Exponentially Suppressed Cosmological Constant with Gauge Enhanced Symmetry in Heterotic Interpolating Models

Sota Nakajima (Osaka City University) with
Hiroshi Itoyama (OCU, NITEP)

Based on arXiv: 1905.10745

$$
\text { @ YITP, 8/2, } 2019
$$

Introduction

When a top-down approach from string theory is considered, there are two choices depending on where SUSY breaking scale is ;

1. SUSY is broken at low energy in supersymmetric EFT ;
2. SUSY is already broken at high energy like string/Planck scale.

In this talk, the second one is focused on, and non-supersymmetric string models are considered.

In particular, the $\boldsymbol{S O}(\mathbf{1 6)} \times \boldsymbol{S O}(16)$ model is a unique tachyon-free non-supersymmetric string model in ten-dimensions.
[Dixon, Hervey, (1986)]

Introduction

Considering non-supersymmetric string models, however, we face with the problem of vacuum instability arising from nonzero dilaton tadpoles;
$V(\phi)$: dilaton tadpole

$$
V(\phi) \propto \Lambda
$$

Λ : cosmological constant (vacuum energy)

At 1-loop level,

The desired model is a non-supersymmetric one whose cosmolosical constant is vanishing or as small as possible.

Interpolating models have the possibility of such properties. [Itoyama, Taylor, (1987)]

Outline

1. Introduction
2. Heterotic Strings
3. 9D Interpolating models
4. 9D Interpolating models with Wilson line
5. Summary

Outline

1. Introduction

2. Heterotic Strings

3. 9D Interpolating models
4. 9D Interpolating models with Wilson line
5. Summary

Idea of Heterotic Strings

Heterotic strings are hybrid closed strings of bosonic string in 26D and superstrings in 10D.

Adopting the lightcone coordinates, the worldsheet contents are

Right mover: 10d superstring

$$
X_{R}^{i}(\tau-\sigma), \tilde{\psi}^{i}(\tau-\sigma)
$$

Left mover: 26d bosonic string out of which
internal 16d realize rank 16 current algebra
$10=(8+2) d \quad 10=(8+2) d$

$$
\begin{array}{r}
X_{L}^{i}(\tau+\sigma), X_{L}^{I}(\tau+\sigma) \\
(i=1,2, \cdots, 8 \quad I=1,2, \cdots, 16)
\end{array}
$$

[Gross, Hervey, Martinec, Rohm, (1985)]

The one-loop partition func. \& State Counting

- The one-loop partition function is the trace over string Fock space:

$$
Z(\tau)=\operatorname{Tr}(-1)^{F} q^{L_{0}} \bar{q}^{\tilde{L}_{0}}
$$

($q=e^{2 \pi i \tau}$
F : the spacetime fermion number

- $Z(\tau)$ counts \#(states) at each mass level as coeff. in $q(\bar{q})$ expansion.

$$
Z(\tau)=\tau_{2}^{-\frac{D-2}{2}} \sum_{m, n} a_{m n} \bar{q}^{m} q^{n} \quad\left[\begin{array}{l}
\boldsymbol{a}_{\boldsymbol{m} n} \text { denotes \#(bosons) minus \#(fermions) } \\
\text { at mass levels }(\boldsymbol{m}, \boldsymbol{n})
\end{array}\right)
$$

In the string model with spacetime SUSY, $a_{m n}=0$ for all (m, n) because of fermion-boson degeneracy.

$$
\Longrightarrow Z(\tau)=0 \quad \text { for supersymmetric string models. }
$$

- In order for the string model to be consistent, $Z(\tau)$ has to be invariant under modular transformation:

$$
Z(-1 / \tau)=Z(\tau+1)=Z(\tau)
$$

Characters

- $Z(\tau)$ is written in terms of $S O(2 n)$ characters $O_{2 n}, V_{2 n}, S_{2 n}, C_{2 n}$ and the Dedekind eta function $\eta(\tau)$, e.g,

$\underline{S O(32)}$ hetero:

$$
Z_{S O(32)}(\tau)=Z_{B}^{(8)} \underline{\left(\bar{V}_{8}-\bar{S}_{8}\right)}\left(O_{16} O_{16}+V_{16} V_{16}+S_{16} S_{16}+C_{16} C_{16}\right)
$$

$E_{8} \times E_{8}$ hetero $:$

$$
Z_{E_{8} \times E_{8}}(\tau)=Z_{B}^{(8)}\left(\bar{V}_{8}-\bar{S}_{8}\right)\left(O_{16}+S_{16}\right)\left(O_{16}+S_{16}\right)
$$

$\underline{S O(16) \times S O(16) ~ h e t e r o: ~}$

$$
\begin{aligned}
Z_{S O(16) \times S O(16)}=Z_{B}^{(8)} & \left\{\bar{O}_{8}\left(V_{16} C_{16}+C_{16} V_{16}\right)+\bar{V}_{8}\left(O_{16} O_{16}+S_{16} S_{16}\right)\right. \\
& \left.-\bar{S}_{8}\left(V_{16} V_{16}+C_{16} C_{16}\right)-\bar{C}_{8}\left(O_{16} S_{16}+S_{16} O_{16}\right)\right\}
\end{aligned}
$$

$Z_{B}^{(n)}=\tau_{2}^{-n / 2}(\bar{\eta} \eta)^{-n}, \quad\binom{O_{2 n}}{V_{2 n}}=\frac{1}{2 \eta^{n}}\left(\vartheta\left[\begin{array}{l}0 \\ 0\end{array}\right]^{n} \pm \vartheta\left[\begin{array}{c}0 \\ 1 / 2\end{array}\right]^{n}\right), \quad\binom{S_{2 n}}{C_{2 n}}=\frac{1}{2 \eta^{n}}\left(\vartheta\left[\begin{array}{c}1 / 2 \\ 0\end{array}\right]^{n} \pm \vartheta\left[\begin{array}{l}1 / 2 \\ 1 / 2\end{array}\right]^{n}\right)$
the Jacobi's abstruse identity: $\quad V_{8}-S_{8}=0$

SUSY breaking by Compactification

- Compactification on a circle

- Compactification on a twisted circle

The translation operator for X_{9} satifies

The translation operator for X_{9} satifies

$$
e^{2 \pi i P_{9} R}=1 \quad \therefore P_{9}=\frac{n}{R} \quad(n \in \boldsymbol{Z})
$$

This comp. affects bosonic and fermionic states in the same way. \longrightarrow SUSY is NOT broken.

$$
e^{2 \pi i P_{9} R}=e^{2 \pi i J_{78}} \quad \therefore P_{9}=\frac{n+\frac{F}{2}}{R} \quad(n \in \boldsymbol{Z})
$$

$$
(F: \text { the spacetime fermion number })
$$

This comp. affects bosonic and fermionic states in the different way. It induces the mass splitting between bosonic and fermionic states.

Outline

1. Introduction

2. Heterotic Strings

3. 9D Interpolating models

4. 9D Interpolating models with WL

5. Summary

Interpolation between SUSY and non-SUSY models

An interpolating model is a lower dimensional string model relating two different higher dimensional string models continuously.
10 dim.
T-dual $\overbrace{\text { Model } M_{2}}^{\text {non-SUSY }}$

 Radius R
In the large R (small a) region, the cosmological constant is

$$
\Lambda_{9} \simeq\left(n_{F}-n_{B}\right) a^{-9} \xi+\mathcal{O}\left(e^{-a^{-2}}\right)
$$

$$
a=\sqrt{\alpha^{\prime}} / R, \quad \xi>0, \quad n_{F}, \quad n_{B}: \# \text { of massless fermions, bosons }
$$

If $n_{F}=n_{B}$, the cosmological constant is exponentially suppressed.

Interpolation between $S O(32)$ and $S O(16) \times S O(16)$

- The one-loop partition function

$$
\begin{aligned}
Z_{\mathrm{int}}^{(9)}=Z_{B}^{(7)} & \left\{\Lambda_{0,0}\left[\bar{V}_{8}\left(O_{16} O_{16}+S_{16} S_{16}\right)-\bar{S}_{8}\left(V_{16} V_{16}+C_{16} C_{16}\right)\right]\right. \\
& +\Lambda_{1 / 2,0}\left[\bar{V}_{8}\left(V_{16} V_{16}+C_{16} C_{16}\right)-\bar{S}_{8}\left(O_{16} O_{16}+S_{16} S_{16}\right)\right] \\
& +\Lambda_{0,1 / 2}\left[\bar{O}_{8}\left(V_{16} C_{16}+C_{16} V_{16}\right)-\bar{C}_{8}\left(O_{16} S_{16}+S_{16} O_{16}\right)\right] \\
& \left.+\Lambda_{1 / 2,1 / 2}\left[\bar{O}_{8}\left(O_{16} S_{16}+S_{16} O_{16}\right)-\bar{C}_{8}\left(V_{16} C_{16}+C_{16} V_{16}\right)\right]\right\}
\end{aligned}
$$

$$
\Lambda_{\alpha, \beta}=(\bar{\eta} \eta)^{-1} \sum_{n, w} \bar{q}^{\alpha^{\prime} p_{R}^{2} / 2} q^{\alpha^{\prime} p_{L}^{2} / 2}=(\bar{\eta} \eta)^{-1} \sum_{n, w} \exp \left[2 \pi i n w \tau_{1}-\pi \tau_{2}\left(n^{2} a^{2}+w^{2} / a^{2}\right)\right]
$$

$$
\text { where the sum is taken over } n \in 2(\boldsymbol{Z}+\alpha), \quad w \in \boldsymbol{Z}+\beta
$$

- $\underline{R} \rightarrow \infty$: contribution from the zero winding \# only

$$
\longrightarrow \quad \Lambda_{\alpha, 0} \rightarrow(2 a)^{-1} Z_{B}^{(1)}, \quad \Lambda_{\alpha, 1 / 2} \rightarrow 0
$$

- $R \rightarrow 0$: contribution from the zero momentum only

$$
\Lambda_{0, \beta} \rightarrow a Z_{B}^{(1)}, \quad \Lambda_{1 / 2, \beta} \rightarrow 0
$$

Interpolation between $S O(32)$ and $S O(16) \times S O(16)$

- The limiting case: $\boldsymbol{R} \rightarrow \infty \quad \Lambda_{\alpha, 0} \rightarrow(2 a)^{-1} Z_{B}^{(1)}, \Lambda_{\alpha, 1 / 2} \rightarrow 0$

$$
\left.\begin{array}{rl}
Z_{\mathrm{int}}^{(9)}=Z_{B}^{(7)} & \left\{\Lambda_{0,0} \underline{\left[\bar{V}_{8}\left(O_{16} O_{16}+S_{16} S_{16}\right)-\bar{S}_{8}\left(V_{16} V_{16}+C_{16} C_{16}\right)\right]}\right. \\
& +\Lambda_{1 / 2,0} \underline{\left[\bar{V}_{8}\left(V_{16} V_{16}+C_{16} C_{16}\right)-\bar{S}_{8}\left(O_{16} O_{16}+S_{16} S_{16}\right)\right]} \\
& +\Lambda_{0,1 / 2}\left[\bar{\Theta}_{8}\left(V_{16} G_{16}+C_{16} V_{16}\right)\right. \\
\left.\bar{G}_{8}\left(\Theta_{16} S_{16}+S_{16} \Theta_{16}\right)\right]
\end{array}\right]
$$

the one-loop partition function of SUSY SO(32) heterotic model, which is vanishing

SUSY is restored in $\boldsymbol{R} \rightarrow \infty(\boldsymbol{a} \rightarrow \mathbf{0})$

Interpolation between $S O(32)$ and $S O(16) \times S O(16)$

- The limiting case: $\boldsymbol{R} \rightarrow \mathbf{0} \quad \Lambda_{0, \beta} \rightarrow a Z_{B}^{(1)}, \Lambda_{1 / 2, \beta} \rightarrow 0$

$$
\begin{aligned}
Z_{\mathrm{int}}^{(9)}=Z_{B}^{(7)} & \left\{\Lambda_{0,0} \frac{\left[\bar{V}_{8}\left(O_{16} O_{16}+S_{16} S_{16}\right)-\bar{S}_{8}\left(V_{16} V_{16}+C_{16} C_{16}\right)\right]}{}\right. \\
& +\Lambda_{1 / 2,0}\left[\bar{V}_{10}\left(V_{10}+C_{10}\right)-\bar{S}_{8}\left(O_{10} O_{10}+S_{10} S_{10}\right)\right] \\
& +\Lambda_{0,1 / 2}\left[\frac{\left.\bar{O}_{8}\left(V_{16} C_{16}+C_{16} V_{16}\right)-\bar{C}_{8}\left(O_{16} S_{16}+S_{16} O_{16}\right)\right]}{\left.\left[\bar{\theta}_{8}\left(\Theta_{10} S_{16}+S_{10} \Theta_{16}\right) \bar{G}_{8}\left(V_{16} C_{16} G_{16} V_{16}\right)\right]\right\}}\right. \\
& \left.\left.+\Lambda_{1 / 2,1 / 2}\right)\right]
\end{aligned}
$$

 heterotic model

Interpolation between $S O(32)$ and $S O(16) \times S O(16)$

- Massless spectrum at generic R, massless states come from $n=w=0$ part

$$
\begin{aligned}
Z_{\mathrm{int}}^{(9)}=Z_{B}^{(7)} & \left\{\Lambda_{0,0}\left[\bar{V}_{8}\left(O_{16} O_{16}+S_{16} S_{16}\right)-\bar{S}_{8}\left(V_{16} V_{16}+C_{16} C_{16}\right)\right]\right. \\
& +\Lambda_{1 / 2,0}\left[\bar{V}_{8}\left(V_{16} V_{16}+C_{16} C_{16}\right)-\bar{S}_{8}\left(O_{16} O_{16}+S_{16} S_{16}\right)\right] \\
& +\Lambda_{0,1 / 2}\left[\bar{O}_{8}\left(V_{16} C_{16}+C_{16} V_{16}\right)-\bar{C}_{8}\left(O_{16} S_{16}+S_{16} O_{16}\right)\right] \\
& \left.+\Lambda_{1 / 2,1 / 2}\left[\bar{O}_{8}\left(O_{16} S_{16}+S_{16} O_{16}\right)-\bar{C}_{8}\left(V_{16} C_{16}+C_{16} V_{16}\right)\right]\right\}
\end{aligned}
$$

Massless bosons

- 9-dim. graviton, anti-symmetric tensor, dilaton: $g_{\mu \nu}, B_{\mu \nu}, \phi$
- Gauge bosons in adj rep of $\operatorname{SO}(16) \times S O(16) \times U_{G, B}^{2}(1)$

Massless fermions

- $8_{S} \otimes(16,16)$

$$
n_{F}-n_{B}=64
$$

Outline

1. Introduction

2. Heterotic Strings

3. 9D Interpolating models
4. 9D Interpolating models with Wilson line
5. Summary

Boost on momentum lattice

- Considering d-dimensional compactification, the boost in the momentum lattice corresponds to putting massless constant backgrounds, that is, adding the following term to the worldsheet action

$$
C_{A a} \int d^{2} z \partial X_{L}^{A} \bar{\partial} X_{R}^{a} \quad\left[\begin{array}{l}
a=10-d, \cdots, 9 \\
A=(a, I)=10-d, \cdots, 26
\end{array}\right)
$$

$C_{b a}$: metric and antisymmetric tensor, $C_{I a}: U(1)^{16}$ gauge fields (WL)
[Narain, Sarmadi, Witten, (1986)]

- The d-dimensional compactifications are classified by the transformation

$$
\frac{S O(16+d, d)}{S O(16+d) \times S O(d)}
$$

whose DOF agree with that of $C_{A a}$.

- In this work, we will consider one-dimensional compactification and put a single WL background $A=C_{I=1, a=9}$ for simplicity.

Boost on momentum lattice

After turning on WL, the momenta of $X_{L}^{I=1}, X_{L}^{a=9}$ and $X_{R}^{a=9}$ are changed as

$$
\left\{\begin{array}{l}
l_{L}=\frac{1}{\sqrt{\alpha^{\prime}}} m \\
p_{L}=\frac{1}{\sqrt{2 \alpha^{\prime}}}\left(a n+\frac{w}{a}\right) \\
p_{R}=\frac{1}{\sqrt{2 \alpha^{\prime}}}\left(a n-\frac{w}{a}\right)
\end{array}\right.
$$

l_{L} is the left-moving momentum of $X_{L}^{I=1}$

The effective change in the 1-loop partition function is

$$
\Lambda_{(\gamma, \delta)}^{(\alpha, \beta)}=(\bar{\eta} \eta)^{-1} \eta^{-1} \sum_{n, w, m}(-1)^{2 \delta m} q^{\frac{\alpha^{\prime}}{2}\left(l_{L}^{\prime 2}+p_{L}^{\prime 2}\right)} \bar{q}^{\frac{\alpha^{\prime}}{2} p_{R}^{\prime 2}}
$$

$$
n \in 2(\boldsymbol{Z}+\alpha), \quad w \in \boldsymbol{Z}+\beta, \quad m \in \boldsymbol{Z}+\gamma
$$

The fundamental region of moduli space

Do all the points in moduli space correspond to different models? $\longrightarrow \mathbf{N O}$!
It is convenient to introduce a modular parameter $\tilde{\tau}$ as

$$
\tilde{\tau}=\tilde{\tau}_{1}+i \tilde{\tau}_{2}=\frac{A}{\sqrt{1+A^{2}}} a^{-1}+i \frac{1}{\sqrt{1+A^{2}}} a^{-1}
$$

Momentum lattice $\Lambda_{(\gamma, \delta)}^{(\alpha, \beta)}$ is invariant under the shift

$$
\tilde{\tau} \rightarrow \tilde{\tau}+2 \sqrt{2}
$$

The fundamental region of moduli space is

$$
-\sqrt{2} \leq \tilde{\tau}_{1} \leq \sqrt{2}
$$

Interpolation between $S O(32)$ and $S O(16) \times S O(16)$ with WL

- The one-loop partition function

$$
\begin{aligned}
& Z_{\mathrm{int}}^{(9)}=Z_{B}^{(7)}\left\{\bar{V}_{8}\left(O_{16}^{(0,0)} O_{16}+S_{16}^{(0,0)} S_{16}\right)-\bar{S}_{8}\left(V_{16}^{(0,0)} V_{16}+C_{16}^{(0,0)} C_{16}\right)\right. \\
&+\bar{V}_{8}\left(V_{16}^{(1 / 2,0)} V_{16}+C_{16}^{(1 / 2,0)} C_{16}\right)-\bar{S}_{8}\left(O_{16}^{(1 / 2,0)} O_{16}+S_{16}^{(1 / 2,0)} S_{16}\right) \\
&+\bar{O}_{8}\left(V_{16}^{(0,1 / 2)} C_{16}+C_{16}^{(0,1 / 2)} V_{16}\right)-\bar{C}_{8}\left(O_{16}^{(0,1 / 2)} S_{16}+S_{16}^{(0,1 / 2)} O_{16}\right) \\
&\left.+\bar{O}_{8}\left(O_{16}^{(1 / 2,1 / 2)} S_{16}+S_{16}^{(1 / 2,1 / 2)} O_{16}\right)-\bar{C}_{8}\left(V_{16}^{(1 / 2,1 / 2)} C_{16}+C_{16}^{(1 / 2,1 / 2)} V_{16}\right)\right\} \\
&\binom{O_{16}^{(\alpha, \beta)}}{V_{16}^{(\alpha, \beta)}}=\frac{1}{2 \eta^{7}}\left(\Lambda_{(0,0)}^{(\alpha, \beta)} \vartheta\left[\begin{array}{l}
0 \\
0
\end{array}\right]^{7} \pm \Lambda_{(0,1 / 2)}^{(\alpha, \beta)} \vartheta\left[\begin{array}{c}
0 \\
1 / 2
\end{array}\right]^{7}\right) \quad\binom{S_{16}^{(\alpha, \beta)}}{C_{16}^{(\alpha, \beta)}}=\frac{1}{2 \eta^{7}}\left(\Lambda_{(1 / 2,0)}^{(\alpha, \beta)} \vartheta\left[\begin{array}{c}
1 / 2 \\
0
\end{array}\right]^{7} \pm \Lambda_{(1 / 2,1 / 2)}^{(\alpha, \beta)} \vartheta\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]^{7}\right)
\end{aligned}
$$

- $\underline{R \rightarrow \infty}:\left(O_{16}^{(\alpha, \beta)}, V_{16}^{(\alpha, \beta)}, S_{16}^{(\alpha, \beta)}, C_{16}^{(\alpha, \beta)}\right) \longrightarrow \frac{\sqrt{\alpha^{\prime}}}{2 r_{\infty}} Z_{B}^{(1)}\left(O_{16}, V_{16}, S_{16}, C_{16}\right) \delta_{\beta, 0}$
- $\underline{R \rightarrow 0:}\left(O_{16}^{(\alpha, \beta)}, V_{16}^{(\alpha, \beta)}, S_{16}^{(\alpha, \beta)}, C_{16}^{(\alpha, \beta)}\right) \longrightarrow \sqrt{\alpha^{\prime}} r_{0} Z_{B}^{(1)}\left(O_{16}, V_{16}, S_{16}, C_{16}\right) \delta_{\alpha, 0}$

$$
\left[\begin{array}{l}
r_{\infty}=\frac{R}{\sqrt{1+A^{2}}} \\
r_{0}=\sqrt{1+A^{2}} R
\end{array}\right.
$$

Interpolation between $S O(32)$ and $S O(16) \times S O(16)$ with WL

- The one-loop partition function

$$
\begin{aligned}
& Z_{\mathrm{int}}^{(9)}=Z_{B}^{(7)} \frac{\left\{\bar{V}_{8}\left(O_{16}^{(0,0)} O_{16}+S_{16}^{(0,0)} S_{16}\right)-\bar{S}_{8}\left(V_{16}^{(0,0)} V_{16}+C_{16}^{(0,0)} C_{16}\right)\right.}{} \\
&+\bar{V}_{8}\left(V_{16}^{(1 / 2,0)} V_{16}+C_{16}^{(1 / 2,0)} C_{16}\right)-\bar{S}_{8}\left(O_{16}^{(1 / 2,0)} O_{16}+S_{16}^{(1 / 2}, 0\right) \\
&\left.S_{16}\right) \\
&+\underline{\bar{O}_{8}\left(V_{16}^{(0,1 / 2)} C_{16}+C_{16}^{(0,1 / 2)} V_{16}\right)-\bar{C}_{8}\left(O_{16}^{(0,1 / 2)} S_{16}+S_{16}^{(0,1 / 2)} O_{16}\right)} \\
&\left.+\bar{O}_{8}\left(O_{16}^{(1 / 2,1 / 2)} S_{16}+S_{16}^{(1 / 2,1 / 2)} O_{16}\right)-\bar{C}_{8}\left(V_{16}^{(1 / 2,1 / 2)} C_{16}+C_{16}^{(1 / 2,1 / 2)} V_{16}\right)\right\}
\end{aligned}
$$

- The limiting cases
- $\underline{R} \rightarrow \infty$: the 1 st and 2 nd lines survive
- $\underline{R} \rightarrow 0$: the 1 st and 3rd lines survive

$$
\begin{aligned}
& \text { non-SUSY } \\
& S O(16) \times S O(16)
\end{aligned}
$$

SUSY

For any WL A,

$$
Z_{\mathrm{int}}^{(9)} \text { realizes }
$$

$\left\{\begin{array}{l}\text { SUSY } S O(32) \text { model in } R \rightarrow \infty \\ S O(16) \times S O(16) \text { model in } R \rightarrow 0\end{array}\right.$

Interpolation between $S O(32)$ and $S O(16) \times S O(16)$ with WL

- Massless spectrum at generic R, massless states come from $\underline{n=W=O}$ part

$$
\begin{aligned}
Z_{\mathrm{int}}^{(9)}=Z_{B}^{(7)} & \left\{\frac{\bar{V}_{8}\left(O_{16}^{(0,0)} O_{16}+S_{16}^{(0,0)} S_{16}\right)-\bar{S}_{8}\left(V_{16}^{(0,0)} V_{16}+C_{16}^{(0,0)} C_{16}\right)}{}\right. \\
& +\bar{V}_{8}\left(V_{16}^{(1 / 2,0)} V_{16}+C_{16}^{(1 / 2,0)} C_{16}\right)-\bar{S}_{8}\left(O_{16}^{(1 / 2,0)} O_{16}+S_{16}^{(1 / 2,0)} S_{16}\right) \\
& +\bar{O}_{8}\left(V_{16}^{(0,1 / 2)} C_{16}+C_{16}^{(0,1 / 2)} V_{16}\right)-\bar{C}_{8}\left(O_{16}^{(0,1 / 2)} S_{16}+S_{16}^{(0,1 / 2)} O_{16}\right) \\
& \left.+\bar{O}_{8}\left(O_{16}^{(1 / 2,1 / 2)} S_{16}+S_{16}^{(1 / 2,1 / 2)} O_{16}\right)-\bar{C}_{8}\left(V_{16}^{(1 / 2,1 / 2)} C_{16}+C_{16}^{(1 / 2,1 / 2)} V_{16}\right)\right\}
\end{aligned}
$$

Massless bosons

- 9-dim. graviton, anti-symmetric tensor, dilaton: $g_{\mu \nu}, B_{\mu \nu}, \phi$
- Gauge bosons in adj rep of $\boldsymbol{S O}(\mathbf{1 6}) \times S O(14) \times U(1) \times U_{G, B}^{2}(1)$

Massless fermions

- $\mathbf{8}_{S} \otimes(16,14)$

$$
n_{F}-n_{B}=32
$$

Interpolation between $S O(32)$ and $S O(16) \times S O(16)$ with WL

- Massless spectrum $\quad{ }^{\exists}$ a few conditions under which the additional massless states appear

$$
\begin{aligned}
& Z_{\mathrm{int}}^{(9)}=Z_{B}^{(7)}\left\{\bar{V}_{8}\left(O_{16}^{(0,0)} O_{16}+S_{16}^{(0,0)} S_{16}\right)-\underline{\bar{S}_{8}\left(V_{16}^{(0,0)} V_{16}\right.}+C_{16}^{(0,0)} C_{16}\right) \\
& +\bar{V}_{8}\left(V_{16}^{(1 / 2,0)} V_{16}+C_{16}^{(1 / 2,0)} C_{16}\right)-\bar{S}_{8}\left(O_{16}^{(1 / 2,0)} O_{16}+S_{16}^{(1 / 2,0)} S_{16}\right) \\
& +\bar{O}_{8}\left(V_{16}^{(0,1 / 2)} C_{16}+C_{16}^{(0,1 / 2)} V_{16}\right)-\bar{C}_{8}\left(O_{16}^{(0,1 / 2)} S_{16}+S_{16}^{(0,1 / 2)} O_{16}\right) \\
& \left.+\bar{O}_{8}\left(O_{16}^{(1 / 2,1 / 2)} S_{16}+S_{16}^{(1 / 2,1 / 2)} O_{16}\right)-\bar{C}_{8}\left(V_{16}^{(1 / 2,1 / 2)} C_{16}+C_{16}^{(1 / 2,1 / 2)} V_{16}\right)\right\}
\end{aligned}
$$

condition (1) $\quad \tilde{\tau}_{1}=n_{1} / \sqrt{2} \quad n_{1} \in 2 \boldsymbol{Z}$

$$
\begin{aligned}
& \text { new massless states : two } 8_{V} \otimes(1,14) \\
& \qquad\left\{\begin{aligned}
\boldsymbol{S O}(\mathbf{1 6}) \times \boldsymbol{S O}(14) \times \boldsymbol{U}(1) & \longrightarrow \text { two } 8_{S} \otimes(16,1) \\
8_{S} \otimes(16,14) & \longrightarrow \boldsymbol{S O}(16) \times \boldsymbol{S O}(16) \\
n_{F}-n_{B} & =64
\end{aligned}\right.
\end{aligned}
$$

Interpolation between $S O(32)$ and $S O(16) \times S O(16)$ with WL

- Massless spectrum $\quad{ }^{\exists}$ a few conditions under which the additional massless states appear

$$
\begin{aligned}
Z_{\mathrm{int}}^{(9)}=Z_{B}^{(7)} & \left\{\bar{V}_{8}\left(O_{16}^{(0,0)} O_{16}+S_{16}^{(0,0)} S_{16}\right)-\bar{S}_{8}\left(V_{16}^{(0,0)} V_{16}+C_{16}^{(0,0)} C_{16}\right)\right. \\
& \left.\left.+\underline{\bar{V}_{8}\left(V_{16}^{(1 / 2,0)} V_{16}\right.}+C_{16}^{(1 / 2,0)} C_{16}\right)-\underline{\bar{S}_{8}\left(O_{16}^{(1 / 2,0)} O_{16}\right.}+S_{16}^{(1 / 2,0)} S_{16}\right) \\
& +\bar{O}_{8}\left(V_{16}^{(0,1 / 2)} C_{16}+C_{16}^{(0,1 / 2)} V_{16}\right)-\bar{C}_{8}\left(O_{16}^{(0,1 / 2)} S_{16}+S_{16}^{(0,1 / 2)} O_{16}\right) \\
& \left.+\bar{O}_{8}\left(O_{16}^{(1 / 2,1 / 2)} S_{16}+S_{16}^{(1 / 2,1 / 2)} O_{16}\right)-\bar{C}_{8}\left(V_{16}^{(1 / 2,1 / 2)} C_{16}+C_{16}^{(1 / 2,1 / 2)} V_{16}\right)\right\}
\end{aligned}
$$

condition (2) $\quad \tilde{\tau}_{1}=n_{2} / \sqrt{2} \quad n_{2} \in 2 \boldsymbol{Z}+1$
new massless states : • two $8_{V} \otimes(16,1)$ • two $8_{S} \otimes(1,14)$

$$
\left\{\begin{array}{ccc}
S O(16) \times S O(14) \times U(1) & \longrightarrow & S O(18) \times S O(14) \\
8_{S} \otimes(16,14) & \longrightarrow & 8_{S} \otimes(18,14)
\end{array}\right.
$$

$$
n_{F}-n_{B}=0
$$

Interpolation between $S O(32)$ and $S O(16) \times S O(16)$ with WL

- Summary of the conditions

We have found the two conditions under which the additional massless states appear:
condition (1) $\quad \tilde{\tau}_{1}=n_{1} / \sqrt{2} \quad n_{1} \in 2 \boldsymbol{Z}$
condition (2) $\quad \tilde{\tau}_{1}=n_{2} / \sqrt{2} \quad n_{2} \in 2 \boldsymbol{Z}+1 \quad\left(\tilde{\tau}_{1}=\frac{A^{1+A^{2}}}{} a\right)$

$$
\left(\tilde{\tau}_{1}=\frac{A}{\sqrt{1+A^{2}}} a^{-1}\right)
$$

Actually, there are only four inequivalent orbits in the fundamental region:

Condition	$\underline{n_{1}=0 \text { and } 2(o r-2)}$	$\underline{n_{2}=-1 \text { and 1 }}$
Gauge gp	$\underline{S O(16) \times S O(16)}$	$\underline{S O(18) \times S O(14)}$
	$n_{F}>n_{B}$	$n_{F}=n_{B}$

Interpolation between $E_{8} \times E_{8}$ and $S O(16) \times S O(16)$ with WL

- The one-loop partition function

$$
\begin{aligned}
Z_{\mathrm{int}}^{(9)}=Z_{B}^{(7)} & \left\{\bar{V}_{8}\left(O_{16}^{(0,0)} O_{16}+S_{16}^{(0,0)} S_{16}\right)-\bar{S}_{8}\left(O_{16}^{(0,0)} S_{16}+S_{16}^{(0,0)} O_{16}\right)\right. \\
& +\bar{V}_{8}\left(O_{16}^{(1 / 2,0)} S_{16}+S_{16}^{(1 / 2,0)} O_{16}\right)-\bar{S}_{8}\left(O_{16}^{(1 / 2,0)} O_{16}+S_{16}^{(1 / 2,0)} S_{16}\right) \\
& +\bar{O}_{8}\left(V_{16}^{(0,1 / 2)} C_{16}+C_{16}^{(0,1 / 2)} V_{16}\right)-\bar{C}_{8}\left(V_{16}^{(0,1 / 2)} V_{16}+C_{16}^{(0,1 / 2)} C_{16}\right) \\
& \left.+\bar{O}_{8}\left(V_{16}^{(1 / 2,1 / 2)} V_{16}+C_{16}^{(1 / 2,1 / 2)} C_{16}\right)-\bar{C}_{8}\left(V_{16}^{(1 / 2,1 / 2)} C_{16}+C_{16}^{(1 / 2,1 / 2)} V_{16}\right)\right\}
\end{aligned}
$$

$$
\binom{O_{16}^{(\alpha, \beta)}}{V_{16}^{(\alpha, \beta)}}=\frac{1}{2 \eta^{7}}\left(\Lambda_{(0,0)}^{(\alpha, \beta)} \vartheta\left[\begin{array}{l}
0 \\
0
\end{array}\right]^{7} \pm \Lambda_{(0,1 / 2)}^{(\alpha, \beta)} \vartheta\left[\begin{array}{c}
0 \\
1 / 2
\end{array}\right]^{7}\right) \quad\binom{S_{16}^{(\alpha, \beta)}}{C_{16}^{(\alpha, \beta)}}=\frac{1}{2 \eta^{7}}\left(\Lambda_{(1 / 2,0)}^{(\alpha, \beta)} \vartheta\left[\begin{array}{c}
1 / 2 \\
0
\end{array}\right]^{7} \pm \Lambda_{(1 / 2,1 / 2)}^{(\alpha, \beta)} \vartheta\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]^{7}\right)
$$

- $\underline{R \rightarrow \infty}:\left(O_{16}^{(\alpha, \beta)}, V_{16}^{(\alpha, \beta)}, S_{16}^{(\alpha, \beta)}, C_{16}^{(\alpha, \beta)}\right) \longrightarrow \frac{\sqrt{\alpha^{\prime}}}{2 r_{\infty}} Z_{B}^{(1)}\left(O_{16}, V_{16}, S_{16}, C_{16}\right) \delta_{\beta, 0}$
- $\underline{R \rightarrow 0:}\left(O_{16}^{(\alpha, \beta)}, V_{16}^{(\alpha, \beta)}, S_{16}^{(\alpha, \beta)}, C_{16}^{(\alpha, \beta)}\right) \longrightarrow \sqrt{\alpha^{\prime}} r_{0} Z_{B}^{(1)}\left(O_{16}, V_{16}, S_{16}, C_{16}\right) \delta_{\alpha, 0}$

$$
\begin{aligned}
& r_{\infty}=\frac{R}{\sqrt{1+A^{2}}} \\
& r_{0}=\sqrt{1+A^{2}} R
\end{aligned}
$$

Interpolation between $E_{8} \times E_{8}$ and $S O(16) \times S O(16)$ with WL

- The one-loop partition function

$$
\begin{aligned}
Z_{\mathrm{int}}^{(9)}=Z_{B}^{(7)} & \left\{\begin{array}{|}
\bar{V}_{8}\left(O_{16}^{(0,0)} O_{16}+S_{16}^{(0,0)} S_{16}\right)-\bar{S}_{8}\left(O_{16}^{(0,0)} S_{16}+S_{16}^{(0,0)} O_{16}\right) \\
& +\overline{\bar{V}}_{8}\left(O_{16}^{(1 / 2,0)} S_{16}+S_{16}^{(1 / 2,0)} O_{16}\right)-\bar{S}_{8}\left(O_{16}^{(1 / 2,0)} O_{16}+S_{16}^{(1 /} 2,0\right) & \left.S_{16}\right) \\
& +\frac{\bar{O}_{8}\left(V_{16}^{(0,1 / 2)} C_{16}+C_{16}^{(0,1 / 2)} V_{16}\right)-\bar{C}_{8}\left(V_{16}^{(0,1 / 2)} V_{16}+C_{16}^{(0,1 / 2)} C_{16}\right)}{} \\
& \left.+\bar{O}_{8}\left(V_{16}^{(1 / 2,1 / 2)} V_{16}+C_{16}^{(1 / 2,1 / 2)} C_{16}\right)-\bar{C}_{8}\left(V_{16}^{(1 / 2,1 / 2)} C_{16}+C_{16}^{(1 / 2,1 / 2)} V_{16}\right)\right\}
\end{array}\right.
\end{aligned}
$$

- The limiting cases
- $R \rightarrow \infty$: the 1 st and 2 nd lines survive
- $R \rightarrow 0$: the 1 st and 3 rd lines survive
non-SUSY
$S O(16) \times S O(16)$

For any WL A, $Z_{\text {int }}^{(9)}$ realizes

SUSY $E_{8} \times E_{8}$ model in $R \rightarrow \infty$
$S O(16) \times S O(16)$ model in $R \rightarrow 0$

+ WL A

Interpolation between $E_{8} \times E_{8}$ and $S O(16) \times S O(16)$ with WL

- Massless spectrum at generic R, massless states come from $\underline{n=W=O}$ part

$$
\begin{aligned}
Z_{\text {int }}^{(9)}=Z_{B}^{(7)} & \left\{\bar{V}_{8}\left(O_{16}^{(0,0)} O_{16}+S_{16}^{(0,0)} S_{16}\right)-\bar{S}_{8}\left(O_{16}^{(0,0)} S_{16}+S_{16}^{(0,0)} O_{16}\right)\right. \\
& +\bar{V}_{8}\left(O_{16}^{(1 / 2,0)} S_{16}+S_{16}^{(1 / 2,0)} O_{16}\right)-\bar{S}_{8}\left(O_{16}^{(1 / 2,0)} O_{16}+S_{16}^{(1 / 2,0)} S_{16}\right) \\
& +\bar{O}_{8}\left(V_{16}^{(0,1 / 2)} C_{16}+C_{16}^{(0,1 / 2)} V_{16}\right)-\bar{C}_{8}\left(V_{16}^{(0,1 / 2)} V_{16}+C_{16}^{(0,1 / 2)} C_{16}\right) \\
& \left.+\bar{O}_{8}\left(V_{16}^{(1 / 2,1 / 2)} V_{16}+C_{16}^{(1 / 2,1 / 2)} C_{16}\right)-\bar{C}_{8}\left(V_{16}^{(1 / 2,1 / 2)} C_{16}+C_{16}^{(1 / 2,1 / 2)} V_{16}\right)\right\}
\end{aligned}
$$

Massless bosons

- 9-dim. graviton, anti-symmetric tensor, dilaton: $g_{\mu \nu}, B_{\mu \nu}, \phi$
- Gauge bosons in adj rep of $\boldsymbol{S O}(\mathbf{1 6}) \times \boldsymbol{S O}(\mathbf{1 4}) \times \boldsymbol{U}(1) \times \boldsymbol{U}_{G, B}^{2}(1)$

Massless fermions

- $\mathbf{8}_{S} \otimes(128,1)$

$$
n_{F}-n_{B}=-736
$$

Interpolation between $E_{8} \times E_{8}$ and $S O(16) \times S O(16)$ with WL

- Massless spectrum $\quad{ }^{\exists}$ a few conditions under which the additional massless states appear

$$
\begin{aligned}
Z_{\text {int }}^{(9)}=Z_{B}^{(7)} & \frac{\left\{\bar{V}_{8}\left(O_{16}^{(0,0)} O_{16}+S_{16}^{(0,0)} S_{16}\right)-\bar{S}_{8}\left(O_{16}^{(0,0)} S_{16}+S_{16}^{(0,0)} O_{16}\right)\right.}{} \\
& +\bar{V}_{8}\left(O_{16}^{(1 / 2,0)} S_{16}+S_{16}^{(1 / 2,0)} O_{16}\right)-\bar{S}_{8}\left(O_{16}^{(1 / 2,0)} O_{16}+S_{16}^{(1 / 2,0)} S_{16}\right) \\
& +\bar{O}_{8}\left(V_{16}^{(0,1 / 2)} C_{16}+C_{16}^{(0,1 / 2)} V_{16}\right)-\bar{C}_{8}\left(V_{16}^{(0,1 / 2)} V_{16}+C_{16}^{(0,1 / 2)} C_{16}\right) \\
& \left.+\bar{O}_{8}\left(V_{16}^{(1 / 2,1 / 2)} V_{16}+C_{16}^{(1 / 2,1 / 2)} C_{16}\right)-\bar{C}_{8}\left(V_{16}^{(1 / 2,1 / 2)} C_{16}+C_{16}^{(1 / 2,1 / 2)} V_{16}\right)\right\}
\end{aligned}
$$

condition (1) $\quad \tilde{\tau}_{1}=n_{1} / \sqrt{2} \quad n_{1} \in 2 \boldsymbol{Z}$
new massless states : • two $8_{V} \otimes(1,14)$

$$
S O(16) \times S O(14) \times U(1) \longrightarrow S O(16) \times S O(16)
$$

Furthermore, the different additional massless states appear depending on whether $n_{1} / 2$ is even or odd.

Interpolation between $E_{8} \times E_{8}$ and $S O(16) \times S O(16)$ with WL

- Massless spectrum $\quad{ }^{\exists}$ a few conditions under which the additional massless states appear

$$
\begin{aligned}
Z_{\mathrm{int}}^{(9)}=Z_{B}^{(7)} & \frac{\left\{\bar{V}_{8}\left(O_{16}^{(0,0)} O_{16}+S_{16}^{(0,0)} S_{16}\right)-\bar{S}_{8}\left(O_{16}^{(0,0)} S_{16}+S_{16}^{(0,0)} O_{16}\right)\right.}{} \\
& +\bar{V}_{8}\left(O_{16}^{(1 / 2,0)} S_{16}+S_{16}^{(1 / 2,0)} O_{16}\right)-\bar{S}_{8}\left(O_{16}^{(1 / 2,0)} O_{16}+S_{16}^{(1 / 2,0)} S_{16}\right) \\
& +\bar{O}_{8}\left(V_{16}^{(0,1 / 2)} C_{16}+C_{16}^{(0,1 / 2)} V_{16}\right)-\bar{C}_{8}\left(V_{16}^{(0,1 / 2)} V_{16}+C_{16}^{(0,1 / 2)} C_{16}\right) \\
& \left.+\bar{O}_{8}\left(V_{16}^{(1 / 2,1 / 2)} V_{16}+C_{16}^{(1 / 2,1 / 2)} C_{16}\right)-\bar{C}_{8}\left(V_{16}^{(1 / 2,1 / 2)} C_{16}+C_{16}^{(1 / 2,1 / 2)} V_{16}\right)\right\}
\end{aligned}
$$

condition (1)-1 $\quad \tilde{\tau}_{1}=n_{1} / \sqrt{2} \quad n_{1} / 2 \in 2 \boldsymbol{Z}$
new massless states : • two $8_{V} \otimes(1,14) \quad$ • two $8_{S} \otimes(1,64)$

$$
\mathbf{8}_{S} \otimes(\mathbf{1 2 8}, \mathbf{1}) \longrightarrow \mathbf{8}_{S} \otimes((\mathbf{1 2 8}, \mathbf{1}) \oplus(\mathbf{1}, \mathbf{1 2 8}))
$$

In the fundamental region, this condition is $\tilde{\boldsymbol{\tau}}_{\mathbf{1}}=\mathbf{0}$, which corresponds to the no WL case.

Interpolation between $E_{8} \times E_{8}$ and $S O(16) \times S O(16)$ with WL

- Massless spectrum $\quad{ }^{\exists}$ a few conditions under which the additional massless states appear

$$
\begin{aligned}
Z_{\mathrm{int}}^{(9)}=Z_{B}^{(7)} & \left.\frac{\left\{\overline { V } _ { 8 } \left(O_{16}^{(0,0)} O_{16}\right.\right.}{}+S_{16}^{(0,0)} S_{16}\right)-\bar{S}_{8}\left(O_{16}^{(0,0)} S_{16}+S_{16}^{(0,0)} O_{16}\right) \\
& +\bar{V}_{8}\left(O_{16}^{(1 / 2,0)} S_{16}+\underline{\left.S_{16}^{(1 / 2,0)} O_{16}\right)-\bar{S}_{8}\left(O_{16}^{(1 / 2,0)} O_{16}+S_{16}^{(1 / 2,0)} S_{16}\right)}\right. \\
& +\bar{O}_{8}\left(V_{16}^{(0,1 / 2)} C_{16}+C_{16}^{(0,1 / 2)} V_{16}\right)-\bar{C}_{8}\left(V_{16}^{(0,1 / 2)} V_{16}+C_{16}^{(0,1 / 2)} C_{16}\right) \\
& \left.+\bar{O}_{8}\left(V_{16}^{(1 / 2,1 / 2)} V_{16}+C_{16}^{(1 / 2,1 / 2)} C_{16}\right)-\bar{C}_{8}\left(V_{16}^{(1 / 2,1 / 2)} C_{16}+C_{16}^{(1 / 2,1 / 2)} V_{16}\right)\right\}
\end{aligned}
$$

condition (1)-2 $\quad \tilde{\tau}_{1}=n_{1} / \sqrt{2} \quad n_{1} / 2 \in 2 \boldsymbol{Z}+1$
new massless states : • two $8_{V} \otimes(1,14)$

- two $8_{V} \otimes(1,64)$

$$
S O(16) \times S O(14) \times U(1) \quad \longrightarrow \quad S O(16) \times E_{8}
$$

In the fundamental region, this condition is $\tilde{\tau}_{1}=\sqrt{2}\left(\right.$ or $\left.\tilde{\tau}_{1}=-\sqrt{2}\right)$.

Interpolation between $E_{8} \times E_{8}$ and $S O(16) \times S O(16)$ with WL

- Massless spectrum $\quad{ }^{\exists}$ a few conditions under which the additional massless states appear

$$
\begin{aligned}
Z_{\text {int }}^{(9)}=Z_{B}^{(7)} & \left\{\bar{V}_{8}\left(O_{16}^{(0,0)} O_{16}+S_{16}^{(0,0)} S_{16}\right)-\bar{S}_{8}\left(O_{16}^{(0,0)} S_{16}+S_{16}^{(0,0)} O_{16}\right)\right. \\
& \left.+\bar{V}_{8}\left(O_{16}^{(1 / 2,0)} S_{16}+S_{16}^{(1 / 2,0)} O_{16}\right)-\underline{\bar{S}_{8}\left(O_{16}^{(1 / 2,0)} O_{16}\right.}+S_{16}^{(1 / 2,0)} S_{16}\right) \\
& +\bar{O}_{8}\left(V_{16}^{(0,1 / 2)} C_{16}+C_{16}^{(0,1 / 2)} V_{16}\right)-\bar{C}_{8}\left(V_{16}^{(0,1 / 2)} V_{16}+C_{16}^{(0,1 / 2)} C_{16}\right) \\
& \left.+\bar{O}_{8}\left(V_{16}^{(1 / 2,1 / 2)} V_{16}+C_{16}^{(1 / 2,1 / 2)} C_{16}\right)-\bar{C}_{8}\left(V_{16}^{(1 / 2,1 / 2)} C_{16}+C_{16}^{(1 / 2,1 / 2)} V_{16}\right)\right\}
\end{aligned}
$$

condition (2) $\quad \tilde{\tau}_{1}=n_{2} / \sqrt{2} \quad n_{2} \in 2 \boldsymbol{Z}+1$
new massless states : • two $8_{S} \otimes(1,14)$
Gauge group is not enhanced
In the fundamental region, this condition is $\tilde{\tau}_{1}=\sqrt{2} / 2$ and $\tilde{\tau}_{1}=-\sqrt{2} / 2$.
There is no condition such that $\boldsymbol{n}_{F}=n_{B}$ in this example.

Interpolation between $E_{8} \times E_{8}$ and $S O(16) \times S O(16)$ with WL

- Summary of the conditions

We have found the three conditions under which the additional massless states appear:
condition (1)-1

$$
\tilde{\tau}_{1}=n_{1} / \sqrt{2} \quad n_{1} / 2 \in 2 \boldsymbol{Z}
$$

condition (1)-2 $\quad \tilde{\tau}_{1}=n_{1} / \sqrt{2} \quad n_{1} / 2 \in 2 \boldsymbol{Z}+1$
condition (2) $\quad \begin{array}{ll}\tilde{\tau}_{1}=n_{2} / \sqrt{2} \quad n_{2} \in 2 \boldsymbol{Z}+1 \\ & \left(\tilde{\tau}_{1}=\frac{A}{\sqrt{1+A^{2}}} a^{-1}\right), ~(1)\end{array}$

Actually, there are only four inequivalent orbits in the fundamental region:

Condition	$n_{1}=0$	$\underline{n}_{1}=2($ or -2$)$	$\underline{n}_{2}=1$ and -1
Gauge gp	$S O(16) \times S O(16)$	$\underline{S O}(16) \times E_{8}$	$\underline{S O(16) \times S O(14) \times U(1)}$
	$n_{F}>n_{B}$	$n_{F}<n_{B}$	$n_{F}<n_{B}$

The leading terms of the cosmological constant

The cosmological constant is written as

$$
\Lambda_{i n t}^{(9)}(a, R)=-\frac{1}{2}\left(4 \pi^{2} \alpha^{\prime}\right)^{-9 / 2} \int_{\mathcal{F}} \frac{d^{2} \tau}{\tau_{2}^{2}} Z_{i n t}^{(9)}(a, R ; \tau)
$$

Up to exponentially suppressed terms, the results are

- $S O(32)-S O(16) \times S O(16)$ interpolation

$$
\Lambda_{i n t}^{(9)}(a, R) \simeq 48 \pi^{-14}\left(\frac{a_{0}}{\sqrt{\alpha^{\prime}}}\right)^{9} \times 8\left\{(224-220)+2(16-14) \cos \left(\sqrt{2} \pi \tilde{\tau}_{1}\right)\right\}
$$

- $E_{8} \times E_{8}-S O(16) \times S O(16)$ interpolation

$$
\Lambda_{i n t}^{(9)}(a, R) \simeq 48 \pi^{-14}\left(\frac{a_{0}}{\sqrt{\alpha^{\prime}}}\right)^{9} \times 8\left\{\left(2^{7}-220\right)-2 \cdot 14 \cos \left(\sqrt{2} \pi \tilde{\tau}_{1}\right)+2 \cdot 2^{6} \cos \left(\frac{\sqrt{2}}{2} \pi \tilde{\tau}_{1}\right)\right\}
$$

These results reflect the shift symmetry $\tilde{\tau} \rightarrow \tilde{\tau}+2 \sqrt{2}$ and the conditions under which the additional massless states appear.

Outline

1. Introduction

2. Heterotic Strings

3. 9D Interpolating models
4. 9D Interpolating models with Wilson line
5. Summary

Conclusion

- We have constructed 9D interpolating models with two parameters, radius R and WL A, and studied the massless spectra.
- We have found some conditions for (R, A) under which the additional massless states appear.
- We have found that an example under which the cosmological const. is exponentially suppressed simultaneously with the gauge group enhancement to $S O(18) \times S O(14)$.

Outlook

- How are SM-like or GUT-like 4D models with $n_{F}=n_{B}$ constructed?
- We can generalize by putting more WL and the other backgrounds. In fact, compactifying d-dimensions, the compactifications are classified by $\frac{S O(16+d, d)}{S O(16+d) \times S O(d)}$, whose DOF is $d(16+d)$.
- Are the conditions found in this work preferred? Where are stable points in moduli space ?

Thank you!

