2019年7月31日 @ 京大基研,素粒子物理学の進展

ニュートリノトライデント過程で放出されるレプトン対の 運動量分布を用いた新物理検証

T. Shimomura & YU, arXiv:1908.xxxxx

目次

1. ニュートリノトライデント過程 (NTP)

✓ 標準模型では 弱い相互作用を通してのみ起こる"稀"な過程
↓ 新物理の検証に有効

◆ NTPから新物理模型の詳細を決定することは可能?

^{本研究では} 放出レプトン対の運動量分布 _{に注目} 2. 計算手法

✓ モンテカルロ積分による終状態積分

3. 結果

4. まとめ

✓ L_µ – L_τ 模型を例として
 ✓ パラメータ依存性 in エネルギー分布, 角度分布, …

1. ニュートリノトライデント過程

Brief History of the NTP's

Back in the early days,

	1934	Four Fermi interaction (Fermi)			
	1956,7	Parity Violation discovered (Lee and Yang, Wu)			
	1957	the V-A theory (Feynman, Gell-mann)			
$\nu_{\mu} + N \\ \rightarrow \mu^{-} + W^{+} + N \\ \ \ \ \ \ \ \ \ \ \ \ \ \$	1964	Trident Production to examine the V-A theory (Czyz, Sheppey, Walecka)			
u + N	1967	Weinberg-Salam theory			
	1971	Momentum and angular distribution of the NTP (Lovseth and Radomiski, Koike et al, Fujikawa)			
	1972	Trident production to examine the WS theory (Brown, Hobbs, Smith and Stanko)			
	1974	Neutral current (CERN)			
	1983	W and Z boson discovered			
	1990 1991 1995	CHARM-II CCFR NuTeV consistent with the SM prediction			
revival \longrightarrow	2014	Trident production to constrain new physics (Altmannshofer, Gori, Pospelov, Yavin)			

(下村さんのtalk slide @ 第30回ニュートリノ研究会「ニュートリノ相互作用の物理」より引用)

NTP いろいろ 原子核標的 N(陽子数 Z)

> coherent ($\nu + N \rightarrow \nu' + \ell^- + \ell'^+ + N$)

→ deep inelastic ($\nu + q \rightarrow \nu + \ell^+ + \ell^- + q$)

• **negligible** G. Magill & R. Plestid, PRD. 95. 073004 (2017).

これまでのNTP観測

- > CHARM-II (CERN) D. Geiregat *et al.*, Phys. Lett. B 245, 2 (1990).
 - ✓ NTPの初観測
 - ✓ ビームエネルギー $\langle E_{\nu} \rangle = 23.8 \text{ GeV}, \quad \langle E_{\overline{\nu}} \rangle = 19.3 \text{ GeV}$
 - ✓ 標的: 547 t glass plates ($\langle Z^2 \rangle = 97.6$)

 $\sigma_{\text{exp}} = [3.0 \pm 0.9(stat.) \pm 0.5(sys.)] \times 10^{-41} \text{ cm}^2$

CCFR (FNAL) S. R. Mishra *et al.*, Phys. Rev. Lett. 66, 24 (1991).

✓ ビームエネルギー
$$\langle E_{\nu} \rangle = 160 \text{ GeV}$$

✓ 標的: 324 t iron plates (*Z* = 26)

$$\sigma_{\rm exp} = [7.5 \pm 2.6] \times 10^{-40} \,\rm cm^2$$

標準模型と無矛盾

> DUNE Near Deterctor (FNAL)

R. Acciarri et al. (DUNE), arXiv:1601.05471.

✓ ビームエネルギー $E_{\nu} = 0 \sim 40 \text{ GeV}$

✓ 標的: 50 t liquid argon (Z = 18)

✓ 期待され	るイベン	\frown			
Channel	SBND	$\mu \mathbf{BooNE}$	ICARUS	DUNE ND	ν STORM ND
$ u_{\mu} ightarrow u_{\mu} \mu^{+} \mu^{-}$	0.4	0.03	0.04	271(32)	9
	0.4	0.03	0.04	186(19)	8
$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu} \mu^{-} \mu^{+}$	0.01	0.001	0.001	14 (177)	2
	0.01	0.0009	0.001	9(127)	1
$ u_e ightarrow u_e \mu^+ \mu^-$	0.002	0.0001	0.0001	1 (0.5)	0.4
	0.001	0.0001	0.0001	0.7~(0.2)	0.3
$\overline{\nu}_e ightarrow \overline{\nu}_e \mu^+ \mu^-$	0.0002	0.0000	0.0000	0.3~(0.9)	—
	0.0001	0.0000	0.0000	0.2 (0.5)	
Total $\mu^+\mu^-$	0.4	0.0	0.0	286 (210)	11
	0.4	0.0	0.0	196(147)	9
					D Pollett at al

上段: coherent 下段: diffractive

P. Ballett et al., JHEP01 (2019) 119.

Gauged $U(1)_{L_{\mu}-L_{\tau}}$ 模型

R. Foot, Mod. Phys. Lett. (1991)., He, Joshi, Lew, & Volkas, PRD (1991).

• $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{L_{\mu}-L_{\tau}}$

e

$$\mu$$
 τ
 ν_e
 ν_{μ}
 ν_{τ}
 $U(1)_{L_{\mu}-L_{\tau}}$
 0
 1
 -1
 0
 1
 -1

- anomaly free
- muon g-2 anomaly を説明できるパラメータ領域が存在

$$\begin{aligned} \mathcal{L} &= \mathcal{L}_{\rm SM} - \frac{1}{4} Z'^{\alpha\beta} Z'_{\alpha\beta} + \frac{m_{Z'}^2}{2} Z'_{\alpha} Z'^{\alpha} \\ &+ g' Z'_{\alpha} (\overline{\mu} \gamma^{\alpha} \mu + \overline{\nu}_{\mu} \gamma^{\alpha} \nu_{\mu} - \overline{\tau} \gamma^{\alpha} \tau - \overline{\nu}_{\tau} \gamma^{\alpha} \nu_{\tau}) \end{aligned}$$

※ 本講演では kinetic mixing は考えない

NTPの断面積測定から強い制限

例えば $E_{\nu} = 40$ GeV で NTP断面積が 7 × 10^{-41} cm² と測定された場合 ($m_{Z'}, g'$) は青線上のどこか

> 断面積の絶対値だけだと $(m_{Z'}, g')$ をひとつに決定できない

研究の目標

▶ NTP の断面積測定は新物理探索に有効であるが 断面積の絶対値だけでは 新物理のパラメータ決定には不十分

▶ 放出される荷電レプトン対の運動量分布に注目

・新物理の寄与によって 分布が変化
 ・新粒子がベクトルかスカラーかによって 分布が変化
 S.-F. Ge, M. Lindner, & W. Rodejohann, PLB772 (2017) 164.

パラメータ値の違いによって分布に差が現れることが期待

荷電レプトン対の運動量分布 に対する新物理のパラメータ依存性を調査

- ・どのような量の分布を調べれば新物理の詳細がより見えやすいか
- ・パラメータ決定のためにどの程度の分解能が実験で要求されるか

2. 計算手法

断面積計算

leptonic part

F:原子核形状因子

終状態位相空間積分

$$\sigma = \frac{1}{2s} \int d\Pi \frac{e^4 G_F^2}{2q^4} M^{\mu\nu} J_{\mu\nu}$$
$$\int d\Pi = \int \frac{d^3 k'}{(2\pi)^3} \frac{d^3 p}{(2\pi)^3} \frac{d^3 \overline{p}}{(2\pi)^3} \frac{d^3 \overline{Q}'}{(2\pi)^3} \delta^{(4)}(k' + p + \overline{p} + Q' - k - Q)$$

素朴に台形公式を使って積分すると...

- ✓ 刻み数(M)の増加に伴う計算時間の急速な増大(∝ M⁷)
- ✓ 特定の物理量の分布を得るには 予め適当な変数変換が必要

モンテカルロ積分

乱数で積分変数を生成→平均

(一様分布に従って生成する場合)

$$I = \int_{\mathcal{H}} d\mathbf{x} f(\mathbf{x}) = \frac{V_{\mathcal{H}}}{N} \sum_{i=1}^{N} f(\mathbf{x}_i) + O\left(\frac{1}{\sqrt{N}}\right)$$

利点

✓ 計算時間はサンプル数 N に比例 (次元に依らない)

✓ 積分計算を行うついでに 任意の量の分布が(複数同時に)計算可能

$$\frac{\Delta I}{\Delta y} \simeq \frac{V_{\mathcal{H}}}{N} \frac{1}{\Delta y} \sum_{y_i \in V_i} f(\mathbf{x}_i)$$

✓ 後からサンプル数の追加が容易

$$\nu_{\mu}N \rightarrow \nu_{\mu}\mu^{+}\mu^{-}N$$
 (coherent) について解析
標的は ⁴⁰Ar と仮定

相互作用ラグランジアン

$$\mathcal{L}_{I} = eA_{\alpha}J_{\rm em}^{\alpha} - \frac{G_{F}}{\sqrt{2}} [\overline{\nu}_{\mu}\gamma_{\alpha}(1-\gamma_{5})\nu_{\mu}] [\overline{\mu}\gamma^{\alpha}(g_{V}^{SM} - g_{A}^{SM}\gamma_{5})\mu] + g'Z'_{\mu}J'^{\mu}_{Z'}$$

$$\downarrow g_{V}^{SM} = 1/2 + 2\sin^{2}\theta_{W} \downarrow$$

$$\downarrow g_{A}^{SM} = 1/2 \qquad [\overline{\nu}_{\mu}\gamma_{\alpha}P_{L}\nu_{\mu}] - \frac{-g'^{2}}{-q_{Z'}^{2} + m_{Z'}^{2}} [\overline{\mu}\gamma^{\alpha}\mu]$$

$$- \frac{G_{F}}{\sqrt{2}} [\overline{\nu}_{\mu}\gamma_{\alpha}(1-\gamma_{5})\nu_{\mu}] [\overline{\mu}\gamma^{\alpha}(g_{V}^{SM+NP} - g_{A}^{SM}\gamma_{5})\mu]$$

$$g_{V}^{SM+NP} = g_{V}^{SM} + \frac{\sqrt{2}}{2G_{F}} - \frac{g'^{2}}{-q_{Z'}^{2} + m_{Z'}^{2}}$$

✓ SMとNPの寄与は constructive に干渉 ($:q_{Z'}^2 < 0$)

原子核形状因子

$$\sigma = \frac{1}{2s} \int d\Pi \frac{e^4 G_F^2}{2q^4} M^{\mu\nu} J_{\mu\nu}$$
$$J_{\mu\nu} = Z^2 (Q + Q')_{\mu} (Q + Q')_{\nu} |F(-q^2)|^2$$
$$\mathbb{B} \text{KDF} \quad F(t) = \int_0^\infty dr \, r^2 \rho(r) \frac{\sin\sqrt{tr}}{\sqrt{tr}} \qquad 4\pi \int_0^\infty dr \, r^2 \rho(r) = 1$$

◆ 原子核密度 ρ(r) は

C. W. de Jager, H. de Vries, & C. de Vries, Atomic Data and Nuclear Data Tables 14, 479-508 (1974) で様々な原子核についてまとめられている

 $E_{\mu^{-}}-E_{\mu^{+}}$ 分布

 $E_{\mu^{-}}$ 分布

 E_{μ^+} 分布

4. まとめ

まとめ

➤ ニュートリノトライデント過程 (NTP)

✓ 標準模型では 弱い相互作用を通してのみ起こる"稀"な過程 ↓ 新物理の検証に有効

◆ NTPから新物理模型の詳細を決定することは可能?

本研究では 放出レプトン対の運動量分布 に注目

 $\nu_{\mu}N \rightarrow \nu_{\mu}\mu^{+}\mu^{-}N$ (coherent) について ◆ 同じ σ を与えるパラメータの組の "縮退" が解けることを確認 • 1つの観測量の分布の中では $E_{\mu^{-}}$ 分布などで違いがよく見える