Complex Langevin analysis of four-dimensional SU(2) gauge theory with a theta term

Akira Matsumoto¹, Kohta Hatakeyama², Mitsuaki Hirasawa¹, Masazumi Honda³, Yuta Ito⁴, Jun Nishimura¹², Atis Yosprakob¹

SOKENDAI¹, KEK², YITP³, Tokuyama College⁴

@ YITP 2-color QCD workshop November 6, 2020

Gauge theory with a θ term

 $rightarrow \theta$ term: topological property of the gauge theory, nonperturbative

$$S_{\theta} = -i\theta Q = -\frac{i\theta}{32\pi^2} \int d^4 x \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right]$$

• strong CP problem of QCD The experimental bound of θ is extremely small: $|\theta| < 10^{-10}$ \rightarrow no reason for it theoretically

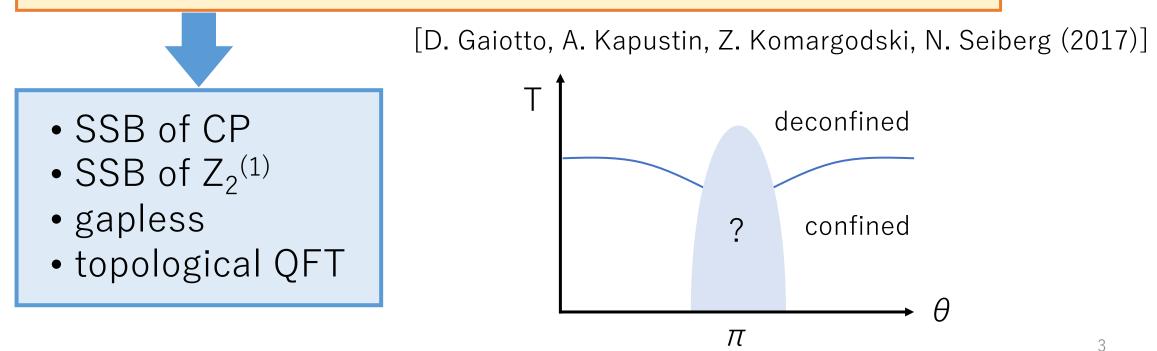
• phase structure of 4D SU(N) YM around $\theta = \pi$ interesting prediction by the 't Hooft anomaly matching

Phase structure at $\theta = \pi$

 \precsim 't Hooft anomaly matching of 4D SU(2) YM

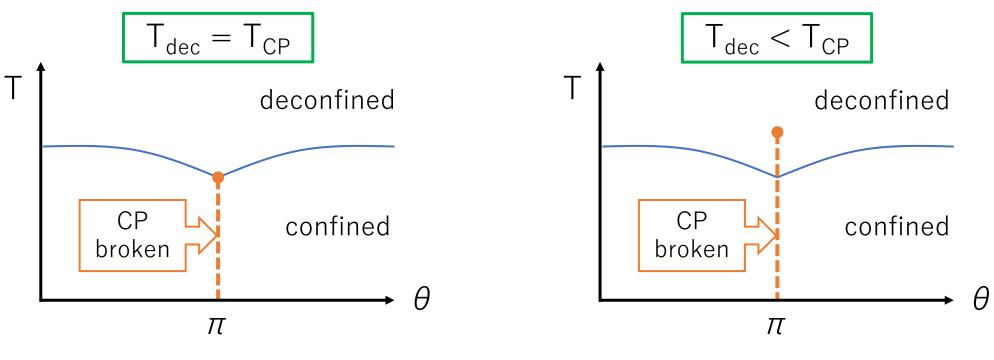
 \rightarrow constrain the phase structure at $\theta = \pi$

mixed 't Hooft anomaly between CP symmetry & Z_2 1-form center symmetry at $\theta = \pi$



I dec VS T_{CP}

☆ anomaly matching → $T_{dec} \leq T_{CP}$ (assuming SSB of CP at T = 0) examples of possible (θ , T) phase diagram



holography for large N supports [F. Bigazzi, A. L. Cotrone, R. Sisca (2015)]

soft SUSY breaking of SYM supports [S. Chen, K. Fukushima, H. Nishimura, Y. Tanizaki (2020)]

Numerical study of the θ term

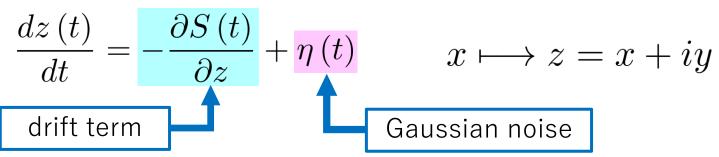
Monte Carlo simulation of the lattice gauge theory with a $\,\theta\,$ term

- θ term is purely imaginary \rightarrow sign problem
- ordinary reweighting method does not work when θ or V is large
- many approaches
 - Lefschetz thimble
 - density of states ← talk by C. Gattringer and O. Orasch
 - tensor renormalization group
 - complex Langevin ← this work
 - ...

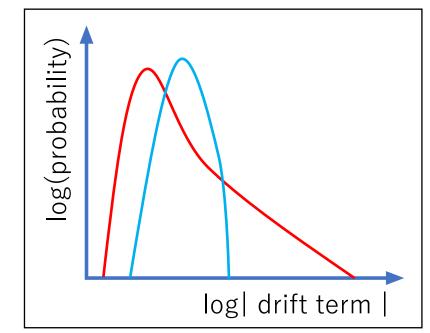
Complex Langevin method

complex Langevin method (CLM) [G. Parisi (1983)] [J. R. Klauder (1983)]

- Langevin equation: fictitious time evolution of dynamical variables
- real variable \rightarrow complex variable



- do not use "probability" \rightarrow sign problem
- condition required to be satisfied



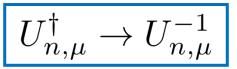
The distribution of the drift term falls off exponentially or faster.

[K. Nagata, J. Nishimura, S. Shimasaki (2016)]

CLM for the lattice gauge theory

• discretized complex Langevin equation for the link variable $U_{n,\mu}$

• gauge group is extended: $SU(2) \rightarrow SL(2, \mathbb{C})$



- drift term and observables have to respect holomorphicity
- control the non-unitarity by gauge cooling
 - gauge transformation to keep the link variable close to unitary
 - not affect gauge invariant observables

[E. Seiler, D. Sexty, I.-O. Stamatescu (2013)] [K. Nagata, J. Nishimura, S. Shimasaki (2016)]

Outline

1. Introduction

2. 2D U(1) gauge theory with a theta term▶ previous work

3. 4D SU(2) gauge theory with a theta term➤ ongoing work

4. Summary

Outline

1. Introduction

2. 2D U(1) gauge theory with a theta term➤ previous work

3. 4D SU(2) gauge theory with a theta term➢ ongoing work

4. Summary

2D U(1) lattice gauge theory

- \bullet exactly solvable on a finite lattice \rightarrow good test ground
- kinetic term

$$S_g = -\frac{\beta}{2} \sum_n \left(P_n + P_n^{-1} \right) \qquad \qquad \beta = \frac{1}{\left(ga \right)^2}$$

• topological charge … two definitions

$$Q_{\sin} = -\frac{i}{4\pi} \sum_{n} \left(P_n - P_n^{-1} \right)$$

integer value in the continuum limit

$$Q_{\log} = -\frac{i}{2\pi} \sum_{n} \log P_n$$

integer value for a finite lattice spacing

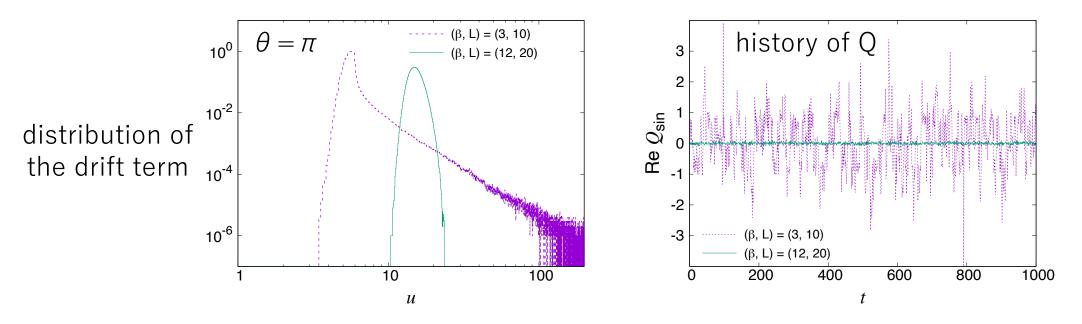
$$\sum_{n} \log P_n = \log \prod_{n} P_n + 2\pi i \mathbb{Z} \qquad \prod_{n} P_n = 1$$

CLM of 2D U(1) on the torus

[M. Hirasawa, A. Matsumoto, J. Nishimura, A. Yosprakob, (JHEP 2020)]

11

- small β (coarse lattice): wrong convergence of CLM
 - The condition for correct convergence is not satisfied.
 - trade-off
- large β (fine lattice): "freezing" of the topological charge
 - The configuration is confined in a single topological sector.



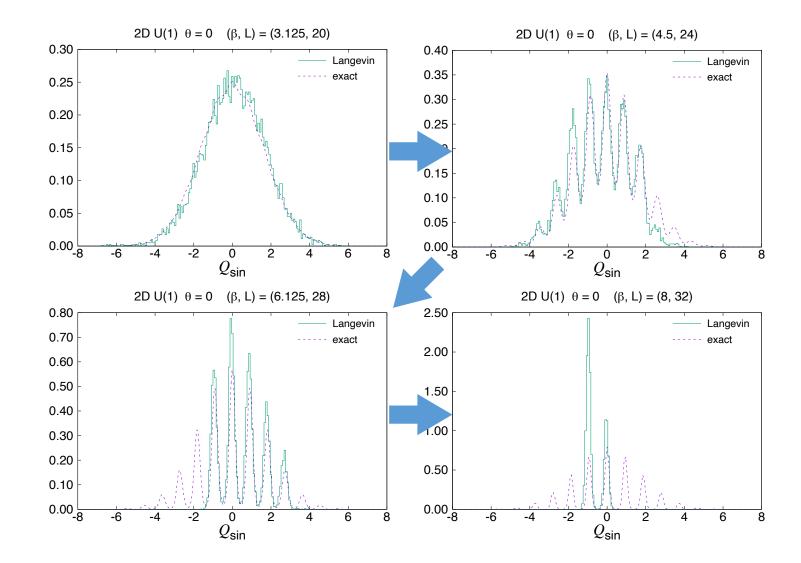
Behavior of the topological charge

• distribution of Q_{sin} at $\theta = 0$ for the fixed physical volume V / $\beta = 128$

$$Q_{\rm sin} = -\frac{i}{4\pi} \sum_{n} \left(P_n - P_n^{-1} \right)$$

in the continuum limit

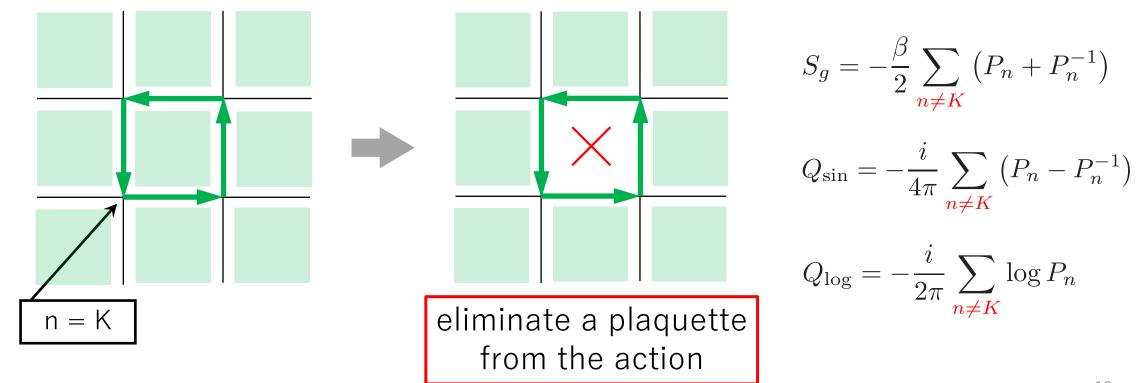
- $Q_{sin} \rightarrow integer$
- topology freezing



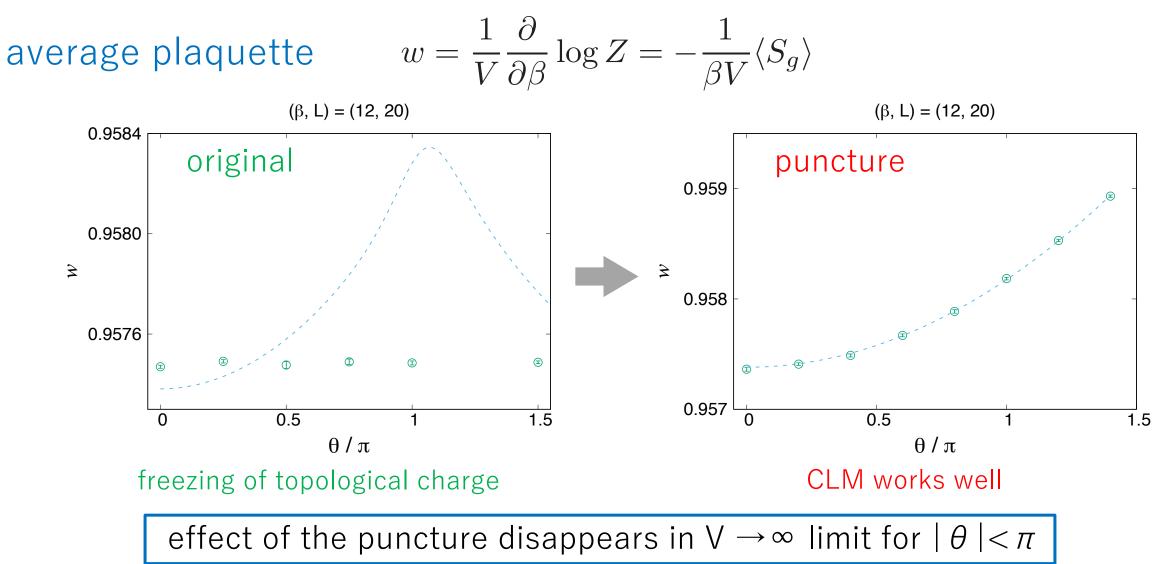
Introducing a puncture on the torus

prescription for avoiding the freezing of Q

☆ introduce a puncture on the torus → Q is no longer an integer topological charge can change frequently → freezing is resolved



Improvement of CLM



Outline

1. Introduction

2. 2D U(1) gauge theory with a theta term➢ previous work

3. 4D SU(2) gauge theory with a theta term➤ ongoing work

4. Summary

Lattice setup of 4D SU(2) gauge theory

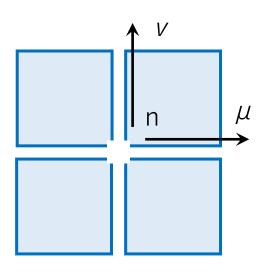
• kinetic term : standard Wilson action

 $\bar{P}_{n}^{\mu\nu} = P_{n}^{\mu\nu} - P_{n}^{-\mu\nu} - P_{n}^{\mu-\nu} + P_{n}^{-\mu-\nu}$

$$S_{\beta} = -\frac{\beta}{4} \sum_{n} \sum_{\mu \neq \nu} \operatorname{Tr} \left[P_{n}^{\mu\nu} \right] \qquad \qquad P_{n}^{\mu\nu} : \text{plaquette} \qquad \qquad \beta = \frac{4}{g^{2}}$$

• topological charge : clover leaf (symmetrized "figure 8") [P. Di Vecchia, K. Fabricius, G. C. Rossi, G. Veneziano (1981)]

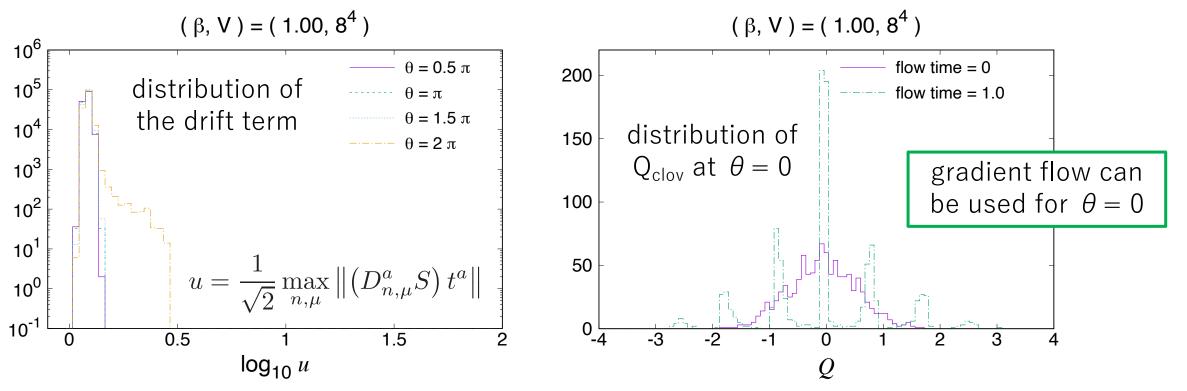
$$Q_{\text{clov}} = -\frac{1}{32\pi^2} \sum_{n} \frac{1}{16} \sum_{\mu,\nu,\rho,\sigma=1}^{4} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr}\left[\bar{P}_{n}^{\mu\nu}\bar{P}_{n}^{\rho\sigma}\right]$$



Validity of CLM

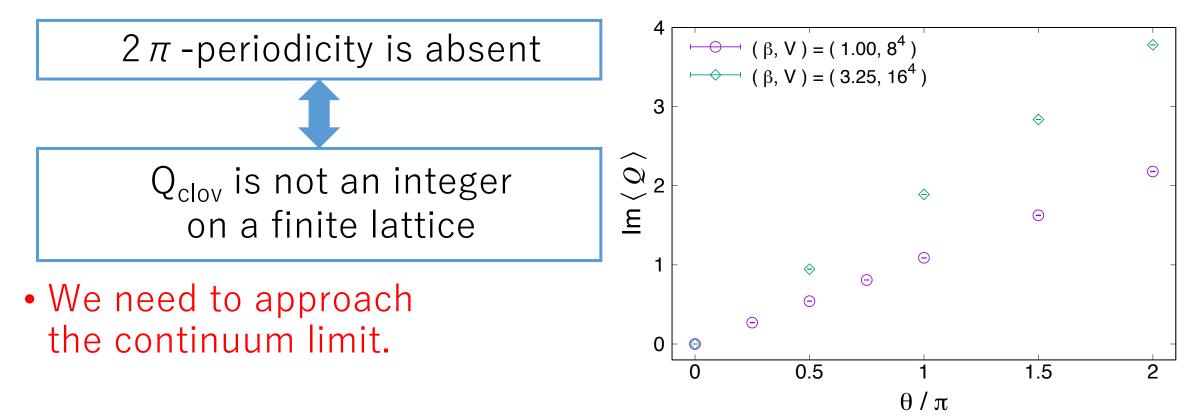
- The condition for the correct convergence is satisfied even for a small β .

rightarrow CLM works in a wide parameter region for 4D SU(2).



Result for small β

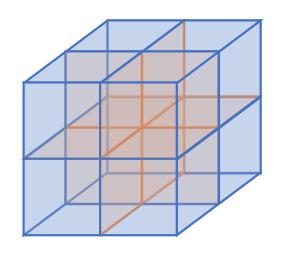
$$rightarrow$$
 topological charge (CP odd) $\langle Q
angle = -i rac{1}{Z} rac{\partial Z}{\partial heta}$
• linearly depend on $heta$

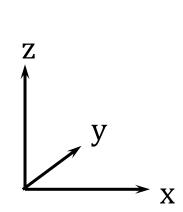


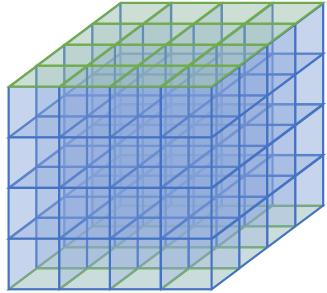
Solving the freezing problem

- How can we approach the continuum limit avoiding the freezing ?

 spatially localized defect (puncture)
 open boundary for the spatial direction [M. Luscher, S. Schaefer (2011)]
- The translational symmetry for the temporal direction should be respected.

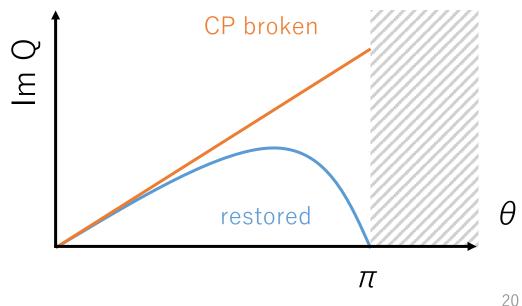






Investigate the phase structure

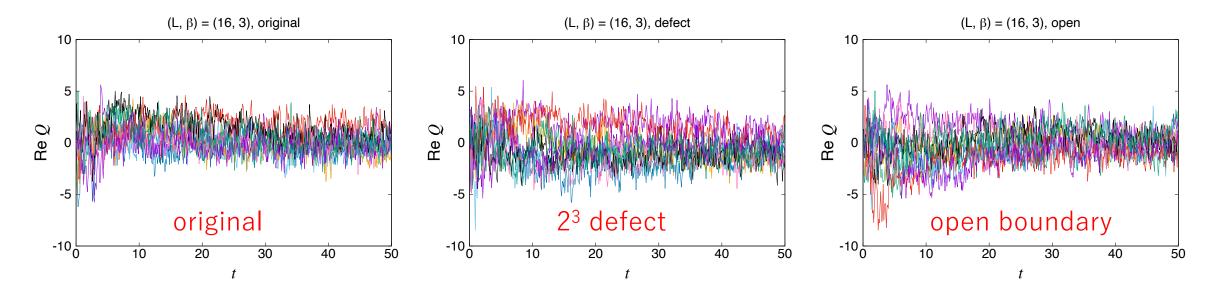
- modification of the boundary condition
 - \rightarrow Q is not an integer
 - $\rightarrow 2\pi$ periodicity is broken
- For $|\theta| < \pi$, the effect of the modification will disappear by taking the infinite volume limit.
- We can investigate the phase structure from the behavior of Im Q at $\theta \rightarrow \pi$.



Effect of the modification

- start from random configurations (hot start)
- check the initial configuration dependence of Re Q
- L = 16, $\theta = 0$

 β = 3.0 : Q is far from an integer

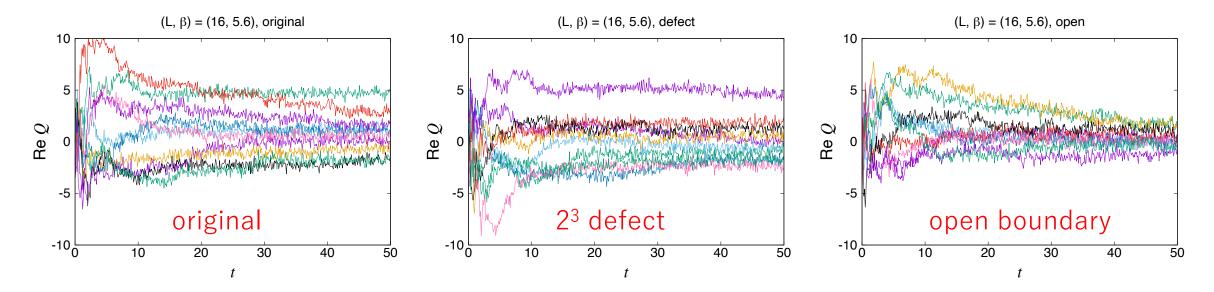


Effect of the modification

 $\beta = 5.6$: freezing in different topological sectors

- defect : severe autocorrelation still exists
- open boundary (one spatial direction) : thermalize slowly

Setting all the spatial boundaries open will be better ?



Outline

1. Introduction

2. 2D U(1) gauge theory with a theta term➢ previous work

3. 4D SU(2) gauge theory with a theta term➢ ongoing work

4. Summary

Summary

- The recent work on 't Hooft anomaly matching for 4D SU(2) YM predicted a nontrivial phase structure at $\theta = \pi$.
- We use the complex Langevin method to simulate the theory with the θ term, avoiding the sign problem.
- We need to approach the continuum limit in order to introduce the effect of the theta term appropriately.
- Modification of the boundary condition is necessary to overcome the severe topology freezing.

Future prospect

- The open boundary for one direction is not enough to solve the topology freezing.
- The open boundary for all the spatial direction will be better.

[Y. Burnier, A. Florio, O. Kaczmarek, L. Mazur (2018)]

- It is important to take the continuum limit and the infinite volume limit appropriately.
 - \rightarrow ongoing work

Thank you!

4D SU(2) gauge theory with a theta term

- simple example of a gauge theory with a θ term in 4D
- nevertheless it has a nontrivial phase structure at $\theta = \pi$

$$S = S_g + S_\theta$$

$$S_g = \frac{1}{2g^2} \int d^4 x \operatorname{Tr} \left[F_{\mu\nu} F_{\mu\nu} \right] \qquad S_\theta = -i\theta Q$$

topological charge

$$Q = \frac{1}{32\pi^2} \int d^4 x \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right]$$

integer value on a compact manifold

Approach to complex action systems

➢Reweighting method

- treat the phase of e^{-S} as an observable
- does not work if the phase oscillates rapidly

Lefschetz thimble method

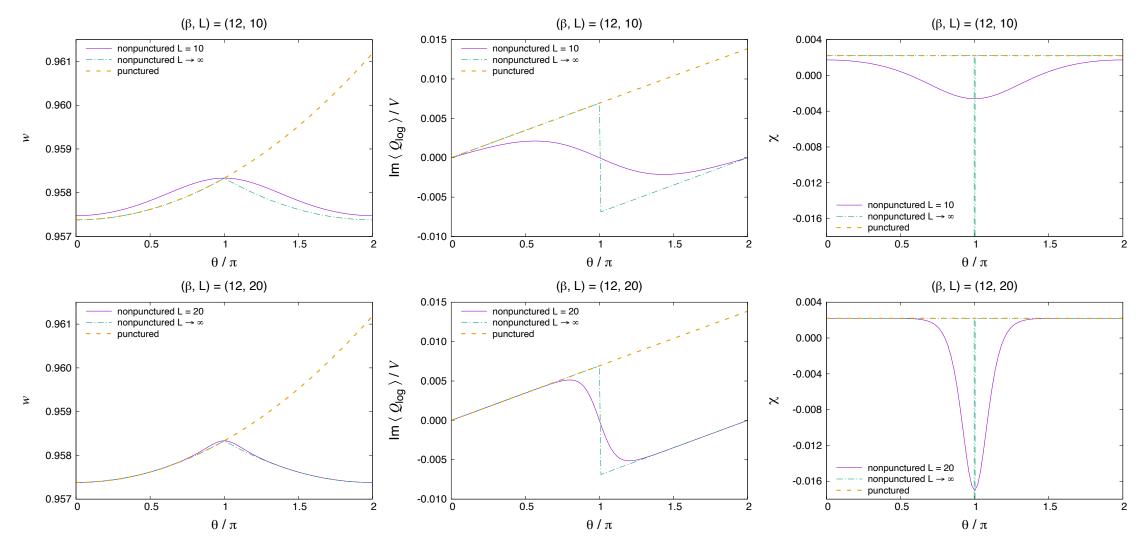
• reduce the phase oscillation by deforming the integral path from the real axis to the complex plane

➢Complex Langevin method

- low computational cost
- has to meet a condition to justify the result

➢Tensor renormalization group, Density of state, ...

Exact result of 2D U(1)



The partition function for the non-punctured model is given by (See appendix A.2 for derivation.)

$$Z_{\text{nonpunc}} = \sum_{n=-\infty}^{+\infty} \left[\mathcal{I}(n,\theta,\beta) \right]^V$$
(4.1)

for finite $V = L^2$, where the function $\mathcal{I}(n, \theta, \beta)$ is defined by

$$\mathcal{I}(n,\theta,\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\phi \, e^{\beta \cos \phi + i \left(\frac{\theta}{2\pi} - n\right)\phi} \,. \tag{4.2}$$

Let us take the infinite volume limit $V \to \infty$, in which the sum over n in (4.1) is dominated by the term that gives the largest absolute value $|\mathcal{I}(n,\theta,\beta)|$. This corresponds to the nthat minimizes $|\frac{\theta}{2\pi} - n|$. Thus in the infinite volume limit, the free energy is obtained as

$$\lim_{V \to \infty} \frac{1}{V} \log Z_{\text{nonpunc}} = \log \mathcal{I}(0, \tilde{\theta}, \beta), \qquad (4.3)$$

where $\tilde{\theta}$ is defined by $\tilde{\theta} = \theta - 2\pi k$ with the integer k chosen so that $-\pi < \tilde{\theta} \le \pi$.

On the other hand, the partition function for the punctured model is given by (See appendix A.3 for derivation.)

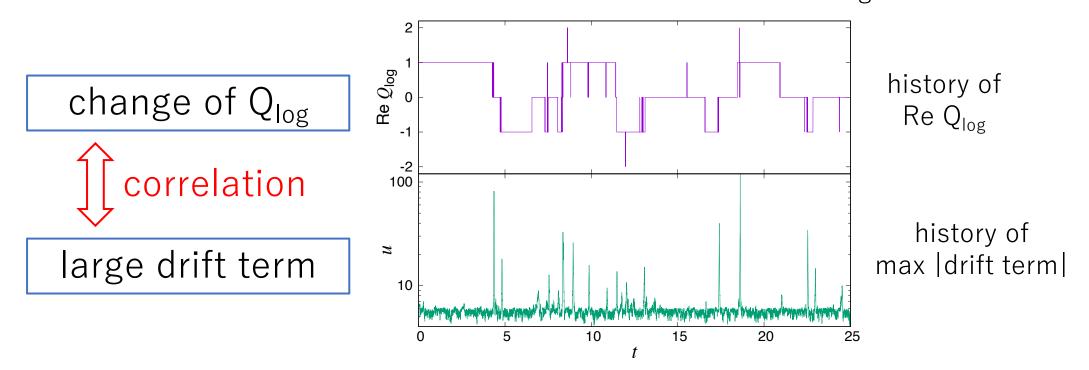
$$Z_{\text{punc}} = \left[\mathcal{I} \left(0, \theta, \beta \right) \right]^V \tag{4.4}$$

for finite $V = L^2 - 1$, which implies that the free energy

$$\frac{1}{V}\log Z_{\text{punc}} = \log \left[\mathcal{I}\left(0,\theta,\beta\right) \right]$$
(4.5)

Appearance of large drift and topology change

- Each configuration can be classified into topological sectors by measuring Q_{log}
- transition among topological sectors = change of Q_{log}



Strategy to recover "topology on the lattice"

- gradient flow / cooling
 - \rightarrow may not be justified for CLM ($\theta \neq 0$)
 - [L. Bongiovanni, G. Aarts, E. Seiler, D. Sexty (2014)]
- approach the continuum limit (increase V and β) \rightarrow We increased V to 32⁴ but Q_{clov} is still not close to an integer.

• improve the action by introducing 1×2 and 2×1 Wilson loops

