An Introduction to Cold Dense Matter without a Sign Problem

Simon Hands Swansea University

Probing the physics of high-density and low-temperature matter with ab initio calculations in 2-color QCD, YITP November 2020

Why Two Color Matter?

Elbaite Bicolor Tourmaline Trio' Na(Li,Al)₃Al₆(BO₃)₃Si₆O₁₈(OH)₄ 60.73, 75.24 and 90.03 carats Mozambique Chance to explore systematics of lattice simulations at $\mu \neq 0$

Good news: cutoff fixed as μ varies, no quantum corrections to $n_{q=-\partial f/\partial \mu}$

Bad news: UV/IR classical artifacts are complicated enough

Chance to explore "deconfinement" in a new physical régime

• No sign problem stupid!

• When *isn't* there a Sign Problem?

• GN ₂₊₁	 Friedel oscillations medium modification of σ propag mesons and zero sound 	Fermi Liquid gator
• NJL ₃₊₁	 superfluid condensate and gap isospin chemical potential 	BCS superfluid
• NJL ₂₊₁	superfluid condensatehelicity modulus	Thin film superfluid
 Bilayer Graphene 	 excitonic condensate Stre quasiparticle dispersion 	ongly correlated superfluid
• QC ₂ D	superfluidityquarkyonic phasedeconfinement?	Why we're here?

When *isn't* there a Sign Problem?

Whenever the fermion measure $\equiv \det(M^{\dagger}M)$

describes **conjugate** quarks q^c , \bar{q}^c

describes quarks \bar{q} , $(\underline{q}^{2|\vec{p}|} + \underline{q}^{2|\vec{p}|})$

some models contain gauge invariant fermion states

Gross-Neveu model in 2 + 1 dimensions sontene out by by by the erated. To proceed, we introduce

$$\mathcal{L} = \sum_{i=1}^{N_f} \bar{\psi}_i (\partial \!\!\!/ + m) \psi_i - \frac{2}{2N_f} \underbrace{\frac{2}{(\bar{\psi}_i \psi_i)^2}}_{\text{which most of the Grid Loginary of the important theoretic.}}_{\text{Will begin by discussing the simples which most of the important theoretic.}}$$

The original Lagrangiam (2) of σ . just about the simplest QFT with fermions over σ . Chiral symmetry break Can also write in terms of an auxiliary scalar vacuum expectation value \mathbb{Z} =

$$\mathcal{L} = \bar{\psi}_i (\partial \!\!\!/ + m + \frac{g}{\sqrt{N_f}} \sigma) \psi_i + \frac{g}{2} \sigma_{\text{flavors. TWisch is approximation of the formula of the formul$$

For $g^2 > g_c^2 \sim O(\Lambda^{-1})$ the ground state has is spontaneously broken when it is spontaneously broken in the self-consistent dynamically generated fermion mass frated. The proceed, we introduce a box over $\sqrt{N_f}$ broken in the $N_f \to \infty$ limit by the chiral Gap Equation for the original Lagrangi over $\sigma \mathcal{L}$ by the proceed of the self-consistent dynamical d

$$\Sigma_0 = g^2 \operatorname{tr} \int_p \frac{1}{ip + \sum_{i=1}^{n} \sum_{j \neq i} \sum_$$

flavors This expansion (6), relating a bi

GN Thermodynamics

The large- N_f approach can also to be applied to $T, \mu \neq 0$ and predicts a chiral symmetry restoring phase transition:

$$T_c|_{\mu=0} = \frac{\Sigma_0}{2\ln 2}; \quad \mu_c|_{T=0} = \Sigma_0$$

There is even evidence for a tricritical point at small $\frac{T}{\mu}$! [J.B. Kogut and C.G. Strouthos PRD63(2001)054502]

Fermi Surface Phenomena

Consider $q\bar{q}$ "jawbone" diagram

$$C(\vec{y}, x_0) = \sum_{\vec{x}} \operatorname{tr} \int_p \int_q \Gamma \frac{e^{ipx}}{i\not p + \mu\gamma_0 + M} \Gamma \frac{e^{-iqx}e^{-i\vec{q}\cdot\vec{y}}}{i\not q + \mu\gamma_0 + M}$$

 $\mu < \mu_c:$ $C \propto \int_0^\infty p dp J_0(py) e^{-2x_0 \sqrt{p^2 + M^2}} \sim \frac{M}{x_0} e^{-2Mx_0} \exp\left(-\frac{|\vec{y}|^2 M}{4x_0}\right)$ Gaussian width $O(\sqrt{x_0})$

$$\begin{split} \mu > \mu_c: \\ C \propto \int_{\mu}^{\infty} p dp J_0(py) e^{-2px_0} \sim \frac{\mu}{x_0} e^{-2\mu x_0} J_0(\mu |\vec{y}|) \propto J_0(k_F y) \\ & \text{Oscillatory profile; shape constant as } x_0 \nearrow \\ & y \text{ dependence yields Bethe-Salpeter wave function} \end{split}$$

GN on 32²×48 SJH, JB Kogut, CG Strouthos, TN Tran, PRD68 016005

Oscillations develop as $\mu \nearrow$ Graphic evidence for existence of a sharp Fermi surface Why does free-field theory prediction work so well?

Fermion Dispersion relation

μ	K_F	eta_F	$K_F/\mu\beta_F$
0.2	0.190(1)	0.989(1)	0.962(5)
0.3	0.291(1)	1.018(1)	0.952(4)
0.4	0.389(1)	0.999(1)	0.973(1)
0.5	0.485(1)	0.980(1)	0.990(2)
0.6	0.584(3)	0.973(1)	1.001(2)

The fermion dispersion relation is fitted with

$$E(|\vec{k}|) = -E_0 + D\sinh^{-1}(\sin|\vec{k}|)$$

yielding the Fermi liquid parameters

$$K_F = \frac{E_0}{D}; \qquad \beta_F = D \frac{\cosh E_0}{\cosh K_F}$$

Meson Correlation Functions

For $\vec{k} \neq 0$ can always excite a particle-hole pair with almost zero energy \Rightarrow algebraic decay of correlation functions

eg. in the spin-1 channel at $\mu a = 0.6$, $C_{\gamma_{\perp}}$ (left) looks algebraic as predicted by free field theory, but $C_{\gamma_{\parallel}}$ (right) decays exponentially.

The interpolating operator for $C_{\gamma_{\parallel}}$ in terms of continuum fermions is $\bar{q}(\gamma_0 \otimes \tau_2)q$ ie. with same quantum numbers as baryon charge density

Dispersion relation $E(|\vec{k}|)$ extracted from $C_{\gamma_{\parallel}}$

A massless vector excitation? Longitudinal

Sounds Unfamiliar?

In the Fermi liquid framework a possible explanation is a *collective excitation* thought to become important as $T \rightarrow 0$: *Zero Sound*

Ordinary FIRST sound is a breathing mode of the Fermi surface: velocity $\beta_1 \simeq \frac{1}{\sqrt{2}} \frac{k_F}{\mu}$

ZERO sound is a propagating distortion $\sum_{i=1}^{n} \beta_0$ of the Fermi surface: velocity β_0 must be determined self-consistently

<u>Relativity in Graphene</u>

"tight-binding" Hammonian

describes hopping of electrons in π -orbitals from A to B sublattices and vice versa

Define modified operators $a_{\pm}(\vec{p}) = a(\vec{K}_{\pm} + \vec{p})$ yielding a "4-spinor" $\Psi = (b_+, a_+, a_-, b_-)^{tr}$ ϵ/t 0

 $= v_F \sum_{\vec{a}} \Psi^{\dagger}(\vec{p}) \vec{\alpha}.\vec{p} \Psi(\vec{p})$

For monolayer graphene the number of flavors $N_f = 2$ (2 C atoms/cell × 2 Dirac points/zone × 2 spins = 2 flavors × 4 spinor)

<u>Bilayer graphene</u>

Coupling γ₃≠0 results in trigonal distortion of band and doubles number of Dirac points ucha-Kruczynski *et al*, PRB**84**(2011)041404

 N_f = 4 EFT description plausible for $ka \lesssim \gamma_1 \gamma_3 / \gamma_0^2$

Could also realise with a dielectric sheet sandwiched between two graphene monolayers

Introduction of a bias voltage μ between the layers induces electrons on one, holes on the other.

Inter-layer exciton condensation driven by enhanced density of (e,h) states at Fermi surface leads to gap formation? <u>Bilayer effective theory</u>

W Armour, SJH, CG Strouthos PRD87 065010

$$\mathcal{L} = (\bar{\psi}, \bar{\phi}) \begin{pmatrix} D[A; \mu] + m & ij \\ -ij & D[A; -\mu] - m \end{pmatrix} \begin{pmatrix} \psi \\ \phi \end{pmatrix} + \frac{1}{2g^2} A^2$$
$$= \bar{\Psi} \mathcal{M} \Psi. + \frac{1}{2g^2} A^2$$

Bias voltage μ couples to layer fields ψ , ϕ with opposite sign (Cf. isospin chemical potential in QCD)

Intra-layer ($\psi\psi$) and inter-layer ($\psi\phi$) interactions have same strength

"Gap parameters" m, j are IR regulators

"Covariant" derivative $D^{\dagger}[A; \mu] = -D[A; -\mu]$. inherited from gauge theory

$$\det \mathcal{M} = \det[(D+m)^{\dagger}(D+m) + j^2] > 0 \quad \text{No sign problem!}$$
Case B

<u>Carrier Density</u>

$$n_c \equiv \frac{\partial \ln Z}{\partial \mu} = \langle \bar{\psi} D_0 \psi \rangle - \langle \bar{\phi} D_0 \phi \rangle.$$

Observe premature saturation (ie. one fermion per site) at $\mu a \approx 0.5$

(other lattice models typically saturate at $\mu a \gtrsim 1$)

$$\Rightarrow \mu a_t \approx E_F a_t < k_F a_s$$

no discernable onset $\mu_0 > 0$

$$n_c^{free}(\mu) \ll n_c^{free}(k_F) \approx n_c(\mu)$$

Exciton Condensate

0.2

ja=0.01 ja=0.02

ia=0.03

Exciton (ie superfluid) condensation, with no discernable onset $\mu_0 > 0$

And the gap Δ ?....

Again, consistent with a gapped Fermi surface with $\Delta/\mu=O(1)$

Both Δ and k_F (from quasiparticle dispersion) scale superlinearly with μ

This is a *much* more strongly correlated system than the GN model!

Why no Sign Problem for QC₂D?

Let K be complex conjugation, and T unitary

If \exists KT s.t. [KT,M]=0, then detM is real

ie. $M\psi = \lambda \psi \Rightarrow M\phi = M(KT\psi) = KT\lambda\psi = \lambda^*\phi$ so λ,λ^* both in spectrum of M

But is it positive? 2 cases labelled Consider real eigenvalues $\lambda \equiv \lambda^*$? by Dyson index: $\beta = 4$: $(KT)^2 = -1$: $\langle \psi | \phi \rangle = \langle \psi | KT\psi \rangle = \langle T\psi | TKT\psi \rangle$ $= \langle (KT)^2 \psi | KT\psi \rangle = -\langle \psi | \phi \rangle = 0$ \Rightarrow degenerate real eigenvalues \Rightarrow det M > 0

> $\beta = I: (KT)^2 = +I: \langle \psi | \varphi \rangle \neq 0$ $\Rightarrow non-degenerate real eigenvalues \Rightarrow Sign Problem!$

> > for N odd

or QC ₂ D	Continuum/Wilson fermions	Staggered fermions (a>0)
Fundamental (2)	Τ=Cγ₅⊗τ₂	T=1₄⊗τ₂
(KT) ²	+1	-1
χSB	SU(2N)→Sp(2N)	U(2N)→O(2N)
Adjoint (3)	T=Cγ ₅ ⊗1 ₂	T=1₄⊗1₂
(KT) ²	-1	+1
χSB	SU(2N)→O(2N)	U(2N)→Sp(2N)

Staggered fermions away from the weak-coupling continuum limit describe a *different* universality class

Note that for (KT)²=+1 isolated real eigenvalues give a potential ergodicity problem, since only way to change sgn(detM) is to flow through origin

eg. SU(2) with N=1 adjoint staggered flavor SJH, Montvay, Scorato, Skullerud, EPJC22 (2001) 451

On small systems using an algorithm which can flip sgn(det*M*) the fake onset at $\mu = \frac{m_{\pi}}{2}$ disappears

Pauli Principle forbids local scale gauge invariant superfluid $\langle \chi^{tr} \chi \rangle$ condensate

Might the ground state be a superconducting $\langle \chi^{tr} \overrightarrow{\alpha} . \overrightarrow{t} \chi \rangle \neq 0$?

SJH & Morrison, hep-lat/9905021

Quantitatively, for $\mu \gtrsim \mu_o \chi PT$ predicts

$$\frac{\langle \bar{\psi}\psi\rangle}{\langle \bar{\psi}\psi\rangle_0} = \left(\frac{\mu_o}{\mu}\right)^2; \quad n_q = 8N_f f_\pi^2 \mu \left(1 - \frac{\mu_o^4}{\mu^4}\right); \quad \frac{\langle qq\rangle}{\langle \bar{\psi}\psi\rangle_0} = \sqrt{1 - \left(\frac{\mu_o}{\mu}\right)^4}$$

[Kogut, Stephanov, Toublan, Verbaarschot & Zhitnitsky, Nucl.Phys.B582(2000)477] confirmed by QC₂D simulations with staggered fermions

[SJH, I. Montvay, S.E. Morrison, M. Oevers, L. Scorzato J.I. Skullerud, Eur.Phys.J.C17(2000)285, *ibid* C22(2001)451]

See also Braguta et al PRD94 (2016)205147

Thermodynamics at T = 0 from $\chi \mathbf{PT}$

quark number density
$$n_{\chi PT} = 8N_f f_\pi^2 \mu \left(1 - \frac{\mu_o^4}{\mu^4}\right)$$
 [KSTVZ]
pressure $p_{\chi PT} = -\frac{\Omega}{V} = \int_{\mu_o}^{\mu} n_q d\mu = 4N_f f_\pi^2 \left(\mu^2 + \frac{\mu_o^4}{\mu^2} - 2\mu_o^2\right)$
energy density $\varepsilon_{\chi PT} = -p + \mu n_q = 4N_f f_\pi^2 \left(\mu^2 - 3\frac{\mu_o^4}{\mu^2} + 2\mu_o^2\right)$

conformal anomaly

$$(T_{\mu\mu})_{\chi PT} = \varepsilon - 3p = 8N_f f_\pi^2 \left(-\mu^2 - 3\frac{\mu_o^4}{\mu^2} + 4\mu_o^2\right)$$
$$\mathsf{NB} \ (T_{\mu\mu})_{\chi PT} < 0 \text{ for } \mu > \sqrt{3\mu_o}$$

speed of sound
$$v_{\chi PT} = \sqrt{\frac{\partial p}{\partial \varepsilon}} = \left(\frac{1 - \frac{\mu_o^4}{\mu^4}}{1 + 3\frac{\mu_o^4}{\mu^4}}\right)^{\frac{1}{2}}$$

This is to be contrasted with another paradigm for cold dense matter, namely a degenerate system of weakly interacting (deconfined) quarks populating a Fermi sphere up to some maximum momentum $k_F \approx E_F = \mu$

$$\Rightarrow n_{SB} = \frac{N_f N_c}{3\pi^2} \mu^3; \quad \varepsilon_{SB} = 3p_{SB} = \frac{N_f N_c}{4\pi^2} \mu^4; \\ \delta_{SB} = 0; \quad v_{SB} = \frac{1}{\sqrt{3}}$$

Superfluidity arises from condensation of diquark Cooper pairs from within a layer of thickness Δ centred on the Fermi surface:

$$\Rightarrow \langle qq \rangle \propto \Delta \mu^2$$

By equating free energies, we naively predict a first order deconfining transition from BEC to quark matter; eg. for $f_{\pi}^2 = N_c/6\pi^2$, $\mu_d \approx 2.3\mu_o$. $N_f = 2$ Wilson fermions, HMC algorithm with $j \neq 0$, spatial volume (~ 2.1 fm)³

Mesons on $8^3 \times 16$ sjh, p. Sitch, J.I. Skullerud PLB662 405 (2008)

Meson spectrum roughly constant up to onset. Then $m_{\pi} \approx 2\mu$ in accordance with χ PT, while m_{ρ} decreases once $n_q > 0$, in accordance with effective spin-1 action [Lenaghan, Sannino & Splittorff PRD65:054002(2002)] Of Hiroshima group

Cf. Hiroshima group

[Muroya, Nakamura & Nonaka PLB551(2003)305]

Diquark Spectrum on $8^3 \times 16$ •--• isoscalar 0⁺ anti-diquark 2 \bigcirc -- \bigcirc isoscalar 0^+ diquark - *isovector* 1⁺ *anti-diquark* $\square - - \square$ isovector 1⁺ diquark Note for $\mu = j = 0$ 1.5 isoscalar 0⁻ anti-diquark 🔺 isoscalar 1⁻ anti-diquark $M_D(J^P) = M_M(J^{-P}).$ 0.5 0 0 0.1 0.2 0.7 0.3 0.5 0604

Diquark spectrum modelled by $m_{\pi,\rho} \pm 2\mu$ up to onset, while post-onset:

- Splitting of "Higgs/Goldstone" degendracy in $I = 00^+$ channel
- Meson/Baryon degeneracy in $I = 0 0^+$ and $I = 1 1^+$ channels

Hadron Wavefunctions in Two Color QC₂D

$$\Psi(\vec{r},\tau) = \int \mathrm{d}^3 \vec{x} \langle 0 | \bar{\psi}(\vec{x},\tau) \psi(\vec{x}+\vec{r},\tau) | H \rangle.$$

both meson and diquark channels

no Friedel oscillations, indicating a blurred Fermi surface?

 \Leftrightarrow

superfluid gap ∆>0? free field results

6 8 10

 $D^{0}_{\nu_{i}}[1^{-}]$

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

0 2 4

Amato, Giudice & SJH, EPJA51 (2015)39

Scale hierarchy in superfluid phase $\sigma(0^+) \sim \sigma(1^-) < \sigma(0^-) < \sigma(1^+)$

Cf. Mass hierarchy • $m(0^+) < m(1^+) \ll m(1^-) < m(0^-)$

hadron sizes decrease as density rises

Who knew?

Summary

Simple models support rich behaviour once $\mu \neq 0$ which can be exposed with orthodox simulation techniques

- in-medium modification of interactions (not discussed today)
- Friedel oscillations
- particle-hole excitations and sound
- Fermi surface pairing
- thin-film superfluidity
- strongly-correlated superfluidity

Left hanging:

how can we identify a Fermi surface in a gauge theory?

what extra physics does the Sign Problem "buy" for us?

superconductivity through pairing?

There is life beyond the Sign Problem!

(not discussed today)

(not discussed today)