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Gauge theory with a 6 term

v O term: topological property of the gauge theory, nonperturbative
10
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e strong CP problem of QCD
The experimental bound of 8 is extremely small: | 6| < 10-10
— no reason for it theoretically

 phase structure of 4D SU(N) YM around 6 =nr
interesting prediction by the 't Hooft anomaly matching




Phase structure at 8 =17

v 't Hooft anomaly matching of 4D SU(2) YM
— constrain the phase structure at 8 =m

mixed 't Hooft anomaly between
CP symmetry & Z, 1-form center symmetry at 6 =n

\ 4

[D. Gaiotto, A. Kapustin, Z. Komargodski, N. Seiberg (2017)]

e SSB of CP ! deconfined
+ SSB of 7, —
g gapless ? confined
e topological QF T
- 0




Tdec VS TCP

v¢ anomaly matching — Tg.. = Tep (assuming SSB of CP at T = 0)
examples of possible (8, T ) phase diagram

Tgec = Tep Tgee < Tep
T deconfined T deconfined
CP confined CP confined
broken broken
> O > 0
Il It
holography for large N supports soft SUSY breaking of SYM supports

[F. Bigazzi, A. L. Cotrone, R. Sisca (2015)] [S. Chen, K. Fukushima, H. Nishimura, Y. Tanizaki (2020)]
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Numerical study of the 8 term

Monte Carlo simulation of the lattice gauge theory with a 6 term
« O term is purely imaginary — sign problem
« ordinary reweighting method does not work when 6 or V is large

* many approaches
e Lefschetz thimble
e density of states < talk by C. Gattringer and O. Orasch
« tensor renormalization group
« complex Langevin < this work



Complex Langevin methoa

complex Langevin method (CLM) [G. Parisi (1983)] [J. R. Klauder (1983)]
« Langevin equation: fictitious time evolution of dynamical variables
* real variable — complex variable ~4

dz (t a9 (t =

Zi):— a§)+77(t) TH— 2=+ 1y §

drift term |—1 L{ Gaussian noise %
« do not use “probability” — sigimewedilem - \

.

e condition required to be satisfied log| drift term |

The distribution of the drift term falls off exponentially or faster.
[K. Nagata, J. Nishimura, S. Shimasaki (2016)] ;



CLM for the lattice gauge theory

e discretized complex Langevin equation for t

Un,pu (t + €) = exp [—ieDnKS(w +iven, (t),

U, . € SL(2,C) drift term

e gauge group is extended: SU(2) — SL(2,C)

ne link variable U, ,

Un,pu ()

—1
Unp = Un.p

o drift term and observables have to respect holomorphicity

e control the non-unitarity by gauge cooling

e gauge transformation to keep the link variable close to unitary

« not affect gauge invariant observables

[E. Seiler, D. Sexty, |.-O. Stamatescu (2013)] [K. Nagata, J. Nishimura, S. Shimasaki (2016)]

7



Outline

1. Introduction

2. 2D U(1) gauge theory with a theta term
> previous work

3. 4D SU(2) gauge theory with a theta term
> ongoing work

4, Summary



Outline

2. 2D U(1) gauge theory with a theta term
> previous work



2D U(1) lattice gauge theory

« exactly solvable on a finite lattice — good test ground
 kinetic term

b 1 1
S, = —— P, + P’ —
g 2 zﬂ:( ) 5 (ga)Q
* topological charge --- two definitions
? _
(sin = T (Pn_Pn 1) integer value in the continuum limit
?
Qrog = o Z,;log Py, integer value for a finite lattice spacing

ZloanzlogHPn+27riZ HPnzl
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CLM of 2D U(1) on the torus

[M. Hirasawa, A. Matsumoto, J. Nishimura, A. Yosprakob, (JHEP 2020)]

e small B (coarse lattice): wrong convergence of CLM
 The condition for correct convergence is not satisfied.
ﬁ trade-off

 large B (fine lattice): “freezing” of the topological charge
 The configuration is confined in a single topological sector.
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Sehavior of the topological charge

o distribution of Qg
at 6 =0 for the fixed
physical volume
V/B =128

CQShl — 4iT (}) '[) )

in the continuum limit

e Q4 , — integer
e topology freezing
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Introducing a puncture on the torus

prescription for avoiding the freezing of O
v< introduce a puncture on the torus — Q is no longer an integer
topological charge can change frequently — freezing is resolved

S,= -5 3 (Pt By

n#K
X o o
. Qsin = 4 (Pn P )

n=K eliminate a plaquette
from the action
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1 0O 1
average plaquette w=——1logZ =——(8
(B, L) = (12, 20) B, L) = (12, 20)
0.9584 — ‘ ‘ ‘ ‘ :
original puncture
0.959 | o
0.9580 | o
= = ®
0.958 | .
0.9576 ®
0 05 1 15 0.957 =5 05 1
0/mn 0/mn
freezing of topological charge CLM works well

improvement of CLM

effect of the puncture disappears in V — o |imit for | 6 |<m

1.5
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Outline

3. 4D SU(2) gauge theory with a theta term
> ongoing work



| attice setup of 4D SU(2) gauge theory

» kinetic term : standard Wilson action

5 u -
=-£ Z ZTr [PHY] PH¥ - plaquette b= 72
N puFv

- topological charge : clover leaf (symmetrized “figure 8”)
[P. Di Vecchia, K. Fabricius, G. C. Rossi, G. Veneziano (1981)]

TV

QCIOV —
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DI = Py — Py — P 4 Pt
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Validity ot CLM

* The condition for the correct convergence is satisfied
even for a small B.

v CLM works in a wide parameter region for 4D SU(2).
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Result tor small B

¢ topological charge (CP odd) (Q) = 10z

| 7 6
e linearly depend on 6
2 m-periodicity is absent o~ (B, V) =(1.00,8%)
—— (B, V) =(3.25, 16%)
!
Qgoy IS NOt an integer S .
on a finite lattice E
1t o 5 ©
« We need to approach e
the continuum limit. of o | |
0 0.5 1

15 2
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Solving the Treezing problem

« How can we approach the continuum limit avoiding the freezing 7
(1) spatially localized defect (puncture)
(2) open boundary for the spatial direction  [M. Luscher, S. Schaefer (2011)]
e The translational symmetry for the temporal direction should be

respected. T
/

> N
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Investigate the phase structure

« modification of the boundary condition
— Q is not an integer
— 217 periodicity is broken

e For | 6] <, the effect of the modification will disappear by taking
the infinite volume limit.

« We can investigate the phase CE)’
structure from the behavior of —

ImQat 6 —r1r.
restored 6

It
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-ffect of the modification

e start from random configurations (hot start)
« check the initial configuration dependence of Re Q
e =16, 6=0

£ =3.0:Qis far from an integer

(L, B) = (16, 3), original (L, B) = (16, 3), defect (L, B) = (16, 3), open
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-ffect of the modification

B = 5.6 : freezing in different topological sectors
« defect : severe autocorrelation still exists
« open boundary (one spatial direction) : thermalize slowly

Setting all the spatial boundaries open will be better ?
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Summary

e The recent work on 't Hooft anomaly matching for 4D SU(2) YM
predicted a nontrivial phase structure at 6 =m.

« We use the complex Langevin method to simulate the theory with
the 6 term, avoiding the sign problem.

 We need to approach the continuum limit in order to introduce the
effect of the theta term appropriately.

« Modification of the boundary condition is necessary to overcome
the severe topology freezing.

24



-uture prospect

« The open boundary for one direction is not enough to solve the
topology freezing.

« The open boundary for all the spatial direction will be better.
[Y. Burnier, A. Florio, O. Kaczmarek, L. Mazur (2018)]

[t is important to take the continuum limit and the infinite volume
limit appropriately.

— ongoing work
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Thank you!



4D SU(2) gauge theory with a theta term

* simple example of a gauge theory with a 6 term in 4D
e nevertheless it has a nontrivial phase structure at 8 =m

S =S5,4+ 50

S, = 2; d*zTr [F,, F,,] Sp = —ifQ
« topological charge

Q= 321#2 d*2€ 1 po Tt [Fluy Foo ]

integer value on a compact manifold




Approach to complex action systems

> Reweighting method
e treat the phase of e as an observable
« does not work if the phase oscillates rapidly

> Lefschetz thimble method

« reduce the phase oscillation by deforming the integral path
from the real axis to the complex plane

»Complex Langevin method
* low computational cost
* has to meet a condition to justify the result

> Tensor renormalization group, Density of state, ...
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The partition function for the non-punctured model is given by (See appendix A.2 for
derivation.)

400

Znonpunc: Z [Z(n7076>]v (41)

n——oo

for finite V' = L?, where the function Z(n, 6, 3) is defined by

I(n,6,6) = o / " apedemoriln)e (4.2)

—T

Let us take the infinite volume limit V' — oo, in which the sum over n in (4.1) is dominated
by the term that gives the largest absolute value |Z(n,#,5)|. This corresponds to the n
that minimizes |% —n|. Thus in the infinite volume limit, the free energy is obtained as

1 ~
Vlgnoo V log Znonpunc — IOgI(Oa 07 6) ) (43)
where 6 is defined by 6 = 0 — 27k with the integer k chosen so that —7 < 6 < 7.

On the other hand, the partition function for the punctured model is given by (See
appendix A.3 for derivation.)

Zpunc = [I (07 67 ﬁ)]v (44>
for finite V' = L? — 1, which implies that the free energy

1

vV log Zpunc = log [I (Oa 97 5)] (4'5)
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Appearance of large drift and topology change

« Each configuration can be classified into topological sectors
by measuring Q.

» transition among topological sectors = change of Q)

o \ ‘ ‘ ‘ ]
1 |
s | history of
change of Qe ‘1’ H HH H JTH | Re Quo,
: 2L | | | .
ﬁcorrelatlon 100

large drift term | | N

10 - WWWMWWWM W% WM max |drift term|

0

Re Q g

history of
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Strategy to recover “topology on the lattice”

» gradient flow / cooling
— may not be justified for CLM (8 #0)

[L. Bongiovanni, G. Aarts, E. Seiler, D. Sexty (2014)]

« approach the continuum limit (increase V and )
— We increased V to 324 but Q. is still not close to an integer.

e improve the action by introducing
1x2 and 2x1 Wilson loops —+

[Y. lwasaki (1983)] [P. Weisz (1983)]
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