Study of the phase diagram of dense two-color QCD within lattice simulation

V.V. Braguta

MISIS, JINR

4 November, 2020

Probing the physics of high-density and low-temperature matter with ab initio calculations in 2-color QCD

Outline:

- Introduction
- \blacktriangleright QC₂D at small and moderate baryon densities
- QC₂D at large baryon density
- Deconfinement transition
- Conclusion

In collaboration with:

- N.Yu. Astrakhantsev
- V.G. Bornyakov
- E.-M. Ilgenfritz
- ► A.Yu. Kotov
- A.V. Molochkov
- A.A. Nikolaev
- ► R.N. Rogalyov
- A. Rothkopf

Based on papers: Phys.Rev.D94 (2016) no.11, 114510, JHEP 1803 (2018) 161, JHEP 1905 (2019),

Phys.Rev.D 102 (2020) 7, 074507 171, e-Print: 2003.00232

QCD phase diagram

- Poor knowledge of dense QCD properties
- Phenomenological models (unknown systematic uncertainties)
- Lattice QCD (small densities $\frac{\mu}{T} < few$)

Taylor expansion, Imaginary chemical potential,...

QCD-like theories

...

- SU(2) QCD with chemical potential
- SU(3) QCD isospin chemical potential

The sign problem problem

SU(3) QCD

•
$$Z = \int DU \exp(-S_G) \times \det(\hat{D} + m)$$

- ► Eigenvalues go in pairs \hat{D} : $\pm i\lambda \Rightarrow$ det $(\hat{D} + m) = \prod_{\lambda} (\lambda^2 + m^2) > 0$ i.e. one can use lattice simulation
- ▶ Introduce chemical potential: det $(\hat{D} + m) \rightarrow \det(\hat{D} \mu\gamma_4 + m) \Rightarrow$ the determinant becomes complex (sign problem)

SU(2) QCD

- $\blacktriangleright (\gamma_5 C \tau_2) \cdot D^* = D \cdot (\gamma_5 C \tau_2)$
- Eigenvalues go in pairs $\hat{D} \mu \gamma_4$: λ, λ^*
- ► For even $N_f \det(\hat{D} \mu\gamma_4 + m) > 0 \Rightarrow$ free from sign problem

SU(2) QCD with baryon chemical potential

Differences between SU(2) and SU(3) at finite μ

- No phase of the fermion determinant
- The Lagrangian of the SU(2) QCD has the symmetry: SU(2N_f) as compared to SU_R(N_f) × SU_L(N_f) for SU(3) QCD
- Goldstone bosons ($N_f = 2$) $\pi^+, \pi^-, \pi^0, d, \bar{d}$

QCD-like theories can be used to study dense QCD

- Lattice study of QCD-like theories contains full dynamics of real system (contrary to phenomenological models)
- Adjust phenomenological models, check different approximations (analytic continuation)
- Study of different physical phenomena in dense medium

Lattice set up

- ► Staggered fermions $S_{I} = \sum_{x} (ma) \bar{\psi}_{x} \psi_{x} + \frac{1}{2} \sum_{x,\mu} \eta_{\mu}(x) (\bar{\psi}_{x+\mu} U_{x,\mu} \psi_{x} - \bar{\psi}_{x} U_{x,\mu}^{+} \psi_{x+\mu})$ $\lim_{a\to 0} S_{I} \to \int d^{4}x \bar{\psi}(\hat{D} + m) \psi$
- Diquark source in the action $\delta S \sim \lambda \psi^T (C\gamma_5) \times \sigma_2 \times \tau_2 \psi$
- Rooting $N_f = 2$
- ► $16^3 \times 32$, a = 0.11 fm, $\mu = 900$ MeV ($a\mu \sim 0.5$), $m_{\pi} = 362(40)$ MeV, $\lambda/m = 0.2, 0.15, 0.1$
- ► $32^3 \times 32$, a = 0.044 fm, $\mu = 2200$ MeV ($a\mu \sim 0.5$), $m_{\pi} = 740(40)$ MeV, $\lambda/m = 0.1$

Continuum limit

The symmetry breaking is different

- Continuum: $SU(2N_f) \rightarrow Sp(2N_f)$
- Staggered fermions: $SU(2N_f) \rightarrow O(2N_f)$
- Correct symmetry is restored in continuum limit
 - Naive limit $a \to 0$: two copies of $N_f = 2$ fundamental fermions $\frac{\lambda}{2} \sum_x \left(\psi_x^T \tau_2 \psi_x + \bar{\psi}_x \tau_2 \bar{\psi}_x^T \right) \Big|_{a\to 0} = \frac{\lambda}{2} \int d^4 x \left(q_i^T C \gamma_5 \tau_2 q_j + \bar{q}_i C \gamma_5 \tau_2 \bar{q}_j^T \right) \times \begin{pmatrix} \sigma_2 & 0 \\ 0 & \sigma_2 \end{pmatrix}_{ij}$
 - Correct spectrum of the Goldstone bosons

(Phys.Rev.D 100 (2019) 11, 114507)

• Correct β function for small a

Small and moderate densities

Predictions of CHPT

Diquark condensate

► Renormalized diquark condensate

$$\Sigma_{qq} = \frac{m}{4m_{\pi}^2 F^2} [\langle qq \rangle_{\mu} - \langle qq \rangle_0]$$

Chiral condensate

► Renormalized chiral condensate

$$\Sigma_{\bar{q}q} = \frac{m}{4m_{\pi}^2 F^2} [\langle \bar{q}q \rangle_{\mu} - \langle \bar{q}q \rangle_0] + 1$$

Baryon density

To summarise

- At small densities the data are well described by CHPT
- m_{π} from the fit and from the correlation function coincide
- Deviation from CHPT at moderate density
- Transition from dilute baryon gas to dense matter

Large density

Phase diagram for $N_c \rightarrow \infty$

L. McLerran, R.D. Pisarski, Nucl. Phys. A796 (2007) 83-100

• Hadron phase $\mu < M_N/N_c \ (p \sim O(1))$

- Dilute baryon gas $\mu > M_N/N_c$ (width $\delta \mu \sim \frac{\Lambda_{QCD}}{N_c^2}$)
- Quarkyonic phase $\mu > \Lambda_{QCD} (p \sim N_c)$
 - Degrees of freedom:
 - Baryons (on the surface)
 - Quarks (inside the Fermi sphere $|p| < \mu$)
 - No chiral symmetry breaking
 - The system is in confinement phase
- Deconfinement $\mu \gg \Lambda_{QCD} (p \sim N_c^2)$

Diquark condensate

- Similar to Bardeen–Cooper–Schrieffer theory (BCS phase) μ > 800 MeV, ⟨ψψ⟩ ∼ Δ(μ)μ²
- Baryons (on the surface)
- Degrees of freedom: Cooper pairs (diquarks qq or baryons)

Baryon density

Quarks inside Fermi sphere

- Quarks inside Fermi sphere dominate over the surface: $\frac{4}{3}\pi\mu^3 > 4\pi\mu^2\Lambda_{QCD} \Rightarrow \mu > 3\Lambda_{QCD}$
- We observe BEC-BCS transition
- Degrees of freedom: Quarks with the mass $\Delta(\mu)$

Chiral condensate (chiral limit $m \rightarrow 0$)

No dynamical chiral symmetry breaking

Equation of state

Pressure:
$$p(\mu) = \int_{0}^{\mu} d\xi n_q(\xi) + p(0)$$
Trace anomaly: $I(\mu) = \langle T_{\mu}^{\mu} \rangle = \epsilon(\mu) - 3p(\mu)$

$$\frac{I(\mu)}{T^4} = \frac{I_G(\mu)}{T^4} + \frac{I_F(\mu)}{T^4}$$

$$\frac{I_G(\mu)}{T^4} = N_t^4 \beta(g) [\langle S_G \rangle_{\mu} - \langle S_G \rangle_0]$$

$$\frac{I_F(\mu)}{T^4} = -N_t^4 \gamma(g) ma [\langle \bar{q}q \rangle_{\mu} - \langle \bar{q}q \rangle_0]$$
Energy density: $\epsilon = I + 3p$
Entropy: $s = \frac{\epsilon + p - \mu n_q}{T} \simeq 0$

Equation of state: trace anomaly

Trace anomaly gives small contribution to EoS

Equation of state: energy density and pressure

In BCS phase EoS of relativistic quarks ε ≃ 3p
 Δ(μ) is small in this region?

Topological susceptibility

• Topological susceptibility decreases with μ

- Baryons (on the surface)
- Quarks (inside the Fermi sphere $|p| < \mu$)

 \checkmark

- Baryons (on the surface)
- Quarks (inside the Fermi sphere $|p| < \mu$)
- No chiral symmetry breaking

- Baryons (on the surface)
- Quarks (inside the Fermi sphere $|p| < \mu$)
- No chiral symmetry breaking
- The system is in confinement phase

- Baryons (on the surface)
- Quarks (inside the Fermi sphere $|p| < \mu$)
- No chiral symmetry breaking
- The system is in confinement phase

What about confinement in cold dense quark matter?

Potential between static quark-antiquark pair

We observe deconfinement in dense medium!

String tension

- Good fit by Cornell potential: $V(r) = A + \frac{B}{r} + \sigma r$ $\mu \leq 1100 \text{ MeV}$
- Good fit by Debye potential: $V(r) = A + \frac{B}{r}e^{-m_D r}$ $\mu \ge 850 \text{ MeV}$

▶ Confinement/deconfiniment transition in $\mu \in$ (850, 1100) MeV

Spatial potential V(r)

Spatial string tension

- Deconfimenent at $\mu > 900 1100$ MeV?
- ▶ Spatial string tension disappears at $\mu \ge 1800$ MeV ($a\mu > 0.4$)
- Different behaviour of spatial string tension at finite temperature and finite density

Polyakov lines at finite temperature and density

Polyakov lines and confinement/deconfinement transition

- Rapid transition at finite T
- Smooth transition at finite μ
- Unclear physics at $\mu > 2000$ MeV

Deconfinement in dense QC₂D matter

- The mechanism is not clear
- How color charges can be screened at finite density?
- Artifact of rooted staggered fermions?
- Finite temperature effect?
- We are carrying out additional study at few lattice spacings

Conclusion

- ▶ We observe handronic phase, BEC of diquarks and BCS phase
- ► EoS of dense QC₂D was calculated
- Topological susceptibility decreases with μ
- $\blacktriangleright\,$ Deconfinement takes place at $\mu\sim 1~{\rm GeV}$
- $\blacktriangleright\,$ Vanishing of spatial string tension $\mu\sim 1.8$ GeV
- Deconfinement transition requires futher study