengevin,Tensor Network RG, ...)
- Schwinger-Keldysh formalism for lattice gauge theories !?
real-time, non-equilibrium dynamics / finite-temperature • density
[Fuji, Hoshina, YK (2019)]

What is the sound of

 one hand clapping？
両手の鳴る音は知る。片手の鳴る音はいかに？
 ー 禅の公案—

