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Why Two Color Matter?
• Chance to explore systematics of 

lattice simulations at μ≠0

Good news: cutoff fixed as μ varies, 
no quantum corrections to nq=-∂f/∂μ

Bad news: UV/IR classical artifacts are 
complicated enough

• Chance to explore “deconfinement” in a 
new physical régime 

• No sign problem stupid! 



Plan

• When isn’t there a Sign Problem?

• GN2+1

• NJL3+1

• NJL2+1

• Bilayer Graphene

• QC2D

• Friedel oscillations

• medium modification of σ propagator

• mesons and zero sound

• superfluid condensate and gap

• isospin chemical potential

• superfluid condensate

• helicity modulus

• excitonic condensate

• quasiparticle dispersion

Fermi Liquid

BCS superfluid

Thin film superfluid

Strongly correlated superfluid

• superfluidity 

• quarkyonic phase

• deconfinement?

Why we’re here?



When isn’t there a Sign Problem?
Whenever the fermion measure  ≡ det(M†M)

describes quarks q, q̄describes conjugate quarks qc, q̄c

QCD simulations fail due to light qqc bound states  
carrying non-zero baryon charge 

2 cases where this isn’t an issue

Case A: qq and qqc states bind with different 

dynamics and are not degenerate 


eg. Gross-Neveu, NJL


Case B: Goldstone baryons are a feature, not a bug


eg. QC2D, isospin QCD, adjoint QCD, 

6 in SU(4), 7 in G2, bilayer graphene….


some models contain gauge invariant fermion states

Generic channel binding ~ O(1/N)

Meson Correlation Functions

exp(ik.x)ψψ( )xψψ(0)
x
Σ

For !k != 0 can always excite a particle-hole pair with almost
zero energy⇒ algebraic decay of correlation functions

|!k| # µ
zero energy

pairs ⇒ C ∼ 1
x2
0

|!k| = 2µ
Overhauser instability

⇒ C ∼ 1

x3/2
0

|!k| > 2µ ⇒ C ∼ e−(|!k|−2µ)x0

x
3/2
0

. – p.19/33

qq̄, qqc qq̄, qqc
L = ψ̄i(∂/ + m)ψi +

g2

2Nf
(ψ̄iγµψi)

2

1

The Thirring Model
More interesting….

Since [g2] < 0 for d>2 
expect perturbative expansion to be ill-behaved on dimensional grounds
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∫ Λ pd−1

p2
dp ∼ Λd−2

11

Each loop yields O(Λd-2) divergence 

⇒ new counterterm at each order of g2 

⇒ expansion is non-renormalisable for d >2

Goldstone channel binding ~ O(1)

qq̄ qq̄



Gross-Neveu model in 2 + 1 dimensions. . .

L =

Nf∑

i=1

ψ̄i(∂/ + m)ψi −
g2

2Nf
(ψ̄iψi)

2,

. . . just about the simplest QFT with fermions
Can also write in terms of an auxiliary scalar σ:

L = ψ̄i(∂/ + m +
g√
Nf

σ)ψi +
1

2
σ2.

For g2 > g2
c ∼ O(Λ−1) the ground state has a

dynamically-generated fermion mass Σ0 = g√
Nf

〈σ〉 &= 0

given in the Nf → ∞ limit by the chiral Gap Equation

Σ0 = g2tr
∫

p

1

ip/ + Σ0

. – p.5/33

simplest example of a fixed point in 2+1d 
The Gross-Neveu Model

2 The Gross-Neveu Model for d = 3

I will begin by discussing the simplest model, the Gross-Neveu (GN) model 9, in
which most of the important theoretical issues are already present. The Lagrangian
is

LGN = ψ̄i(∂/ + m)ψi −
g2

2Nf
(ψ̄iψi)

2. (2)

For bare fermion mass m = 0, there is a discrete chiral symmetry

ψ "→ γ5ψ ; ψ̄ "→ −ψ̄γ5, (3)

which is spontaneously broken whenever a non-vanishing condensate 〈ψ̄ψ〉 is gen-
erated. To proceed, we introduce a bosonic scalar auxiliary field σ and rewrite

LGN = ψ̄i(∂/ + m + σ)ψi +
Nf

2g2
σ2. (4)

The original Lagrangian (2) can be recovered by Gaussian functional integration
over σ. Chiral symmetry breaking for m → 0 is now signalled by a non-vanishing
vacuum expectation value Σ ≡ 〈σ〉 for the scalar field: it then follows from (4) that
the fermion gets a dynamically generated mass M ' Σ.

We can calculate Σ using an expansion in inverse powers of Nf , the number of
flavors. This expansion associates a factor Nf with each closed fermion loop, and
in effect 1/

√
Nf with each fermion-scalar interaction vertex. To leading order, in

the chiral limit m → 0, only the tadpole diagram shown in Fig. 1a contributes to
Σ, leading to the self-consistent Gap Equation:

Σ

g2
=

∫

p

tr
1

ip/ + Σ
, (5)

or, with a simple UV cutoff Λ on momentum (note 2 < d < 4)

1

g2
=

8

(4π)
d
2 (d − 2)

[

Λd−2

Γ(d
2
)
− Σd−2Γ(2 − d

2
)

]

. (6)

Equation (6), relating a bare coupling constant g2 to both a UV scale Λ and
a physical scale Σ, can be interpreted as a renormalisation condition. It turns out
to be the physical solution of (5) for couplings larger than the critical coupling g2

c

given by
1

g2
c

=
8Λd−2

(4π)
d
2 (d − 2)Γ(d

2
)
, (7)

at which point chiral symmetry is spontaneously broken (see Fig. 4). Only for
g2 → g2

c , can the ratio Λ/Σ be made to diverge, implying a continuum limit. Note
that it is also possible to approach the continuum limit from the symmetric phase10.

Remarkably, for 2 < d < 4, to the same leading order in 1/Nf all dependence on
Λ is absorbed in defining the value of g2

c . The only other Green function involving
a fermion loop is the scalar two-point function shown in Fig. 1b, but in the vicinity

2

L = ψ̄i(∂/ + m)ψi +
g2

2Nf
(ψ̄iγµψi)

2

i = 1, . . . , Nf

ψi, ψ̄i

{γµ, γν} = 2δµν

[L] = d ⇒ [ψ] = [ψ̄] =
d − 1

2
; [g2] = 2 − d

L = ψ̄i(∂/ + i
g√
Nf

Aµγµ + m)ψi +
1

2
AµAµ

LQED = ψ̄i(∂/ + igAµγµ + m)ψi +
1

4
FµνFµν

1

For m=0 there is a discrete Z2 symmetry
spontaneously broken at large g
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2

GN variants with U(1) or SU(2)L⊗SU(2)R symmetries also available

Introduce auxiliary scalar σ: 
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Large-Nf solution for 
fermion massgap Σ = ⟨σ⟩:
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σ
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Figure 1: Leading order diagrams in the GN model

of the fixed point, once (6) is taken into account the scalar propagator is finite and
can be expressed in closed form 11. Eg, for d = 3,

Dσ(k) =
1

Nf

2π
√

k2

(k2 + 4Σ2) tan−1

(√
k2

2Σ

) . (8)

In the large-Nf limit Dσ is essentially a chain of fermion bubbles. It is worth
examining its behaviour in two limits. In the infra-red,

lim
k→0

Dσ(k) ∝
1

k2 + 4Σ2
, (9)

and hence the σ resembles a fundamental boson with mass 2Σ. This shows the
scalar to be a weakly bound fermion - anti-fermion composite. In the ultra-violet,
on the other hand, for general d we have

lim
k→∞

Dσ(k) ∝
1

kd−2
. (10)

Thus the UV asymptotic behaviour is harder than that of a fundamental scalar, but
still softer than the 1/k0 corresponding to a non-propagating auxiliary field. The
strong interaction between fermion and anti-fermion is responsible for this modi-
fication, which in turn makes diagrams corresponding to higher order corrections,
such as those of Fig. 2, less divergent than expected by naive power counting.

The result, known for a long time 12, but discussed recently with renewed in-
terest 13, is that the 1/Nf expansion about the fixed point g2 = g2

c is exactly
renormalisable for 2 < d < 4.

An important aspect of the model’s renormalisability is that it depends on a
precise cancellation between logarithmic divergences from different graphs 11. This
can be understood in terms of the four-fermi scattering amplitude, shown schemat-
ically in Fig. 3: there are three different types of logarithmic divergence, each
represented by a blob, but in the massless limit only two tuneable parameters in
the renormalised Lagrangian, implying a non-trivial consistency relation.

In turn this implies that in the deep UV limit the amplitude assumes a universal
form

lim
k→∞

Mff→ff =
Ad

Nfkd−2
, (11)

3

r ! (g2Nf)−1

ψψ̄

Σ(Nf)/g2, 〈ψ̄ψ(Nf)〉/g4

S =

∫

d3x Ψ̄(γµ∂µ)Ψ + mΨ̄Ψ

im3Ψ̄γ3Ψ; im5Ψ̄γ5Ψ

m35Ψ̄γ3γ5Ψ

tr(γµγµ) = 4

1

g2
=

2Λ

π2
−

Σ

π
≡

1

g2
c

−
Σ

π

13ie. continuum limit Σ/Λ → 0 as g2 → gc±2

⇒



GN Thermodynamics
The large-Nf approach can also to be applied to T, µ != 0
and predicts a chiral symmetry restoring phase transition:

Tc|µ=0 =
Σ0

2 ln 2
; µc|T=0 = Σ0

Remarkably, lattice Monte Carlo simulations can be
applied to Nf < ∞ even for µ != 0 Action is real!

0 0.1 0.2 0.3 0.4 0.5

µ

0

0.1

0.2

0.3

0.4

0.5

Σ
0

10*nB

0.0 0.5 1.0
T/Σ0

0.0

0.5

1.0

µ/Σ0

There is even evidence for a tricritical point at small T
µ !

[J.B. Kogut and C.G. Strouthos PRD63(2001)054502]

. – p.7/33

chirally symmetric  
quark matter 

μ/Σ0

T/Σ0



Fermi Surface Phenomena

Consider qq̄ “jawbone” diagram

ψΓψ

ψ

ψ

x

y

0

C(!y, x0) =
∑

!x

tr
∫

p

∫

q

Γ
eipx

ip/ + µγ0 + M
Γ

e−iqxe−i!q.!y

iq/ + µγ0 + M

µ < µc:
C ∝

∫ ∞
0 pdpJ0(py)e−2x0

√
p2+M2 ∼ M

x0
e−2Mx0 exp

(
− |!y|2M

4x0

)

Gaussian width O(
√

x0)
µ > µc:
C ∝

∫ ∞
µ pdpJ0(py)e−2px0 ∼ µ

x0
e−2µx0J0(µ|!y|) ∝ J0(kFy)

Oscillatory profile; shape constant as x0 ↗
. – p.10/33y dependence yields Bethe-Salpeter wave function



Oscillations develop as µ ↗
Graphic evidence for existence of a sharp Fermi surface
Why does free-field theory prediction work so well?

. – p.11/33

SJH, JB Kogut, CG Strouthos, TN Tran, PRD68 016005 GN on 322×48 

μa=0.2 μa=0.4

   μa=0.6 μa=0.8



Fermion Dispersion relation

0 0.5 1 1.5

k

-0.4

-0.2

0

0.2

0.4

E

µ=0.2
µ=0.3
µ=0.4
µ=0.5
µ=0.6

µ KF βF KF /µβF

0.2 0.190(1) 0.989(1) 0.962(5)
0.3 0.291(1) 1.018(1) 0.952(4)
0.4 0.389(1) 0.999(1) 0.973(1)
0.5 0.485(1) 0.980(1) 0.990(2)
0.6 0.584(3) 0.973(1) 1.001(2)

The fermion dispersion relation is fitted with

E(|!k|) = −E0 + D sinh−1(sin |!k|)

yielding the Fermi liquid parameters

KF =
E0

D
; βF = D

coshE0

coshKF

. – p.12/33



Meson Correlation Functions

exp(ik.x)ψψ( )xψψ(0)
x
Σ

For !k != 0 can always excite a particle-hole pair with almost
zero energy⇒ algebraic decay of correlation functions

|!k| # µ
zero energy

pairs ⇒ C ∼ 1
x2
0

|!k| = 2µ
Overhauser instability

⇒ C ∼ 1

x3/2
0

|!k| > 2µ ⇒ C ∼ e−(|!k|−2µ)x0

x
3/2
0

. – p.19/33



Plots of Cγ5(!k, x0) show special behaviour for |!k| ≈ 2µ
µ=0.2

1e-05

0.0001

0.001

0.01
µ=0.4

0 8 16 24 32 40 48

x0

µ=0.6

0 8 16 24 32 40 48

x0

0.001

0.01

µ=0.8

. – p.24/33



0 8 16 24 32 40 48

x0

0.001

0.01

0.1

0 8 16 24 32 40 48

x0

0.0001

0.001

0.01

eg. in the spin-1 channel at µa = 0.6, Cγ⊥ (left) looks
algebraic as predicted by free field theory, but Cγ‖ (right)
decays exponentially.

The interpolating operator for Cγ‖ in terms of continuum
fermions is q̄(γ0 ⊗ τ2)q
ie. with same quantum numbers as baryon charge density

. – p.20/33



0 0.5 1 1.5 2

k
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0.4
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0.6

0.7

ω
µ=0.2
µ=0.3
µ=0.4
µ=0.5
µ=0.6

Dispersion relation E(|!k|) extracted from Cγ‖

A massless vector excitation?

. – p.21/33longitudinal



Sounds Unfamiliar?
Light vector states in medium are of of great interest:

Brown-Rho scaling, vector condensation. . .
In the Fermi liquid framework a possible explanation is a
collective excitation thought to become important as
T → 0: Zero Sound

Ordinary FIRST sound is a breathing mode
of the Fermi surface: velocity β1 " 1√

2
kF
µ

ZERO sound is a propagating distortion
of the Fermi surface: velocity β0 must be determined
self-consistently

. – p.22/33



Relativity in Graphene

s
3

s
1

s2

B

A

B

A

B

A

∑

µ

[

Πµν(x) − Πµν(x − µ̂)
]

= 0

g2
R =

g2

1 − g2/g2
lim

〈ψ̄ψ〉 = 0

H = −t
∑

r∈B

3
∑

i=1

b†(r)a(r + si) + a†(r + si)b(r)

9

“tight-binding” Hamiltonian

describes hopping of electrons in π-orbitals
from A to B sublattices and vice versa

September 7, 2009 22:41 WSPC/INSTRUCTION FILE
review-graphene˙jversion

GRAPHENE: FROM TIGHT-BINDING MODEL TO QED2+1 7
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Fig. 2. (Colour online) The energy band structure of graphene. Valence and conduction bands
meet at six K points.

and

ε(k) = t

√

1 + 4 cos2
kxa

2
+ 4 cos

kxa

2
cos

√
3kya

2
. (12)

Accordingly, because the graphene structure contains two atoms per unit cell (two
sublattices), the spectrum of quasiparticles excitations has two branches (bands)
with the dispersion43 E± = ±ε(k) shown in Fig. 2. In Eq. (10) we introduced the
spinors

Υσ(k) =

(

aσ(k)
bσ(k)

)

(13)

with the operator Υσ(k) being the Fourier transform of the spinor Υσ(n) =

(

an,σ

bn,σ

)

:

Υσ(n) =
√

S

∫

BZ

d2k

(2π)2
eiknΥσ(k). (14)

Here S =
√

3a2/2 is the area of a unit cell and the integration in Eqs. (10) and
(14) goes over the extended rhombic Brillouin zone (BZ). We also add to H0 the
Zeeman term and the chemical potential

HZ = −
∑

σ

µσ

∫

BZ

d2k

(2π)2
Υ†

σ(k)Υσ(k) (15)

Define modified operators

〈!k±|H|!k±〉 = ±(Φ(!k) + Φ∗(!k)) ≡ ±E(!k)

Φ(!k) = 0 ⇒ !k = !K± = (0,±
4π

3
√

3l
)

a±(!p) = a( !K± + !p)

H ' vF

∑

!p

Ψ†(!p)!α.!pΨ(!p)

Ψ =( b+, a+, a−, b−)tr

10

yielding a “4-spinor”

〈!k±|H|!k±〉 = ±(Φ(!k) + Φ∗(!k)) ≡ ±E(!k)

Φ(!k) = 0 ⇒ !k = !K± = (0,±
4π

3
√

3l
)

a±(!p) = a( !K± + !p)

H ' vF

∑

!p

Ψ†(!p)!α.!pΨ(!p)

Ψ =( b+, a+, a−, b−)tr
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Φ( !K± + !p) = ±vF [py ∓ ipx] + O(p2)
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Ψ†(!p)!α.!p Ψ(!p)
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⇒ low-energy massless fermions  

with velocity 

〈!k±|H|!k±〉 = ±(Φ(!k) + Φ∗(!k)) ≡ ±E(!k)

Φ(!k) = 0 ⇒ !k = !K± = (0,±
4π
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√

3l
)

a±(!p) = a( !K± + !p)

H ' vF

∑

!p

Ψ†(!p)!α.!pΨ(!p) + O(p2)

Ψ =( b+, a+, a−, b−)tr

vF =
3

2
tl ≈

1

300
c
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For monolayer graphene the number of flavors Nf = 2

(2 C atoms/cell × 2 Dirac points/zone × 2 spins = 2 flavors × 4 spinor)
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to manipulate the motion of the electrons in graphene
paves the way to virtually lossless and ultrafast transis-
tors with atomic dimensions.

Massless electrons
Graphene’s unique properties arise from the collective
behaviour of electrons. That in itself is nothing new: as
summarized in Philip Anderson’s famous dictum
“more is different”, we know that when a large number
of particles interact strongly with each other, unex-
pected collective motions can emerge. In the case of
graphene, however, the interaction between electrons
and the honeycomb lattice causes the electrons to
behave as if they have absolutely no mass (see box on
page XX). Because of this, the electrons in graphene
are governed by the Dirac equation – the quantum-
mechanical description of electrons moving relativis-
tically – and are therefore called Dirac fermions.

The relativistic behaviour of electrons in graphene
was first predicted in 1947 by the Canadian theorist
Philip Russell Wallace. At the time, however, nobody
believed that a one-atom-thin solid could exist, so
Wallace instead used the graphene model as his starting
point to study graphite. Building on his work, the ther-
modynamic and transport properties of graphite were

studied extensively in the 1960s, and the remarkable
agreement between the theoretical predictions of prop-
erties such as the heat capacity and the experimental
data is regarded as one of the greatest successes of con-
densed-matter physics.

We are already familiar with massless Dirac fermi-
ons in high-energy particle physics: neutrinos. But neu-
trinos have no electric charge and therefore do not
interact strongly with any kind of matter. The Dirac
fermions in graphene, in contrast, carry one unit of
electric charge and so can be manipulated using elec-
tromagnetic fields. Since the manipulation of electrons
within materials is at the heart of modern electronics,
the radically different behaviour of electrons in
graphene may allow us to go beyond the limits of sili-
con-based semiconductor technology.

The trademark behaviour that distinguishes a gra-
phene sheet from an ordinary metal, for example, is
the unusual form of the Hall effect. In the original
Hall effect, discovered in 1879, a current flowing
along the surface of a metal in the presence of a trans-
verse magnetic field causes a drop in potential at right
angles to both the current and the magnetic field. As
the ratio of the potential drop to the current flowing
(called the Hall resistivity) is directly proportional to
the applied magnetic field, the Hall effect is used to
measure magnetic fields.

A century later, Klaus von Klitzing discovered that
in a 2D electron gas at a temperature close to absolute
zero the Hall resistivity becomes quantized, taking only
discrete values of h/ne2 (where h is Planck’s constant,
n is a positive integer and e is the electric charge). The
quantization is so precise that this “quantum Hall
effect” (QHE) is used as the standard for the meas-
urement of resistivity.

During a discussion about the discovery of graphene
at a tea party in Boston in early 2005, my collaborators
and I started to wonder whether the QHE would be dif-
ferent in graphene. We realized that due to a quantum-
mechanical effect called a Berry’s phase, the Hall

! Graphene is a one-atom-thick sheet of carbon that was isolated for the first time in
2004 – a feat long thought to be impossible

! Graphene’s 2D nature and honeycomb atomic structure cause electrons moving in
the material to behave as if they have no mass

! Electrons in graphene move at an effective speed of light 300 times less than the
speed of light in a vacuum, allowing relativistic effects to be observed without
using particle accelerators

! A key experimental signature of graphene is the way it modifies the quantum Hall
effect seen in metals and semiconductors

! The electrons in graphene can travel large distances without being scattered,
making it a promising material for very fast electronic components

At a Glance: Graphene

Graphene was first isolated by Andre Geim’s team at the University of Manchester just two years ago using the surprisingly simple technique of ripping layers from a graphite
surface using adhesive tape. By repeatedly peeling away thinner layers (left), single-atom-thick sheets were obtained (right), as shown in these scanning electron micrographs.

1 A sticky success



searchers in the early days of QED !Itzykson and Zuber,
2006".

Consider the tight-binding description !Peres, Castro
Neto, and Guinea, 2006b; Chen, Apalkov, and
Chakraborty, 2007" of Sec. II.A when a potential Vi on
site Ri is added to the problem,

He = #
i

Vini, !34"

where ni is the local electronic density. For simplicity, we
assume that the confining potential is 1D, that is, that Vi
vanishes in the bulk but becomes large at the edge of the
sample. We assume a potential that decays exponentially
away from the edges into the bulk with a penetration
depth !. In Fig. 8, we show the electronic spectrum for a
graphene ribbon of width L=600a, in the presence of a
confining potential,

V!x" = V0$e−!x−L/2"/! + e−!L/2−x"/!% , !35"

where x is the direction of confinement and V0 is the
strength of the potential. One can see that in the pres-
ence of the confining potential the electron-hole symme-
try is broken and, for V0"0, the hole part of the spec-
trum is distorted. In particular, for k close to the Dirac
point, we see that the hole dispersion is given by
En,#=−1!k"&−$nk2−%nk4, where n is a positive integer,
and $n&0 !$n"0" for n&N* !n"N*". Hence, at n=N*

the hole effective mass diverges !$N* =0" and, by tuning
the chemical potential ' via a back gate to the hole
region of the spectrum !'&0" one should be able to
observe an anomaly in the Shubnikov–de Haas !SdH"
oscillations. This is how Zitterbewegung could manifest
itself in magnetotransport.

C. Bilayer graphene: Tight-binding approach

The tight-binding model developed for graphite can
be easily extended to stacks with a finite number of
graphene layers. The simplest generalization is a bilayer
!McCann and Fal’ko, 2006". A bilayer is interesting be-
cause the IQHE shows anomalies, although different
from those observed in a single layer !Novoselov et al.,
2006", and also a gap can open between the conduction
and valence band !McCann and Fal’ko, 2006". The bi-
layer structure, with the AB stacking of 3D graphite, is
shown in Fig. 9.

The tight-binding Hamiltonian for this problem can
be written as

Ht.b. = − $0 #
'i,j(
m,#

!am,i,#
† bm,j,# + H.c."

− $1#
j,#

!a1,j,#
† a2,j,# + H.c.",

− $4#
j,#

!a1,j,#
† b2,j,# + a2,j,#

† b1,j,# + H.c."

− $3#
j,#

!b1,j,#
† b2,j,# + H.c." , !36"

where am,i,# !bm,i#" annihilates an electron with spin #,
on sublattice A !B", in plane m=1,2, at site Ri. Here we
use the graphite nomenclature for the hopping param-
eters: $0= t is the in-plane hopping energy and $1 $$1
= t!&0.4 eV in graphite !Brandt et al., 1988; Dresselhaus
and Dresselhaus, 2002"% is the hopping energy between
atom A1 and atom A2 !see Fig. 9", $4 $$4&0.04 eV in
graphite !Brandt et al., 1988; Dresselhaus and Dressel-
haus, 2002"% is the hopping energy between atom A1
!A2" and atom B2 !B1", and $3 $$3&0.3 eV in graphite
!Brandt et al., 1988; Dresselhaus and Dresselhaus, 2002"%
connects B1 and B2.

In the continuum limit, by expanding the momentum
close to the K point in the BZ, the Hamiltonian reads

H = #
k

(k
† · HK · (k, !37"

where !ignoring $4 for the time being"

HK )*
− V vFk 0 3$3ak*

vFk* − V $1 0

0 $1 V vFk

3$3ak 0 vFk* V
+ , !38"

and k=kx+ iky is a complex number; we have added V,
which is here half the shift in electrochemical potential
between the two layers !this term will appear if a poten-
tial bias is applied between the layers", and

(k
† = „b1

†!k",a1
†!k",a2

†!k",b2
†!k"… !39"

is a four-component spinor.

Π
"""""
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kya
!""""3
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FIG. 8. !Color online" Energy spectrum !in units of t" for a
graphene ribbon 600a wide, as a function of the momentum k
along the ribbon !in units of 1 /,3a", in the presence of confin-
ing potential with V0=1 eV, !=180a.

FIG. 9. !Color online" Lattice structure of bilayer graphene, its
respective electronic hopping energies, and Brillouin zone. !a"
Lattice structure of the bilayer with the various hopping pa-
rameters according to the SWM model. The A sublattices are
indicated by darker spheres. !b" Brillouin zone. Adapted from
Malard et al., 2007.
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Bilayer graphene
Coupling γ3≠0 results in trigonal  

distortion of band  
and doubles number of Dirac points

Mucha-Kruczynski et al, PRB84(2011)041404

 Nf = 4 EFT description plausible for ka ≲ γ1γ3/γ02

Introduction of a bias 
voltage µ between the layers 

induces electrons on one,  
holes on the other. 

 Inter-layer exciton condensation driven by  
enhanced density of (e,h) states  

at Fermi surface leads to gap formation? 

3

/

/

/

/

/ / / /

FIG. 2: Calculated low-energy electronic dispersions in the conduction band of strained BLG and fan plots of Landau levels.
Dispersion is plotted for the states near the Brillouin zone corners shown in Fig. 1 at energies |✏| < 10meV and for momentum
in the units of p⇤ = mv3, for several representative points in the (<w,=w) space, as marked in Fig. 3(a). Spikes at the bottom
of dispersion surfaces are the Dirac points characterised by Berry phases ±⇡. For the Landau levels, boxed numbers mark their
degeneracy.

in the valley K (to be inverted in the momentum space
to describe valley K’ and flipped over for the valence
band states, ✏ ! �✏). For w = 0, electron dispersion
undergoes Lifshitz transition [17] at the energy of the
saddle point in the dispersion, ✏⇤ = mv

2
3/2: it splits from

a single-connected, almost circular line into few discon-
nected parts, each corresponding to a separate Dirac cone
[1]. Small strain, |w| . ✏

⇤, shifts these Dirac cones across
the momentum plane, as shown in Fig. 2 for w = ✏

⇤ and
w = �i✏

⇤. A stronger strain results in a collision annihi-
lating two Dirac points, one with the Berry phase �⇡ and
another with +⇡, which results in a local minimum in the
dispersion, as illustrated for w = �5✏⇤ and w = �3i✏⇤.
The other two Dirac points, each with the Berry phase
+⇡, persist to exist. In Fig. 3(a), the parametric regime
where, in addition to a pair of well-separated Dirac cones,
the dispersion has a local minimum, is marked by dark
shading. Finally, much larger strain (light shading in Fig.
3(a)) removes local minimum in the dispersion, resulting
in even larger separation between the remaining Dirac
cones and in a saddle point at |✏| ⇡ |w|, which determines
the deformation-dependent Lifshitz transition energy in
strained BLG. Note that all these spectral changes take
place at a relatively low strain, ⇠ 1%, to compare with

the strain of over 20% [18] required to merge Dirac points
in monolayer graphene [19].

The transformation of electron dispersion by homoge-
neous strain leads to the modification of the BLG Landau
level (LL) spectrum. The examples of numerically cal-
culated LLs are shown in Fig. 2 for low magnetic fields,
B < 0.4T. Both for small and large strain, the high-
magnetic-field end of the LL fan plot, ~!c ⌘ ~eB/m �
max(✏⇤, |w|), is approximately described by the sequence
✏ ⇡ ±

p
n(n� 1)~!c of four-fold degenerate LLs at non-

zero energy (n > 2) and an eight-fold degenerate LL at
✏ = 0 (n = 0, 1) [1]. In non-strained BLG at low fields,
such that ~!c(B) < mv

2
3 , this transforms into a 16-fold

degenerate LL at ✏ = 0, so that the largest gap in the
LL spectrum is between the ✏ = 0 and next excited LL,
suggesting the persistence of filling factor ⌫ = ±8 in the
quantum Hall e↵ect (QHE) at low magnetic fields. Af-
ter strain causes the annihilation of two out of four Dirac
points, the ✏ = 0 level becomes 8-fold degenerate, and, for
strain |w| � ✏

⇤, only filling factors ⌫ = +4 and ⌫ = �4
persist in the low-field QHE in BLG: the largest energy
gap in the LL spectra is between the 8-fold degenerate
level at ✏ = 0 and next excited level, whereas the rest of
the spectrum is quite dense. This 8-fold degeneracy is

Could also realise with a dielectric sheet  
sandwiched between two graphene monolayers 



only becoming approximately relativistic (i.e., linear) for
ka * t0=t [17]. For ! ! t the dispersion then takes the
expected form "2 ¼ ð!$ vFkÞ2 [18]. However, recent
theoretical studies of strained bilayers suggest that under
mechanical deformation the parabolic bands split to form
separate Dirac cones, so that in this case a description in
terms of Nf ¼ 4 relativistic species is not a bad approxi-
mation [19]. Our formulation makes the additional,
perhaps unwarranted, approximation that interactions be-
tween charge carriers on different layers are of identical
strength and character to interactions within a layer—the
necessity for this will become clear below.

The second ingredient of the model is that the layers are
given equal and opposite constant bias voltages $!, in-
ducing on one layer a negatively charged concentration of
particles and on the other a positively charged concentra-
tion of holes. As the notation implies, the bias voltage is
equivalent to a chemical potential, and in fact the theory is
formally very similar to the case of QCD with isospin
chemical potential !I ¼ !1 ¼ &!2, where the subscripts
which here label the layers usually stand for the light quark
flavors u and d. Euclidean formulations of systems with
! ! 0 are generally afflicted with a ‘‘Sign Problem,’’ i.e.,
the Lagrangian density L is no longer positive definite, or
even real, since the inequivalence under time reversal
translates into inequivalence under complex conjugation
in Euclidean metric. This makes Monte Carlo importance
sampling as a means to handle strongly fluctuating observ-
ables inoperable. However, the case of isospin chemical
potential is known not to have a Sign Problem and is hence
simulable using orthodox methods, as we shall now
demonstrate.

If we denote the fermion degrees of freedom on one
layer by c and on the other by ", define units so that
vF¼1, and write

P
!¼0;1;2@!#!þðiA0þ!Þ#0¼D½A;!),

then the fermion part of the Lagrangian can be written

L ¼ ð !c ; !"Þ
D½A;!) þm ij

&ij D½A;&!) &m

 !
c

"

 !

* !"M": (2)

Here we have introduced two new real parameters: m is an
artificial bare mass which induces a gap in the fermion
dispersion relations and whose sign has no physical con-
sequence for a single flavor in the absence of interactions; j
a source strength coupling c to ", thus linking the layers
and eventually enabling calculation of the exciton conden-
sate. In principle both m ! 0 and j ! 0 limits need to be
taken in order to make contact with physical bilayer
graphene. Integration over the Grassmann bispinors ",
!" then results in the functional measure detM½A).
An important identity which the model inherits from the

gauge theory is

Dy½A;!) ¼ &D½A;&!): (3)

It is then straightforward to check (assuming the dimension
of D is even) that

detM ¼ det ½ðDþmÞðDþmÞy þ j2)> 0; (4)

and

MyM

¼ ðDþmÞyðDþmÞ þ j2

ðDþmÞðDþmÞy þ j2

 !
;

(5)

implying both that

detMyM * det 2M; (6)

and also that the desired functional measure detM results
from integrating over bosonic fields # starting from a
nonlocal ‘‘pseudofermion’’ Lagrangian

L pf ¼ #y½ðDþmÞyðDþmÞ þ j2)&1#: (7)

This has the practical advantage that # has half as many
degrees of freedom as", and makes Eq. (7) the appropriate
starting point for the design of a hybrid Monte Carlo
simulation algorithm.
The specific version of Dþm in our lattice model

employs single-component staggered fermion fields c x,
"x defined on the sites of a 2þ 1d square lattice, with a
noncompact formulation of the electrostatic potential Ax

formally defined on the link joining sites x and xþ 0̂,

ðDþmÞxy ¼
X

i¼1;2

$ix

2
½%y;xþ{̂ & %y;x&{̂)

þ $0x

2
½ð1þ iAxÞe!%y;xþ0̂

& ð1& iAx&0̂Þe&!%y;x&0̂) þm%xy; (8)

where the signs $!x ¼ ð&1Þx0þ+++þx!&1 ensure Lorentz co-
variance in the long wavelength limit. It can be shown that
the relation between the number of staggered fields N
(counting c , " yields N ¼ 2) and the number Nf of
continuum Dirac 4-spinors is [20]

Nf ¼ 2N: (9)

It is worth noting the global symmetries present in the
model. For ! ¼ m ¼ j ¼ 0 the continuum action (2) is
invariant under a U(8) rotation " ! U", ~" ! ~"Uy

where ~" * i !"#3#5. This symmetry is broken to ðUð4ÞÞ2
by ! ! 0, and then to ðUð2ÞÞ4 by m ! 0. Setting the
interlayer coupling j ! 0 with m ¼ 0 locks the c and "
components together, so that in this case the residual
symmetry is U(4). For the staggered lattice fermions of
(8) the original symmetry is Uð2Þ , Uð2Þ", where the sec-
ond rotation can be written as Uð&; xÞ ¼ exp ði"x&a$aÞ,
where $a is one of the four Hermitian generators of U(2)
and "x * ð&1Þx0þx1þx2 . Setting ! ! 0 breaks this to
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expected form "2 ¼ ð!$ vFkÞ2 [18]. However, recent
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mechanical deformation the parabolic bands split to form
separate Dirac cones, so that in this case a description in
terms of Nf ¼ 4 relativistic species is not a bad approxi-
mation [19]. Our formulation makes the additional,
perhaps unwarranted, approximation that interactions be-
tween charge carriers on different layers are of identical
strength and character to interactions within a layer—the
necessity for this will become clear below.

The second ingredient of the model is that the layers are
given equal and opposite constant bias voltages $!, in-
ducing on one layer a negatively charged concentration of
particles and on the other a positively charged concentra-
tion of holes. As the notation implies, the bias voltage is
equivalent to a chemical potential, and in fact the theory is
formally very similar to the case of QCD with isospin
chemical potential !I ¼ !1 ¼ &!2, where the subscripts
which here label the layers usually stand for the light quark
flavors u and d. Euclidean formulations of systems with
! ! 0 are generally afflicted with a ‘‘Sign Problem,’’ i.e.,
the Lagrangian density L is no longer positive definite, or
even real, since the inequivalence under time reversal
translates into inequivalence under complex conjugation
in Euclidean metric. This makes Monte Carlo importance
sampling as a means to handle strongly fluctuating observ-
ables inoperable. However, the case of isospin chemical
potential is known not to have a Sign Problem and is hence
simulable using orthodox methods, as we shall now
demonstrate.

If we denote the fermion degrees of freedom on one
layer by c and on the other by ", define units so that
vF¼1, and write

P
!¼0;1;2@!#!þðiA0þ!Þ#0¼D½A;!),

then the fermion part of the Lagrangian can be written

L ¼ ð !c ; !"Þ
D½A;!) þm ij

&ij D½A;&!) &m

 !
c

"

 !

* !"M": (2)

Here we have introduced two new real parameters: m is an
artificial bare mass which induces a gap in the fermion
dispersion relations and whose sign has no physical con-
sequence for a single flavor in the absence of interactions; j
a source strength coupling c to ", thus linking the layers
and eventually enabling calculation of the exciton conden-
sate. In principle both m ! 0 and j ! 0 limits need to be
taken in order to make contact with physical bilayer
graphene. Integration over the Grassmann bispinors ",
!" then results in the functional measure detM½A).
An important identity which the model inherits from the

gauge theory is

Dy½A;!) ¼ &D½A;&!): (3)

It is then straightforward to check (assuming the dimension
of D is even) that

detM ¼ det ½ðDþmÞðDþmÞy þ j2)> 0; (4)

and

MyM

¼ ðDþmÞyðDþmÞ þ j2

ðDþmÞðDþmÞy þ j2
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;

(5)

implying both that

detMyM * det 2M; (6)

and also that the desired functional measure detM results
from integrating over bosonic fields # starting from a
nonlocal ‘‘pseudofermion’’ Lagrangian

L pf ¼ #y½ðDþmÞyðDþmÞ þ j2)&1#: (7)

This has the practical advantage that # has half as many
degrees of freedom as", and makes Eq. (7) the appropriate
starting point for the design of a hybrid Monte Carlo
simulation algorithm.
The specific version of Dþm in our lattice model

employs single-component staggered fermion fields c x,
"x defined on the sites of a 2þ 1d square lattice, with a
noncompact formulation of the electrostatic potential Ax

formally defined on the link joining sites x and xþ 0̂,

ðDþmÞxy ¼
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½ð1þ iAxÞe!%y;xþ0̂

& ð1& iAx&0̂Þe&!%y;x&0̂) þm%xy; (8)

where the signs $!x ¼ ð&1Þx0þ+++þx!&1 ensure Lorentz co-
variance in the long wavelength limit. It can be shown that
the relation between the number of staggered fields N
(counting c , " yields N ¼ 2) and the number Nf of
continuum Dirac 4-spinors is [20]

Nf ¼ 2N: (9)

It is worth noting the global symmetries present in the
model. For ! ¼ m ¼ j ¼ 0 the continuum action (2) is
invariant under a U(8) rotation " ! U", ~" ! ~"Uy

where ~" * i !"#3#5. This symmetry is broken to ðUð4ÞÞ2
by ! ! 0, and then to ðUð2ÞÞ4 by m ! 0. Setting the
interlayer coupling j ! 0 with m ¼ 0 locks the c and "
components together, so that in this case the residual
symmetry is U(4). For the staggered lattice fermions of
(8) the original symmetry is Uð2Þ , Uð2Þ", where the sec-
ond rotation can be written as Uð&; xÞ ¼ exp ði"x&a$aÞ,
where $a is one of the four Hermitian generators of U(2)
and "x * ð&1Þx0þx1þx2 . Setting ! ! 0 breaks this to
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λ =
g2

Rπ

4

detM = det[(D + m)†(D + m) + j2] > 0

18

Bilayer effective theory

Bias voltage µ couples to layer fields ψ, φ with opposite sign 
(Cf.  isospin chemical potential in QCD) 

inherited from gauge theory

“Gap parameters” m, j are IR regulators 

λ =
g2

Rπ

4

detM = det[(D + m)†(D + m) + j2] > 0

+
1

2g2
A2

18

λ =
g2

Rπ

4

detM = det[(D + m)†(D + m) + j2] > 0

+
1

2g2
A2

18

Intra-layer (𝜓𝜓) and inter-layer (𝜓𝜙) interactions have same strength

☞

W Armour, SJH, CG Strouthos  PRD87 065010 

“Covariant” derivative

No sign problem!
Case B



Carrier Density

of j ! 0 is to round off this behavior by reducing the
carrier susceptibility j@nc=@!j slightly. Once again, the
contrast with the free field behavior, which only reaches
saturation at !a ! 1:3 and is shown by the dashed line, is
marked.

How should we interpret the finding that nintc " nfreec ?
For degenerate fermions the carrier density, remembering
to count both particle and hole states, is given by nc ¼
k2F=2". For free massless fermions the Fermi energy ! is
equal to Fermi momentum kF; if we wish to retain the
notion of a Fermi surface (albeit one distorted by exciton
condensation) for the interacting system, we are forced to
conclude ! ! EF < kF implying strong self-binding, i.e.,
the degenerate fermions have a large negative contribution
to their bulk energy. This is a feature of working near a
QCP, and was not observed, e.g., in studies of relatively

weakly interacting systems at nonzero density such as the
Gross-Neveu model in 2þ 1d [25] where interactions are
suppressed by 1=Nf, or two color QCD [4] where the quark
density nq * nfreeq all the way to saturation.
As before, the region of physical interest is for ! well

below saturation: Fig. 9 plots the variation of nc with
source strength j, togther with a quadratic extrapolation
to j ¼ 0, showing that the effect of j ! 0 for this observ-
able is regular but certainly not negligible. Finally Fig. 10
plots ncð!; j ¼ 0Þ together with a power law fit nc ¼
b1!

b2 . The fitted parameters are

b1 ¼ 18:6ð4Þ; b2 ¼ 3:32ð1Þ: (16)

As expected, the fitted value of b2 considerably exceeds the
naive expectation nc / !d based on a weakly interacting
system.
In Fig. 11 we show the chiral condensate order parame-

ter h !""i as a function of ! for various values of the
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FIG. 8 (color online). Carrier density nc vs ! on 323, m ¼ 0
and j ¼ 0:01, 0.02, 0.03. The dashed line shows the same
quantity evaluated with j ¼ 0:01 for free fields.
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FIG. 9 (color online). Carrier density nc vs j on 48
3 for various

!. Dotted lines show a quadratic extrapolation j ! 0. Dashed
lines show the same quantity evaluated for free fields with
! ¼ 0:1, 0.2.
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FIG. 10 (color online). Carrier density ncðj ¼ 0Þ vs ! on 483

fitted to a power law for ! ¼ 0:05–0:20. The dashed line
corresponds to exponent b2 ¼ 3:32ð1Þ.
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FIG. 11 (color online). Chiral condensate h !""i vs ! on 323

for j ¼ 0:02 and m ¼ 0:01, 0.02, 0.03. Dashed lines show the
same quantity evaluated for free fields.
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of j ! 0 is to round off this behavior by reducing the
carrier susceptibility j@nc=@!j slightly. Once again, the
contrast with the free field behavior, which only reaches
saturation at !a ! 1:3 and is shown by the dashed line, is
marked.

How should we interpret the finding that nintc " nfreec ?
For degenerate fermions the carrier density, remembering
to count both particle and hole states, is given by nc ¼
k2F=2". For free massless fermions the Fermi energy ! is
equal to Fermi momentum kF; if we wish to retain the
notion of a Fermi surface (albeit one distorted by exciton
condensation) for the interacting system, we are forced to
conclude ! ! EF < kF implying strong self-binding, i.e.,
the degenerate fermions have a large negative contribution
to their bulk energy. This is a feature of working near a
QCP, and was not observed, e.g., in studies of relatively

weakly interacting systems at nonzero density such as the
Gross-Neveu model in 2þ 1d [25] where interactions are
suppressed by 1=Nf, or two color QCD [4] where the quark
density nq * nfreeq all the way to saturation.
As before, the region of physical interest is for ! well

below saturation: Fig. 9 plots the variation of nc with
source strength j, togther with a quadratic extrapolation
to j ¼ 0, showing that the effect of j ! 0 for this observ-
able is regular but certainly not negligible. Finally Fig. 10
plots ncð!; j ¼ 0Þ together with a power law fit nc ¼
b1!

b2 . The fitted parameters are

b1 ¼ 18:6ð4Þ; b2 ¼ 3:32ð1Þ: (16)

As expected, the fitted value of b2 considerably exceeds the
naive expectation nc / !d based on a weakly interacting
system.
In Fig. 11 we show the chiral condensate order parame-

ter h !""i as a function of ! for various values of the
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FIG. 8 (color online). Carrier density nc vs ! on 323, m ¼ 0
and j ¼ 0:01, 0.02, 0.03. The dashed line shows the same
quantity evaluated with j ¼ 0:01 for free fields.
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FIG. 9 (color online). Carrier density nc vs j on 48
3 for various

!. Dotted lines show a quadratic extrapolation j ! 0. Dashed
lines show the same quantity evaluated for free fields with
! ¼ 0:1, 0.2.
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FIG. 10 (color online). Carrier density ncðj ¼ 0Þ vs ! on 483

fitted to a power law for ! ¼ 0:05–0:20. The dashed line
corresponds to exponent b2 ¼ 3:32ð1Þ.
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FIG. 11 (color online). Chiral condensate h !""i vs ! on 323

for j ¼ 0:02 and m ¼ 0:01, 0.02, 0.03. Dashed lines show the
same quantity evaluated for free fields.
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Observe premature saturation  
(ie. one fermion per site) at µa≈0.5 

(other lattice models typically saturate at µa≳1)
         
         ⇒ 

no discernable onset μo > 0

Fit small-µ data: 
nc(j=0)∝µ3.32(1)  
Cf. free-field 

ncfree∝µd∝µ2 

NB nc∝kF2  (Luttinger’s theorem)

j→0

µat ≈ EFat < kFas

ncfree(µ) << ncfree(kF) ≈ nc(µ)

saturation here

free fermion
result

ðUð1Þ # Uð1Þ"Þ2, followed bym ! 0, j ¼ 0 to ðUð1ÞÞ2, and
m ¼ 0, j ! 0 to Uð1Þ # Uð1Þ".

The fermion action is supplemented by a Gaussian
weight for the A fields

Saux ¼
N

4g2
X

x

A2
x; (10)

where g2 is a parameter governing the strength of
the coupling between the potential and the fermions. The
resulting dynamics describes A fluctuations having the
same form as the continuum action (1) in the strong-
coupling or large-Nf limits, but for which explicit screen-
ing removes the long-ranged r%1 tail away from these
limits; further justification for this approximation is given
in Refs. [9,14]. For Nf ¼ 2 this formulation yields an
identical path integral to the lattice action couched in terms
of compact link variables given in Eq. (7) of Ref. [14]. For
Nf > 2, however, the two approaches are not equivalent
since the compact formulation leads to extra terms of the
form ð !c c !!!Þ2 in the effective action—although these
operators may well be irrelevant at the critical point. The
exact lattice version of the noncompact action for " ¼ 0
and arbitrary Nf once A is integrated out is given in
Eq. (2.2) of Ref. [21]. Another consequence of the non-
compact formulation is the violation of reflection positiv-
ity; indeed, the absence of unitarity in similar models in the
strong-coupling limit g2 ! 1 has been discussed exten-
sively in Refs. [15,22]. We note that graphene models with
compact link variables have formulated directly on honey-
comb lattices in Refs. [23,24].

Next we discuss the implications of relaxing the require-
ment that inter- and intra-layer interactions between fer-
mions are identical. The nontrival terms in the action are of
the form !cUe"c , !cU&e%"c , where U is a complex
number not constrained to have unit modulus. Integration
over U leads to repulsive particle-particle and hole-hole
interactions, and attractive particle-hole interactions.
Suppose we wanted to make the model more realistic by
introducing a distinction between intra-layer and interlayer
interactions. One way to do this would be to introduce a
second boson field coupling to c and ! with opposite
signs, in effect introducing repulsion between c -particles
and !-holes so that the !c -! and !!-c couplings are
weaker than those of !c -c or !!-!. The interaction terms
could then be written !c xUVe"c xþ0̂,

!!xUV&e%"!xþ0̂,
% !c xU

&V&e%"c x%0̂, % !!xU
&Ve"!x%0̂, etc. In the limit

V ! 1 integration over c , !c leads to a factor detD½"),
while integration over !, !! gives detD½%"). With the
help of (3) we confirm the resulting functional measure
detD½")Dy½") is positive definite. In the limit U ! 1,
however, the same process leads to detD½")D&½%") ¼
det 2D½"), which is no longer positive definite. In other
words, attempting to make the model more realistic rein-
troduces a Sign Problem, although a more detailed study
would be needed to determine its severity.

Now let us discuss observables. The usual chiral con-
densate (which has been called the exciton condensate in
our earlier work [9,14]) is given by

h !""i * @ lnZ
@m

¼ h !c c i% h !!!i: (11)

Note the sign of the condensate is not physical, and that the
two terms on the rhs of (11) give equal contributions. From
the discussion above it should be clear that for " ! 0
formation of this condensate spontaneously breaks ðUð1Þ #
Uð1Þ"Þ2 to ðUð1ÞÞ2, resulting in two Goldstone modes in
the limit m ! 0, j ! 0. The exciton condensate discussed
in Ref. [13] and which is the main focus of this paper is
given by

h""i * @ lnZ
@j

¼ ih !c!% !!c i: (12)

In this case the symmetry breaks to Uð1Þ # Uð1Þ" implying
the same number of Goldstones. In fact for " ¼ 0 and
m ¼ j, h !""i and h""i are physically indistinguishable,
both being equivalent to the chiral condensate of theNf¼2
theory. Figure 1 below confirms that with " ¼ 0 our code
generates results consistent with h !""i=h""i * m

j .

With " ! 0 we next define the charge carrier density

nc *
@ lnZ
@"

¼ h !cD0c i% h !!D0!i: (13)

Once again, both terms on the rhs give equal contribu-
tions—the first term represents the density of electrons in
layer 1, and the second the density of holes in layer 2.
Figure 1 shows the results of a pilot run on 83 at g%2 ¼

0:4 andma ¼ 0:05. For ja ¼ 0:05 the two condensates are
degenerate at " ¼ 0 as argued above. As " increases, our
naive expectation is that a Fermi surface of radius " forms
on each layer, one containing particles, the other holes,
implying nc / "2. As " grows, c !c and ! !! pairing are
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FIG. 1 (color online). Fermion condensates as a function of "
at g%2 ¼ 0:4 on 83 with bare mass ma ¼ 0:05, ja ¼ 0:05, 0.1.
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Exciton Condensate

suppressed because a free particle-hole pair costs energy
2! to create at either Fermi surface, whereas c !" pairing is
promoted, because it costs zero energy to create a particle
on one Fermi surface and a hole at the other, with the
density of states at either increasing / !. Thus h !""i
decreases as ! rises from 0, while h""i increases. The
rise in h""i seems to be relatively more pronounced for
smaller j. This trend persists until !at ’ 0:3. What hap-
pens after that should be understood in terms of saturation,
an artifact which sets in when the fermion density is a
significant fraction of its maximal value of one per lattice
site. With our normalization of nc this sets in for !at ’
0:5, a surprisingly small value based on experience with
other models. In a saturated world fermion excitations of
all kinds are kinematically suppressed, and the condensates
tend to zero in this limit.

III. NUMERICAL RESULTS

Our strategy in this paper is to investigate the effect of
varying ! in our bilayer model (8) and (10) starting close
to the quantum critical point. The first task is to find the
coupling g2c where the QCP is located for Nf ¼ 4; we use

the approach [9,15] of searching for a maximum of h !""i
as g"2 is varied and identifying that with the strong cou-
pling limit of the continuum model. We then assume
g"2
c * g"2

peak, since if the value Nfc ¼ 4:8ð2Þ obtained in

Ref. [9] is universal there should only be a narrow range of
g"2 corresponding to the chirally broken phase. The results
for h !""ðmÞi in Fig. 2 show that g"2

peak % 0:30, much larger

than the value % 0:05 obtained with the compact formula-
tion [9]. Another contrast with previous work is that it is
also apparent that g"2

peak increases with m, from roughly

0.275 atma ¼ 0:07 to 0.35 forma ¼ 0:01, although at this

stage we cannot exclude the possibility that finite volume
effects influence the result. For small m a linear extrapo-
lation to the chiral limit seems reasonable; we conclude,
conservatively, that in this limit g"2

peak 2 ð0:275; 0:35Þ.
Figure 3 shows h !""i data as a function of m for g"2 %

g"2
peak. While the quadratic extrapolation to the chiral limit

is not conclusive, the marked nonlinearity of the fits sug-
gests the QCP value g"2

c lies close to this region; however,
a much more extensive simulation campaign would be
needed to pin it down. For our purposes it suffices to
work close to a strongly interacting QCP, while leaving
the issue of whether chiral symmetry spontaneously breaks
unresolved. Henceforth, all numerical results are obtained
with the coupling value g"2 ¼ 0:4—this implies that the
lattice cutoff is constant as ! is varied. Unless otherwise
stated, the chiral limit m ¼ 0 will be assumed.
Figure 4 shows the exciton condensate h""i as a func-

tion of ! for three different j. The figure shows the same

FIG. 2 (color online). h !""i vs g"2 for Nf ¼ 4 and various m
near g"2

peak % 0:30. The simulations were performed on both 323

and 483 lattices.

FIG. 3 (color online). h !""i vs m for g"2 ¼ 0:35, 0.375, 0.40
fitted to a quadratic polynomial.
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FIG. 4 (color online). h""i vs ! on 323 for m ¼ 0 and ja ¼
0:01, 0.02, 0.03. Dashed lines show the same quantity evaluated
for free fields.
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broad features as Fig. 1, namely a rapid rise to a fairly
sharp maximum at !a ! 0:3, followed by a still more
rapid fall; the signal is very small indeed by !a ¼ 0:6.
As we shall see, at this value of ! the system has reached
saturation with a maximum possible density of particle-
hole pairs consistent with the Pauli exclusion principle on a
fixed lattice; our model can only be interpreted as a de-
scription of bilayer graphene for values of ! much smaller
than this.

The dashed lines in Fig. 4 show h!!i evaluated using
the same measurement code but with g2 set to zero, yield-
ing the value for free fields. Since the ðUð1Þ % Uð1Þ"Þ2
symmetry is manifest for j ¼ 0 the free field condensate
must vanish in this limit, and the curves are consistent with
this expectation. The large disparity between h!!iint
and h!!ifree notable in the range 0:2 & !a & 0:4 signals
that ðUð1Þ % Uð1Þ"Þ2 is surely spontaneously broken here.
Close inspection of the figure reveals that h!!ifree rises
monotonically, but not quite smoothly, with ! until reach-
ing a maximum at !a & 0:9. The disparity with the
apparent saturation observed in the interacting model will
be further discussed below. The barely visible wiggles are
probably a finite volume artifact similar to that noted in
studies of another system with a Fermi surface [3]. Figure 5
plots the same scan but this time showing that the effect of
varying m is negligible except for the very smallest values
of!. Since the operator!! is constructed to be conjugate
to j, not m, this is as expected.

In order to interpret the condensate data it is necessary to
extrapolate j ! 0. Figure 6 shows h!!i for several j on
two different volumes, together with extrapolations of the
form

h!!i ¼ h!!ðj ¼ 0Þiþ Ajþ Bj2 þ Cj3: (14)

Taking finite volume effects into account, it seems that at
least for !a ' 0:10 the fitted intercept is nonvanishing,
confirming the spontaneous breaking of particle-hole

symmetry due to excitonic condensation h!!i ! 0.
The extrapolated condensate is shown fitted to a power
law of the form h!!ðj ¼ 0Þi ¼ a1!

a2 in Fig. 7: the fitted
parameters are

a1 ¼ 7:0ð2Þ; a2 ¼ 2:39ð2Þ: (15)

The power-law rise is more rapid than would be expected
from a BCS-style mechanism driven by condensation of
particle-hole pairs in the immediate vicinity of a Fermi
surface. This is because in a BCS condensation the density
of available pairing states scales with the area of the Fermi
surface, / !d(1 in d space dimensions. Despite this some-
what empirical approach, the nonlinear increase of h!!i
with ! is a robust conclusion at variance with a conven-
tional weakly interacting BCS scenario.
Next we consider the carrier density nc defined in (13),

and shown in Fig. 8. This rises monotonically from zero
with ! until !a) 0:5, when saturation sets in; the effect
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FIG. 5 (color online). h!!i vs ! on 323 for ja ¼ 0:02 and
ma ¼ 0, 0.01, 0.02, 0.03. The dashed line shows the same
quantity evaluated for m ¼ 0 for free fields.
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FIG. 6 (color online). h!!i vs j for m ¼ 0 and various ! on
323 (open) and 483 (closed symbols). Dotted lines show fits to
Eq. (14). Dashed lines show the same quantities evaluated for
! ¼ 0, 0.2 on 483 for free fields.
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FIG. 7 (color online). h!!ðj ¼ 0Þi vs ! on 483 fitted to a
power law for ! ¼ 0:05–0:20. The dashed line corresponds to
exponent a2 ¼ 2:39ð2Þ.
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rapid rise with µ to exceed  
free-field value;  

then peak at µa≈0.3;
then fall to zero at saturation 

Exciton (ie superfluid) condensation, with 
no discernable onset µo>0  

Fit small-µ data: 
⟨ΨΨ(j=0)⟩∝µ2.39(2) 

Cf. weak BCS pairing 
⟨ΨΨ⟩∝Δµd-1∝µ ? 

j→0

ðUð1Þ # Uð1Þ"Þ2, followed bym ! 0, j ¼ 0 to ðUð1ÞÞ2, and
m ¼ 0, j ! 0 to Uð1Þ # Uð1Þ".

The fermion action is supplemented by a Gaussian
weight for the A fields

Saux ¼
N

4g2
X

x

A2
x; (10)

where g2 is a parameter governing the strength of
the coupling between the potential and the fermions. The
resulting dynamics describes A fluctuations having the
same form as the continuum action (1) in the strong-
coupling or large-Nf limits, but for which explicit screen-
ing removes the long-ranged r%1 tail away from these
limits; further justification for this approximation is given
in Refs. [9,14]. For Nf ¼ 2 this formulation yields an
identical path integral to the lattice action couched in terms
of compact link variables given in Eq. (7) of Ref. [14]. For
Nf > 2, however, the two approaches are not equivalent
since the compact formulation leads to extra terms of the
form ð !c c !!!Þ2 in the effective action—although these
operators may well be irrelevant at the critical point. The
exact lattice version of the noncompact action for " ¼ 0
and arbitrary Nf once A is integrated out is given in
Eq. (2.2) of Ref. [21]. Another consequence of the non-
compact formulation is the violation of reflection positiv-
ity; indeed, the absence of unitarity in similar models in the
strong-coupling limit g2 ! 1 has been discussed exten-
sively in Refs. [15,22]. We note that graphene models with
compact link variables have formulated directly on honey-
comb lattices in Refs. [23,24].

Next we discuss the implications of relaxing the require-
ment that inter- and intra-layer interactions between fer-
mions are identical. The nontrival terms in the action are of
the form !cUe"c , !cU&e%"c , where U is a complex
number not constrained to have unit modulus. Integration
over U leads to repulsive particle-particle and hole-hole
interactions, and attractive particle-hole interactions.
Suppose we wanted to make the model more realistic by
introducing a distinction between intra-layer and interlayer
interactions. One way to do this would be to introduce a
second boson field coupling to c and ! with opposite
signs, in effect introducing repulsion between c -particles
and !-holes so that the !c -! and !!-c couplings are
weaker than those of !c -c or !!-!. The interaction terms
could then be written !c xUVe"c xþ0̂,

!!xUV&e%"!xþ0̂,
% !c xU

&V&e%"c x%0̂, % !!xU
&Ve"!x%0̂, etc. In the limit

V ! 1 integration over c , !c leads to a factor detD½"),
while integration over !, !! gives detD½%"). With the
help of (3) we confirm the resulting functional measure
detD½")Dy½") is positive definite. In the limit U ! 1,
however, the same process leads to detD½")D&½%") ¼
det 2D½"), which is no longer positive definite. In other
words, attempting to make the model more realistic rein-
troduces a Sign Problem, although a more detailed study
would be needed to determine its severity.

Now let us discuss observables. The usual chiral con-
densate (which has been called the exciton condensate in
our earlier work [9,14]) is given by

h !""i * @ lnZ
@m

¼ h !c c i% h !!!i: (11)

Note the sign of the condensate is not physical, and that the
two terms on the rhs of (11) give equal contributions. From
the discussion above it should be clear that for " ! 0
formation of this condensate spontaneously breaks ðUð1Þ #
Uð1Þ"Þ2 to ðUð1ÞÞ2, resulting in two Goldstone modes in
the limit m ! 0, j ! 0. The exciton condensate discussed
in Ref. [13] and which is the main focus of this paper is
given by

h""i * @ lnZ
@j

¼ ih !c!% !!c i: (12)

In this case the symmetry breaks to Uð1Þ # Uð1Þ" implying
the same number of Goldstones. In fact for " ¼ 0 and
m ¼ j, h !""i and h""i are physically indistinguishable,
both being equivalent to the chiral condensate of theNf¼2
theory. Figure 1 below confirms that with " ¼ 0 our code
generates results consistent with h !""i=h""i * m

j .

With " ! 0 we next define the charge carrier density

nc *
@ lnZ
@"

¼ h !cD0c i% h !!D0!i: (13)

Once again, both terms on the rhs give equal contribu-
tions—the first term represents the density of electrons in
layer 1, and the second the density of holes in layer 2.
Figure 1 shows the results of a pilot run on 83 at g%2 ¼

0:4 andma ¼ 0:05. For ja ¼ 0:05 the two condensates are
degenerate at " ¼ 0 as argued above. As " increases, our
naive expectation is that a Fermi surface of radius " forms
on each layer, one containing particles, the other holes,
implying nc / "2. As " grows, c !c and ! !! pairing are
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FIG. 1 (color online). Fermion condensates as a function of "
at g%2 ¼ 0:4 on 83 with bare mass ma ¼ 0:05, ja ¼ 0:05, 0.1.
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Again, consistent with a gapped Fermi surface with Δ/µ=O(1)

And the gap Δ ?….
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Both Δ and kF (from quasiparticle dispersion) scale superlinearly with μ

This is a much more strongly correlated system  
than the GN model!



Why no Sign Problem for QC2D?

If ∃ KT s.t. [KT,M]=0,  then detM is real

Let K be complex conjugation, and T unitary

ie. Mψ=λψ ⇒ Mφ≡M(KTψ)=KTλψ=λ*φ so λ,λ* both in spectrum of M

⇒ non-degenerate real eigenvalues ⇒ Sign Problem!
for N odd

(KT)2 = -1: ⟨ψ|φ⟩=⟨ψ|KTψ⟩=⟨Tψ|TKTψ⟩
                            =⟨(KT)2ψ|KTψ⟩=-⟨ψ|φ⟩=0
⇒ degenerate real eigenvalues ⇒ detM > 0

β=4:

(KT)2 = +1: ⟨ψ|φ⟩≠0β=1:

Consider real eigenvalues λ≡λ* ?
2 cases labelled 

by Dyson index:
But is it positive?



So for QC2D….
Continuum/Wilson 

fermions
Staggered fermions

(a>0)

Fundamental (2) T=Cγ5⊗τ2 T=14⊗τ2

(KT)2 +1 -1

χSB SU(2N)→Sp(2N) U(2N)→O(2N)

Adjoint (3) T=Cγ5⊗12 T=14⊗12

(KT)2 -1 +1

χSB SU(2N)→O(2N) U(2N)→Sp(2N)

Staggered fermions away from the weak-coupling continuum limit 
describe a different universality class 

Note that for (KT)2=+1 isolated real eigenvalues give a potential ergodicity 
problem, since only way to change sgn(detM) is to flow through origin



eg. SU(2) with N=1 adjoint staggered flavor SJH, Montvay, Scorato, Skullerud, EPJC22 (2001) 451

where the index p runs over N flavours of staggered quark, and D is given by

Dx,y =
1

2

∑

ν !=0

ην(x)
(

Uν(x)δx,y−ν̂ − U †
ν (y)δx,y+ν̂

)

+
1

2
η0(x)

(

eµU0(x)δx,y−0̂ − e−µU †
0 (y)δx,y+0̂

)

. (2)

The χ, χ̄ are single spin component Grassmann objects, and the phases ηµ(x) are defined
to be (−1)x0+···+xµ−1 . The link matrices in the adjoint representation Uµ are real 3 ×
3 orthogonal matrices. The Grassmann variables in the path integral can be integrated
out, resulting in the determinant of the fermion matrix M appearing in (1). This fermion
determinant takes into account the effects of virtual fermion-antifermion pairs on the gauge
field.

The main difficulty in numerical simulations of gauge theories with fermions is to
include the fermion determinant. We have used two different simulation algorithms, the
hybrid Monte Carlo (HMC) algorithm 10 which is the standard choice for QCD, and a Two-
Step Multi-Bosonic (TSMB) algorithm 11 which has been developed recently in connection
with a study of supersymmetric Yang-Mills theory.
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Figure 1. Typical eigenvalue spectrum of the fermion matrix on a 43 · 8 lattice at (β = 2.0, m = 0.1, µ =
0.35).
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Fig. 6. mπ vs. µ, for the three different quark masses. Also
shown is the line mπ = 2µ.

µ εphys n
2
mπ0

0.20 0.0001(20) 0.0005(10)
0.30 −0.0047(28) −0.0007(12)
0.35 −0.0056(40) 0.0020(18)
0.36 0.0042(31) 0.0074(15)
0.37 0.0148(51) 0.0142(24)
0.38 0.0188(80) 0.0226(40)
0.39 0.0316(70) 0.0302(30)
0.40 0.0609(83) 0.0536(37)
0.50 0.2688(220) 0.1921(88)

Table 3. Energy density as a function of µ, compared with
that of a system of non-interacting pions, for simulations with
m = 0.1.

density n consisting of non-interacting diquark baryons of
mass mπ0. The two sets of numbers are comparable, al-
though to the accuracy we have obtained it is impossible
to assess even the sign of the binding energy in such a
picture. It is also possible to express things in physical
units; since mπ ∝

√
m [24], and observing that our value

of m/mπ0 # 0.136 is about 5 times the physical ratio (as-
suming mu = 4 MeV, mπ = 140 MeV), we conclude that
our m = 0.1 simulation describes a world with m # 90
MeV, mπ # 670 MeV. This corresponds to a lattice spac-
ing a # 0.22 fm. At µ = 0.37 this gives a quark number
density n # 3.6 fm ,−3 with a corresponding energy density
ε # 1270 MeV fm ,−3 considerably in excess of the nuclear
matter values n # 0.48 fm ,−3 ε # 150 MeV fm .−3 Perhaps
a more reasonable comparison, however, is the dimension-
less ratio ε/(mn), which is # 3.8 at µ = 0.37 but has a
value closer to 80 in nuclear matter. This emphasises the
large value of the quark mass in our simulations; a more
“realistic” simulation would require a separate calibration,
e.g. via the vector meson mass.
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Fig. 7. The chiral condensate from TSMB and HMC simula-
tions.
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Fig. 8. The fermion density from TSMB and HMC simula-
tions.

In table 4 we report the susceptibility defined by the
integrated pion correlator

χπ =
∑

x

〈χ̄εχ(0)χ̄εχ(x)〉 =
∑

x

G0,x(µ)G
tr
0,x(−µ) , (8)

where ε(x) = (−1)x0+x1+x2+x4 and G is the fermion prop-
agator, which is real for adjoint quarks. In fact, the tab-
ulated results come from ‘non-singlet’ diagrams with con-
nected quark lines only; disconnected contributions were
consistent with zero within large statistical uncertainties
(we also attempted to measure the scalar susceptibility
but did not find a significant signal with our statistics).
The results are consistent, to within an irrelevant normal-
isation factor of 3, with the axial Ward identity mχπ =
〈ψ̄ψ〉. Once again the HMC data and the positive deter-
minant sector of TSMB are in close agreement, showing a
systematic decrease of χπ in the dense phase. Reweight-
ing to the correct ensemble, however, again removes the

+ sector only

both + and - sectors

On small systems using an algorithm which can flip 

 the fake onset at  disappears

sgn(detM)
μ =

mπ

2

Pauli Principle forbids local scale gauge invariant superfluid  condensate⟨χtr χ⟩

Might the ground state be a superconducting ?⟨χtr ⃗α . ⃗t χ⟩ ≠ 0
SJH & Morrison, hep-lat/9905021



Quantitatively, for µ >∼ µo χPT predicts

〈ψ̄ψ〉
〈ψ̄ψ〉0

=
(

µo

µ

)2

; nq = 8Nff2
πµ

(
1 − µ4

o

µ4

)
;

〈qq〉
〈ψ̄ψ〉0

=

√

1 −
(

µo

µ

)4

[Kogut, Stephanov, Toublan, Verbaarschot & Zhitnitsky, Nucl.Phys.B582(2000)477]

confirmed by QC2D simulations with staggered fermions
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tr
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[SJH, I. Montvay, S.E. Morrison, M. Oevers, L. Scorzato J.I. Skullerud,

Eur.Phys.J.C17(2000)285, ibid C22(2001)451]

. – p.14/31See also Braguta et al PRD94 (2016)205147 



Thermodynamics at T = 0 from χPT

quark number density nχPT = 8Nff 2
πµ

(
1 − µ4

o
µ4

)
[KSTVZ]

pressure pχPT = −Ω
V =

∫ µ

µo
nqdµ = 4Nff 2

π

(
µ2 + µ4

o
µ2 − 2µ2

o

)

energy density εχPT = −p + µnq = 4Nff 2
π

(
µ2 − 3µ4

o
µ2 + 2µ2

o

)

conformal anomaly

(Tµµ)χPT = ε − 3p = 8Nff 2
π

(
−µ2 − 3µ4

o
µ2 + 4µ2

o

)

NB (Tµµ)χPT < 0 for µ >
√

3µo

speed of sound vχPT =
√

∂p
∂ε =

(
1−µ4

o
µ4

1+3 µ4
o

µ4

) 1
2

. – p.15/31



This is to be contrasted with another paradigm for cold
dense matter, namely a degenerate system of weakly
interacting (deconfined) quarks populating a Fermi sphere
up to some maximum momentum kF ≈ EF = µ

⇒ nSB =
NfNc

3π2
µ3; εSB = 3pSB =

NfNc

4π2
µ4;

δSB = 0; vSB =
1√
3

Superfluidity arises from condensation of diquark Cooper
pairs from within a layer of thickness ∆ centred on the
Fermi surface:

⇒ 〈qq〉 ∝ ∆µ2

. – p.16/31
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By equating free energies, we naively predict a first order
deconfining transition from BEC to quark matter;

eg. for f 2
π = Nc/6π2, µd ≈ 2.3µo.
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Recent Simulation Results

 Wilson fermions, HMC algorithm with , spatial volume Nf = 2 j ≠ 0 ( ∼ 2.1fm)3
Td goes to zero at any finite μ and hencewhether there is any
deconfinement transition at high density and low temper-
ature; early indications of such a transition [19] may have
been complicated by lattice artefacts.
These studies have all been carried out with quite heavy

quarks (mπ=mρ ¼ 0.8) and on fairly coarse lattices
(a ¼ 0.18–0.23 fm). The aim of the current paper is firstly
to gain control over lattice artefacts by reducing the lattice
spacing at fixed mπ=mρ, and secondly to explore the quark
mass dependence by studying a system with lighter quarks
at fixed lattice spacing. The latter is of particular signifi-
cance as it might point to a “BEC region” which can be
described using chiral perturbation theory (χPT) incorpo-
rating both mesonic and baryonic (diquark) Goldstone
degrees of freedom [20].
There have been a number of other lattice studies of

dense QC2D in recent years, using staggered [21–23] and
Wilson [24] fermions. These have to a large extent
confirmed the picture outlined above, with some additions.
Notably, in [21], with a smaller pion mass than in [6–8], a
BEC region was found where the diquark condensate and
quark number density agree with predictions from chiral
perturbation theory, followed by a transition to a quar-
kyonic region at higher μ. Also, the chiral condensate was
found to vanish in the chiral limit in both the BEC and
quarkyonic regions. The system was found to be confined
at low temperature, with deconfinement only setting in at
much larger chemical potential [22]. Similar conclusions
were found in [24].
It is also worth noting that a recent study of QCD with

nonzero isospin chemical potential [5] found a phase
diagram very similar to that of [8], namely a pion
condensed phase at low T and large μ, with a critical
temperature that is nearly independent of μ, and a decon-
finement transition line that intersects with the pion
condensation transition.
The structure of this paper is as follows. In Sec. II we

describe our simulation parameters and determination of the
lattice spacing for our new (fine) ensemble.Results from this
ensemble are presented in Sec. III. First, in Sec. III A we
present results for the superfluid order parameter, the
diquark condensate, including its scaling with chemical
potential and estimates for the critical temperature.
Section III B contains our results for the Polyakov loop
and deconfinement transition, while Sec. III C contains
results for the quark number density. Section IV contains
our results from simulations with lighter quarks. We
summarize our findings in Sec. V.

II. SIMULATION DETAILS AND SCALE SETTING

We study QC2D with a conventional Wilson action for
the gauge fields and two flavors of Wilson fermion. The
fermion action is augmented by a gauge- and isosinglet
diquark source term which serves the dual purpose of
lifting the low-lying eigenvalues of the Dirac operator and

allowing a controlled study of diquark condensation. The
quark action is

SQ þ SJ ¼
X

i¼1;2

ψ̄ iMψ i þ κj½ψ tr
2 ðCγ5Þτ2ψ1 − H:c:&; ð1Þ

where i ¼ 1, 2 is a flavor index and

Mxy ¼ δxy − κ
X

ν

½ð1 − γνÞeμδν0UνðxÞδy;xþν̂

þ ð1þ γνÞe−μδν0U†
νðyÞδy;x−ν̂&: ð2Þ

Further details about the action and the Hybrid Monte Carlo
algorithm used can be found in [19].
We have studied three ensembles, which in the following

we call “coarse,” “fine,” and “light.” The parameters are
shown in Table I, together with the values obtained for the
pion (pseudoscalar meson) mass mπ , ratio of pion to rho
(vectormeson)massmπ=mρ and lattice spacinga. The coarse
ensemble is the same aswas used in [6–8]. The parameters for
the fine ensemble were chosen to give the same value of
mπ=mρ as the coarse ensemble, while those of the light
ensemblewere chosen to give approximately the same lattice
spacing as the coarse ensemble, but with a smaller value of
mπ=mρ ≈ 0.6. Further details about the coarse and light
ensemble parameters can be found in [7].
To determine the lattice spacing, we extracted the static

quark potential VðrÞ from rectangular Wilson loopsWðr; τÞ
by fitting Wðr; τÞ ¼ expð−VðrÞτÞ for τ=a ¼ Tmin; Nτ − 1.

TABLE I. Simulation parameters, pion and rho meson masses
and lattice spacing at μ ¼ j ¼ 0.

Name β κ amπ mπ=mρ a (fm)

Light 1.7 0.1810 0.438(15) 0.61(5) 0.189(4)
Coarse 1.9 0.1680 0.645(8) 0.805(9) 0.178(6)
Fine 2.1 0.1577 0.446(3) 0.810(7) 0.138(6)
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FIG. 1. Static quark potential versus spatial separation of the
Wilson loop on the fine ensemble for T ¼ μ ¼ 0, for different
values of the minimum time extent Tmin of the Wilson loop.
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Evaluate  on  with

 

nlat
SB 963 × Nτ

κfree = 0.125,0.120

plateau height is 

κfree-dependent

in this regime. In the current work we have addressed
this issue by evaluating nlatSB on a much larger spatial
volume than that used for simulation, specifically 963 × Nτ

(with 1283 × Nτ checked to see that this was sufficient).
This removes the IR artifacts but retains the UV
corrections.
We find that nq=nSB rises rapidly above the onset transi-

tion, then descends to reach a plateau for μ≳ 500 MeV.
This is in qualitative agreement with the predictions of
χPT shown in Fig. 3 of [19]. Within the fairly large errors
resulting from the j → 0 extrapolation the results obtained in
the neighborhood of onset with continuum and lattice
free fermions are compatible, but for μ≳ 700 MeV the
ncontSB curve continues to rise while the lattice normalization
yields a plateau with nq=nSB ≲ 1; for the reasons given in
the previous paragraph this is the normalization we prefer
and will use henceforth. Also shown in Fig. 9 is the
ratio evaluated using free massive Wilson fermions with
κ ¼ 0.120; in this case the value of nq=nSB on the plateau is
consistent with unity. Due to the difficulties inherent in
assigning a bare quarkmass for interactingWilson fermions,
we therefore do not draw any physical conclusions from the
plateau height at this stage.
An important observation is that there is no longer

evidence for a regime at high μ where nq=nSB increases
above its value on the plateau (cf. Fig. 11 of [7]; were the
high-μ behavior in that plot physical, then a correspond-
ing rise would be expected on the fine lattice at
μ ≈ 700 MeV). In conclusion, at the lowest temperature
studied the equation of state looks “quarkyonic”, i.e., with
nqðμÞ ≈ nSB, all the way along the μ-axis, with no evidence
of a qualitative change associated with deconfinement.
This is consistent with our results for the Polyakov loop,
which show no sign of a deconfinement transition at low

temperature, and the high-μ increase seen in [7] is therefore
most likely a lattice artefact.
As shown in Fig. 10, this behavior persists for the lowest

three temperatures, which according to the results in
Sec. III A are all in the superfluid region (or near the
transition temperature, for Nτ ¼ 16). The data suggest the
plateau value of nq=nSB falls with increasing T, although
uncertainties following the j → 0 extrapolation are signifi-
cant. At the highest temperature, T ¼ 119 MeV (Nτ ¼ 12),
which falls in the quark–gluon plasma phase, we see
indications of nq=nSB monotonically increasing with μ,
in qualitative agreement with the findings of [7].
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FIG. 9. The quark number density nq=nSB from the fine
ensemble at the lowest temperature (T ¼ 43 MeV) extrapolated
to j ¼ 0, with normalization as described in the text. The vertical
lines indicate the location of the onset transition at T ¼ 0.
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FIG. 10. The quark number density nq=nSB from the fine
ensemble, extrapolated to j ¼ 0, for the four temperatures
studied.
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Also shown is the superfluid transition temperature Ts from
Table IV.
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T = 130MeV

To make this comparison quantitative, we show the
results from the fine and coarse ensemble together, in units
of the onset chemical potential μo ¼ mπ=2 (allowing also
for a comparison of results for the different quark masses),
in figure 11. At low temperature (upper panel) there is
quantitative agreement between the two ensembles for
μ≲ 2μo. For larger μ the rise in nq=nSB seen for the coarse
ensemble (which might have signaled a transition to a
different state of matter) is absent for the fine ensemble, and
instead we see that nq remains close to nSB throughout.
This is consistent with our results for the Polyakov loop,
which show no sign of a deconfinement transition at low
temperature, and the high-μ increase seen in [7] is therefore
most likely a lattice artefact. The same pattern is repeated at
high temperature (lower panel), where now we see nq
approach nSB from below. However, part of the difference
between the two ensembles may in this case be due to the
slightly different temperatures (120 vs 130MeV for the fine
and coarse ensembles respectively).

Next we discuss the pressure, which as outlined in [7,19]
can be obtained in the limit of low T via an integral of the
form p ¼

R
μ nqðμ0Þdμ0. In order to arrive at the dimension-

less ratio p=pSB starting from our data there are several
different quadrature schemes available: here we use

p
pSB

¼ 1

pcont
SB

Z
μ

μ0

ncontSB ðμ0Þ
nlatSBðμ0Þ

nqðμ0Þdμ0; ð9Þ

introduced as “scheme II” in [7] (μ0 is the lowest available
value in the dataset). Reassuringly, with nlatSB now defined
on a large spatial volume to eliminate IR artifacts we find
results compatible with those computed using scheme I,
which was not the case in [7]. The results for data
extrapolated to j → 0, at low temperatures where there
are enough μ-points to control the numerical integration,
are shown in Fig. 12.
The main result is that p=pSB increases sharply after

onset, reaching a plateau at μ=μo ≈ 2. It appears to
approach the plateau from below, in contrast to the χPT
prediction that the SB limit is approached from above [19].
While, as in the discussion of nq=nSB, it is premature to
assign a precise value to the height of the plateau, it is worth
recalling that e.g., in the Van der Waals equation of state the
ideal gas pressure receives a downward correction due to
attractive forces between particles.

IV. RESULTS FROM LIGHT ENSEMBLE

We now study the effect that reducing the quark mass
may have on the phase structure and equation of state.
While our parameters are still very far from the chiral limit,
this may give us an idea of which, if any, qualitative
changes may occur as we approach this limit.
Figure 13 shows the diquark condensate from the light

ensemble for our three different temperatures, extrapolated
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FIG. 11. The quark number density from the fine, coarse and
light ensembles, divided by density in the noninteracting limit, as
a function of chemical potential in units of the onset chemical
potential μo. Upper panel: low temperature (T ≈ 45 MeV); lower
panel: high temperature (T ≈ 130 MeV).

0 1 2 3 4
o

0

0.5

1

p/p
SB

fine
light

FIG. 12. The pressure p=pSB at low temperature (T ≈ 45 MeV)
from both fine and light ensembles, extrapolated to j ¼ 0 and
plotted as a function of μ=μo.
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To make this comparison quantitative, we show the
results from the fine and coarse ensemble together, in units
of the onset chemical potential μo ¼ mπ=2 (allowing also
for a comparison of results for the different quark masses),
in figure 11. At low temperature (upper panel) there is
quantitative agreement between the two ensembles for
μ≲ 2μo. For larger μ the rise in nq=nSB seen for the coarse
ensemble (which might have signaled a transition to a
different state of matter) is absent for the fine ensemble, and
instead we see that nq remains close to nSB throughout.
This is consistent with our results for the Polyakov loop,
which show no sign of a deconfinement transition at low
temperature, and the high-μ increase seen in [7] is therefore
most likely a lattice artefact. The same pattern is repeated at
high temperature (lower panel), where now we see nq
approach nSB from below. However, part of the difference
between the two ensembles may in this case be due to the
slightly different temperatures (120 vs 130MeV for the fine
and coarse ensembles respectively).

Next we discuss the pressure, which as outlined in [7,19]
can be obtained in the limit of low T via an integral of the
form p ¼

R
μ nqðμ0Þdμ0. In order to arrive at the dimension-

less ratio p=pSB starting from our data there are several
different quadrature schemes available: here we use

p
pSB

¼ 1

pcont
SB

Z
μ

μ0

ncontSB ðμ0Þ
nlatSBðμ0Þ

nqðμ0Þdμ0; ð9Þ

introduced as “scheme II” in [7] (μ0 is the lowest available
value in the dataset). Reassuringly, with nlatSB now defined
on a large spatial volume to eliminate IR artifacts we find
results compatible with those computed using scheme I,
which was not the case in [7]. The results for data
extrapolated to j → 0, at low temperatures where there
are enough μ-points to control the numerical integration,
are shown in Fig. 12.
The main result is that p=pSB increases sharply after

onset, reaching a plateau at μ=μo ≈ 2. It appears to
approach the plateau from below, in contrast to the χPT
prediction that the SB limit is approached from above [19].
While, as in the discussion of nq=nSB, it is premature to
assign a precise value to the height of the plateau, it is worth
recalling that e.g., in the Van der Waals equation of state the
ideal gas pressure receives a downward correction due to
attractive forces between particles.

IV. RESULTS FROM LIGHT ENSEMBLE

We now study the effect that reducing the quark mass
may have on the phase structure and equation of state.
While our parameters are still very far from the chiral limit,
this may give us an idea of which, if any, qualitative
changes may occur as we approach this limit.
Figure 13 shows the diquark condensate from the light

ensemble for our three different temperatures, extrapolated
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FIG. 11. The quark number density from the fine, coarse and
light ensembles, divided by density in the noninteracting limit, as
a function of chemical potential in units of the onset chemical
potential μo. Upper panel: low temperature (T ≈ 45 MeV); lower
panel: high temperature (T ≈ 130 MeV).
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FIG. 12. The pressure p=pSB at low temperature (T ≈ 45 MeV)
from both fine and light ensembles, extrapolated to j ¼ 0 and
plotted as a function of μ=μo.
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Mesons on 83 × 16 SJH, P. Sitch, J.I. Skullerud PLB662 405 (2008)
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Meson spectrum roughly constant up to onset. Then
mπ ≈ 2µ in accordance with χPT, while mρ decreases once

nq > 0, in accordance with effective spin-1 action
[Lenaghan, Sannino & Splittorff PRD65:054002(2002)]
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Diquark Spectrum on 83 × 16
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Figure 3: Higgs and Goldstone masses as a function of µ. The two insets show results as j is varied at
fixed µa = 0.3, 0.5, 0.7. Extrapolations to j = 0 are displayed on the main graph with triangle symbols.

longer a good quantum number, and therefore meson and diquark states in principle
indistinguishable.

The diquark spectrum in the remaining spin-0 and spin-1 channels is shown in Fig. 4.
It is striking that the signal-noise ratio is much higher for some diquarks than for the
mesons, also seen in simulations with staggered fermions [4]. The two cleanest signals are
for the isoscalar 0+ and the isovector 1+. The first observation is that as a consequence
of the symmetry (3) there is a relation between the meson and diquark spectra which
holds for µ = j = 0 if disconnected diagrams are neglected:

MD(JP ) = MM(J−P ). (15)

For 0 < µ < µo, during which the physical ground state remains the vacuum, we thus
predict MD(0+) = Mπ ± 2µ, MD(1+) = Mρ ± 2µ, shown as dot-dashed lines in Fig. 4.
Indeed both diquark particle-antiparticle pairs behave as expected up to µa ≈ 0.3.
Diquark masses are not shown beyond µa = 0.25 as they become unfittable, as explained
in Sec. 3. After this both 0+ and 1+ anti-diquark states flatten off and slowly decrease
with µ. The other two isoscalar diquarks constructed from local operators, namely the
0− and 1−, are extremely heavy and hard to fit below onset, but above onset have a
sufficiently good signal for us to deduce masses comparable with Mπ(µ = 0), Mρ(µ = 0).
Although the noise in the meson sector is admittedly large, the approximate degeneracy
between meson and baryon sectors in the 0+ and 1+ channels seen in Figs. 2 and 4 is
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Beyond the fundamental requirements of determin-
ing the thermodynamic and symmetry properties of the
ground state, it is interesting to examine the nature of
excitations. As well as offering continuity with the tra-
ditional concerns of lattice QCD at T = µ = 0, such
questions bear on transport in the baryonic medium; an-
swers to these questions in QCD would have the poten-
tial to inform, say, descriptions of neutron star spin down
(via quantitative information on shear and bulk viscosi-
ties) and cooling (via a knowledge of which if any ex-
citations remain gapless and hence capable of carrying
energy away). There has been exploratory work in sev-
eral directions. In [11] the hadron spectrum of QC2D was
calculated as a function of µ; beyond µo in the meson
sector the usual ordering mπ < mρ is reversed, confirm-
ing earlier studies [12]. Above onset the lightest states are
found in the 0+ and 1+ channels, with approximate de-
generacy found between mesons and diquarks, as might
be expected in a superfluid phase in which baryon num-
ber is no longer a good quantum number. The spectrum
of heavy QQ quarkonium states also shows a non-trivial
µ-dependence [13], possibly as a result of the formation
of Qq states in the quarkyonic regime. In a recent study
binding energies of multi-baryon “nuclei” formed from 0+

and 1+ bound states have been estimated [14].
On a different tack, quark and gluon propagators have

been calculated as functions of T and µ in gauge-fixed con-
figurations [6,7,15]. The electric (longitudinal) gluon prop-
agator in Landau gauge becomes strongly Debye-screened
with increasing T and µ, whereas the magnetic (trans-
verse) gluon shows little sensitivity to T , and exhibits a
mild enhancement in the quarkyonic regime before becom-
ing suppressed at large µ. Finally, the properties of topo-
logical excitations have been studied using a cooling proce-
dure to identify instantons [16]. An enhancement of topo-
logical susceptibility χT is seen on entering the quarkyonic
regime, which can be accommodated within the standard
perturbative description of Debye screening with the ac-
companying observation of a decrease in instanton scale
size ρ(µ) ∝ µ−2. χT does fall very steeply, however, once
〈L〉 > 0.

In this work we attempt to probe the interaction be-
tween quarks, and extract information on the spatial ex-
tent of hadrons, by calculating hadron correlation func-
tions in which the qq̄ or qq pair at the sink are spatially
separated by a vector #r [17]. For a bound state H whose
temporal decay in Euclidean space is governed by a simple
exponential e−EHx0 , the spatial profile, determined nu-
merically as a function of #r, is proportional to the equal-
time Bethe-Salpeter wave function

Ψ(#r, τ) =

∫

d3#x〈0|ψ̄(#x, τ)ψ(#x + #r, τ)|H〉. (2)

The typical wave function profile for a bound state is
Gaussian, the width giving basic information about the
size of the hadron. However, the correlators also yield in-
teresting information even in the absence of a bound state,
as explored in a study of the Z2 Gross-Neveu model with
µ $= 0 in 2 + 1d [18]. Above onset, the wave function is

no longer positive definite, but rather has an oscillatory
structure with spatial frequency of order kF ∼ µ. These
oscillations have a similar origin to the Friedel oscillations
observed in the density-density correlations of electrons in
metals (and thought to be responsible for the spin-glass
behaviour of certain alloys), characteristic of a sharp, well-
defined Fermi surface; the more primitive nature of the
point-split hadron correlator makes it easier to measure in
a numerical simulation, however. The observation of oscil-
latory wave functions in [18], with wavelength decreasing
systematically with µ, is one of several calculations lead-
ing to the identification of the Z2 GN model as a Fermi
liquid.

A wave function study in QC2D has the potential to
shed light on several outstanding issues in gauge theo-
ries at non-zero chemical potential, the most fundamen-
tal being whether it is indeed possible to identify a well-
defined Fermi surface, since Fermi momentum kF is not
a gauge-invariant quantity. It may also help clarify the
nature of the quarkyonic state, which roughly speaking
may be thought of as a degenerate quark system in which
only gauge-invariant excitations are permitted. Since two-
quark interactions are the most relevant at a Fermi sur-
face in the renormalisation group sense [19, 20], to what
extent lessons learned with Nc = 2 can be generalised
to QCD remains to be seen. Nonetheless in principle the
wave function should be a useful tool to chart the pas-
sage from BEC to BCS realisations of superfluidity as µ
increases, which theoretically should take place for QC2D
near enough the chiral limit. All these reasons motivate
the current, exploratory study.

2 Formulation

In this section we explore the theoretical expectations for
the wave function as a function of interquark separation r.
We begin, following [18], with the expression for the me-
son correlator Cm(x0;#r ) with a local point source at the
origin, and q and q̄ separated by #r at the sink. In anticipa-
tion of our later numerical results we choose the a priori
arbitrary sign of µ to yield the slowest decaying result in
the positive x0 direction in diquark channels with non-
zero baryon charge. Initially we assume free fields with
quark mass m, and work at strictly zero temperature; the
chemical potential µ can then be understood as a Fermi
energy for a system of degenerate quarks with Fermi en-
ergy EF (µ) ≡ µ =

√

k2
F + m2. The onset value at which

the ground state contains a non-zero matter density is
thus µo = m:

Cm(x0,#r ) =
∑

#x

tr

∫

d4p

(2π)4

∫

d4q

(2π)4

×Γ
eipx

i/p − µγ0 + m
Γ

e−iqxe−i#q·#r

i/q − µγ0 + m
. (3)

The Dirac matrix Γ = , γ5 for channels JP = 0+, 0−.
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4 Numerical results

Hadron wave functions formed from interacting quarks
were calculated using QC2D ensembles generated using
the quark action (21) and (22) together with an unim-
proved Wilson gauge action for the gluons. The simula-
tion parameters were β = 1.9, κ = 0.168, corresponding
to lattice spacing a = 0.178(5) fm with scale set by as-
suming the string tension is (440MeV)2, and mass ratio
mπ/mρ = 0.807(5) [8]. Most results are obtained on a
123 × 24 lattice, corresponding to a physical temperature
T = 44(2)MeV, although for µa = 0.25 we also have re-
sults from 163 × 24 for comparison. This temperature is
sufficiently low to support the existence of an extended
range of µ in which the theory is simultaneously con-
fining (as indicated by a near-vanishing Polyakov loop)
and superfluid (as indicated by a non-vanishing conden-
sate 〈ψT

2 (Cγ5)τ2ψ1〉 $= 0 as j → 0). With these param-
eters values of µa in the range [0.0, 1.1] were explored;
the onset value µo = 1

2mπ = 0.323(3)a−1. The large
quark mass implies that the window in µ where BEC-
like behaviour occurs is at best very narrow, and so far
has not been observed. The so-called “quarkyonic” regime
where baryon density, pressure and superfluid condensate
all scale with µ according to the expectations of a sys-
tem of degenerate quarks, lies approximately in the range
µa ∈ (0.4, 0.8) [8, 9].

For |&r | > 0 the point-split correlators (30) and (31) are
not gauge invariant without an insertion of path-ordered
link variables along some selection of paths joining the
two halves of the sink. To mitigate the effects of the signal
fluctuations introduced by this non-unique procedure, we
instead choose to gauge-fix the configuration and use unit

links to complete the loop. We fix a discretised Coulomb
gauge defined by

∆G(x) ≡
3

∑

i=1

[

AG
i (x) − AG

i (x − ı̂)
]

= 0, (33)

where the gauge transformation G(x) extremises the func-
tional

F [UG] = −Re Tr
∑

x

3
∑

i=1

UG
i (x), (34)

with UG
µ (x) = G(x)Uµ(x)G−1(x+µ). To achieve this, the

simplest algorithm [21] one can adopt is a local procedure
which visits one lattice site at a time and attempts to
minimize its contribution to the functional (34), which
can be written as

Floc(x̄) ∝ −ReTr
∑

µ

[

Uµ(x̄) + Uµ(x̄ − µ̂)
]

. (35)

Two observables are usually monitored during this pro-
cedure. One is the functional (34) itself, which decreases
monotonically and eventually reaches a plateau. The other
one is a measure of the first derivative of F [U ] during the
gauge-fixing process defined as

θG ≡
1

V

∑

x

Tr
[

∆G(x)(∆G)†(x)
]

, (36)

where V is the lattice volume. This quantity eventually
approaches zero when F [U ] reaches its minimum and can
be used as a stopping parameter for the procedure. Here
we chose θ ≤ 10−30.

free field 

results
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the width at half maximum, as a function of µ (left) and µ−1 (right).

Finally, the absence of oscillatory behaviour in Ψ(r, τ)
at low temperature, in contrast with the weak-coupling
prediction (12) needs some consideration. One obvious de-
parture from weak-coupling behaviour is the formation of
a superfluid condensate 〈qq〉 #= 0, which for a degenerate
system should, via the BCS mechanism, induce an energy
gap ∆ ∼ ΛQC2D ∼ 〈qq〉/µ2 at the Fermi surface. The
presence of a gap removes the sharp momentum cutoff in
the integrals leading to the expressions (12) and (20), and
therefore also the oscillations. A gap can also be modelled
in free-field theory by the introduction of a diquark source
j #= 0, and the curves shown in fig. 2 strongly suggest this
explicit gap does indeed dampen the oscillations. The fact
that oscillations remain absent from the wave functions
of interacting quarks as j → 0, demonstrated in fig. 6, is
consistent with the post-onset QC2D gap being generated
dynamically. Of course, this speculation does not exclude
other explanations based on the persistence of hadronic
bound states in the confining quarkyonic medium.
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Fig. 6. Diquark wave functions relative to D0
1 showing the j-dependence for various values of the chemical potential µ.

proximation (38), although for µa ! 0.5 the data is much
nosier for the meson than the diquark. For µ < µo the
wave function has a large width and has not yet vanished
by the lattice midpoint, which is consistent with the vol-
ume dependence of the spin-1 data seen in fig. 4.

In fig. 6 we show the consequences for the scalar di-
quark wave function of varying the diquark source j; the
data have been generated in a partially quenched approach
using an ensemble generated with ja = 0.02. It can be seen
that for µ > 0 increasing j has the effect of very slightly
shrinking the wave function. In contrast to the data for
free fermions in fig. 2, there is no sign of oscillatory be-
haviour developing in the j → 0 limit.

Figures 7 show τ = 8 wave functions for the four chan-
nels of interest as µ is varied. Comparison of the plots
enables us to order the states by spatial size at µ = 0:
0+ < 1− < 1+. The 0− data are considerably noisier. The
main common trend is the systematic decrease in the size
of all states as µ increases, so that by µa ∼ O(1) the max-
imum extent ra ∼ 3. With the exception of the noisy 0−,
there is no sign of any of the wave functions changing sign
or developing oscillatory behaviour as µ increases.

To crudely quantify the evolving spatial size, we ex-
tracted from the data the full width at half the maximum
of Ψ(r, τ), which was obtained by fitting the wave function
to a spline. In fig. 8 we then plot the resulting width σ(µ)
in each channel. The results are plotted both as a function
of µ and of 1/µ, and confirm the trends reported above,
and also highlights that post-onset σ(0−) is larger than
both 0+ and 1+ states. We note that σ(0+) > σ(1−) for
µa " 0.6, which is confirmed by close inspection of fig. 7.
For µa " 0.6, or 1/µa ! 1.5, the widths approach one an-
other making the various channels difficult to distinguish,
but the right panel of fig. 8 suggests that bound states are
increasingly dominated by a single length scale σ ∝ µ−1,
with the hierarchy σ(1−) < σ(0+) < σ(1+) < σ(0−).

5 Discussion

We have presented results from the first attempt, using or-
thodox lattice techniques, to examine the spatial structure
of gauge-invariant excitations in a baryonic medium. The
results complement a previous study [11] of the excita-
tion spectrum. We have focused on the post-onset regime
µ > µo in which baryon charge density is non-zero in the
T → 0 limit, and the ground state is a superfluid. Our re-
sults are consistent with the indistinguishability of mesons
and diquarks in a superfluid, and suggest a scale hierarchy
σ(0+) ∼ σ(1−) < σ(0−) < σ(1+), to be compared with
the mass hierarchy m(0+) < m(1+) $ m(1−) < m(0−)
found in [11]. As a general rule, signals obtained in diquark
channels were less noisy than those from mesons.

The scale hierarchy becomes less well-defined as µ in-
creases and the wave functions shrink; from µa ∼ 0.6 on-
wards all the channels yield wave functions of approxi-
mately equal extent. For orientation, if the string tension
is used to set the scale this corresponds to µ % 670MeV,
at which point the quark density nq % nSB ∼ 5 fm−3

(using (1)), or roughly 10× nuclear density [8]. Spline
fits to the profiles then yield the approximate behaviour
σ ∝ µ−1 with a different hierarchy σ(1−) < σ(0+) <
σ(1+) < σ(0−). This is consistent with the expectation
σ ∝ µ−1 which assumes that µ ∼ kF is the only relevant
scale at high density. Indeed, this is precisely the con-
tent of the free-field prediction (12). The physical picture
is that bound-state excitations are formed from quarks
close to the Fermi surface with a characteristic de Broglie
wavelength λF ∼ µ−1. The absence of appreciable finite
volume effects suggests, however, that the influence of im-
age charges is negligible, and that confinement continues
to hold. The conjunction of both properties characterises
the so-called quarkyonic regime.
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proximation (38), although for µa ! 0.5 the data is much
nosier for the meson than the diquark. For µ < µo the
wave function has a large width and has not yet vanished
by the lattice midpoint, which is consistent with the vol-
ume dependence of the spin-1 data seen in fig. 4.

In fig. 6 we show the consequences for the scalar di-
quark wave function of varying the diquark source j; the
data have been generated in a partially quenched approach
using an ensemble generated with ja = 0.02. It can be seen
that for µ > 0 increasing j has the effect of very slightly
shrinking the wave function. In contrast to the data for
free fermions in fig. 2, there is no sign of oscillatory be-
haviour developing in the j → 0 limit.

Figures 7 show τ = 8 wave functions for the four chan-
nels of interest as µ is varied. Comparison of the plots
enables us to order the states by spatial size at µ = 0:
0+ < 1− < 1+. The 0− data are considerably noisier. The
main common trend is the systematic decrease in the size
of all states as µ increases, so that by µa ∼ O(1) the max-
imum extent ra ∼ 3. With the exception of the noisy 0−,
there is no sign of any of the wave functions changing sign
or developing oscillatory behaviour as µ increases.

To crudely quantify the evolving spatial size, we ex-
tracted from the data the full width at half the maximum
of Ψ(r, τ), which was obtained by fitting the wave function
to a spline. In fig. 8 we then plot the resulting width σ(µ)
in each channel. The results are plotted both as a function
of µ and of 1/µ, and confirm the trends reported above,
and also highlights that post-onset σ(0−) is larger than
both 0+ and 1+ states. We note that σ(0+) > σ(1−) for
µa " 0.6, which is confirmed by close inspection of fig. 7.
For µa " 0.6, or 1/µa ! 1.5, the widths approach one an-
other making the various channels difficult to distinguish,
but the right panel of fig. 8 suggests that bound states are
increasingly dominated by a single length scale σ ∝ µ−1,
with the hierarchy σ(1−) < σ(0+) < σ(1+) < σ(0−).

5 Discussion

We have presented results from the first attempt, using or-
thodox lattice techniques, to examine the spatial structure
of gauge-invariant excitations in a baryonic medium. The
results complement a previous study [11] of the excita-
tion spectrum. We have focused on the post-onset regime
µ > µo in which baryon charge density is non-zero in the
T → 0 limit, and the ground state is a superfluid. Our re-
sults are consistent with the indistinguishability of mesons
and diquarks in a superfluid, and suggest a scale hierarchy
σ(0+) ∼ σ(1−) < σ(0−) < σ(1+), to be compared with
the mass hierarchy m(0+) < m(1+) $ m(1−) < m(0−)
found in [11]. As a general rule, signals obtained in diquark
channels were less noisy than those from mesons.

The scale hierarchy becomes less well-defined as µ in-
creases and the wave functions shrink; from µa ∼ 0.6 on-
wards all the channels yield wave functions of approxi-
mately equal extent. For orientation, if the string tension
is used to set the scale this corresponds to µ % 670MeV,
at which point the quark density nq % nSB ∼ 5 fm−3

(using (1)), or roughly 10× nuclear density [8]. Spline
fits to the profiles then yield the approximate behaviour
σ ∝ µ−1 with a different hierarchy σ(1−) < σ(0+) <
σ(1+) < σ(0−). This is consistent with the expectation
σ ∝ µ−1 which assumes that µ ∼ kF is the only relevant
scale at high density. Indeed, this is precisely the con-
tent of the free-field prediction (12). The physical picture
is that bound-state excitations are formed from quarks
close to the Fermi surface with a characteristic de Broglie
wavelength λF ∼ µ−1. The absence of appreciable finite
volume effects suggests, however, that the influence of im-
age charges is negligible, and that confinement continues
to hold. The conjunction of both properties characterises
the so-called quarkyonic regime.

hadron sizes decrease as
density rises

Who knew?



Simple models support rich behaviour once µ≠0  
which can be exposed with orthodox simulation techniques 

• in-medium modification of interactions

• Friedel oscillations

• particle-hole excitations and sound

• Fermi surface pairing

• thin-film superfluidity

• strongly-correlated superfluidity

Summary

Left hanging:   
how can we identify a Fermi surface in a gauge theory?
what extra physics does the Sign Problem “buy” for us?        

superconductivity through pairing?

There is life beyond the Sign Problem!

(not discussed today)

(not discussed today)

(not discussed today)


