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Gauge theory with a θ term
☆ θ term: topological property of the gauge theory, nonperturbative

• strong CP problem of QCD
The experimental bound of θ is extremely small: |θ| < 10-10

→ no reason for it theoretically

• phase structure of 4D SU(N) YM around θ=π
interesting prediction by the ʼt Hooft anomaly matching
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Phase structure at θ=π
☆ ʼt Hooft anomaly matching of 4D SU(2) YM
→ constrain the phase structure at θ=π
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[D. Gaiotto, A. Kapustin, Z. Komargodski, N. Seiberg (2017)]

mixed ʼt Hooft anomaly between
CP symmetry & Z2 1-form center symmetry at θ=π

• SSB of CP
• SSB of Z2(1)

• gapless
• topological QFT
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Tdec vs TCP

☆ anomaly matching → Tdec ≦ TCP (assuming SSB of CP at T = 0)

examples of possible (θ, T ) phase diagram
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holography for large N supports
[F. Bigazzi, A. L. Cotrone, R. Sisca (2015)]

soft SUSY breaking of SYM supports
[S. Chen, K. Fukushima, H. Nishimura, Y. Tanizaki (2020)]



Numerical study of the θ term
Monte Carlo simulation of the lattice gauge theory with a θ term
• θ term is purely imaginary → sign problem
• ordinary reweighting method does not work when θ or V is large

• many approaches
• Lefschetz thimble
• density of states  ← talk by C. Gattringer and O. Orasch
• tensor renormalization group
• complex Langevin  ← this work
• ...
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Complex Langevin method
complex Langevin method (CLM)
• Langevin equation: fictitious time evolution of dynamical variables
• real variable → complex variable

• do not use “probability” → sign problem
• condition required to be satisfied

[G. Parisi (1983)]  [J. R. Klauder (1983)]
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drift term Gaussian noise
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[K. Nagata, J. Nishimura, S. Shimasaki (2016)]

The distribution of the drift term falls off exponentially or faster. 



CLM for the lattice gauge theory
• discretized complex Langevin equation for the link variable Un,μ

• gauge group is extended:
• drift term and observables have to respect holomorphicity
• control the non-unitarity by gauge cooling
• gauge transformation to keep the link variable close to unitary
• not affect gauge invariant observables

drift term
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[E. Seiler, D. Sexty, I.-O. Stamatescu (2013)] [K. Nagata, J. Nishimura, S. Shimasaki (2016)]
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2D U(1) lattice gauge theory
• exactly solvable on a finite lattice → good test ground
• kinetic term

• topological charge … two definitions
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integer value for a finite lattice spacing

integer value in the continuum limit



CLM of 2D U(1) on the torus
• small β (coarse lattice): wrong convergence of CLM
• The condition for correct convergence is not satisfied.

trade-off
• large β (fine lattice): “freezing” of the topological charge
• The configuration is confined in a single topological sector.
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[M. Hirasawa, A. Matsumoto, J. Nishimura, A. Yosprakob, (JHEP 2020)]



Behavior of the topological charge
• distribution of Qsin

at θ= 0 for the fixed
physical volume
V /β = 128

in the continuum limit
• Qsin → integer
• topology freezing
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Introducing a puncture on the torus
prescription for avoiding the freezing of Q
☆ introduce a puncture on the torus → Q is no longer an integer

topological charge can change frequently → freezing is resolved

n = K eliminate a plaquette 
from the action
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Improvement of CLM
average plaquette
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Lattice setup of 4D SU(2) gauge theory
• kinetic term : standard Wilson action

• topological charge : clover leaf (symmetrized “figure 8”)
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[P. Di Vecchia, K. Fabricius, G. C. Rossi, G. Veneziano (1981)]
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Validity of CLM
• The condition for the correct convergence is satisfied

even for a small β.
☆ CLM works in a wide parameter region for 4D SU(2).
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Result for small β
☆ topological charge (CP odd)
• linearly depend on θ

• We need to approach
the continuum limit.
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Solving the freezing problem
• How can we approach the continuum limit avoiding the freezing ?

(1) spatially localized defect (puncture)
(2) open boundary for the spatial direction
• The translational symmetry for the temporal direction should be 

respected.

19
x

y

z
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Investigate the phase structure
• modification of the boundary condition

→ Q is not an integer
→ 2π periodicity is broken
• For |θ| <π, the effect of the modification will disappear by taking 

the infinite volume limit.
• We can investigate the phase

structure from the behavior of
Im Q at θ→π.
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Effect of the modification
• start from random configurations (hot start)
• check the initial configuration dependence of Re Q
• L = 16, θ= 0

β= 3.0 : Q is far from an integer
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Effect of the modification
β= 5.6 : freezing in different topological sectors
• defect : severe autocorrelation still exists
• open boundary (one spatial direction) : thermalize slowly

Setting all the spatial boundaries open will be better ?
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Summary
• The recent work on ʼt Hooft anomaly matching for 4D SU(2) YM 

predicted a nontrivial phase structure at θ=π.
• We use the complex Langevin method to simulate the theory with 

the θ term, avoiding the sign problem.
• We need to approach the continuum limit in order to introduce the 

effect of the theta term appropriately.
• Modification of the boundary condition is necessary to overcome 

the severe topology freezing.
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Future prospect
• The open boundary for one direction is not enough to solve the 

topology freezing.
• The open boundary for all the spatial direction will be better.

• It is important to take the continuum limit and the infinite volume 
limit appropriately.
→ ongoing work

25

[Y. Burnier, A. Florio, O. Kaczmarek, L. Mazur (2018)]
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Thank you!



4D SU(2) gauge theory with a theta term
• simple example of a gauge theory with a θ term in 4D
• nevertheless it has a nontrivial phase structure at θ=π

• topological charge

integer value on a compact manifold
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Approach to complex action systems
ØReweighting method

• treat the phase of e-S as an observable
• does not work if the phase oscillates rapidly

ØLefschetz thimble method
• reduce the phase oscillation by deforming the integral path

from the real axis to the complex plane
ØComplex Langevin method

• low computational cost
• has to meet a condition to justify the result

ØTensor renormalization group, Density of state, ...
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Exact result of 2D U(1)

29

0.957

0.958

0.959

0.960

0.961

 0  0.5  1  1.5  2

w

e / /

(`, L) = (12, 10)

nonpunctured L = 10
nonpunctured L A '
punctured

0.957

0.958

0.959

0.960

0.961

 0  0.5  1  1.5  2

w

e / /

(`, L) = (12, 20)

nonpunctured L = 20
nonpunctured L A '
punctured

-0.016

-0.012

-0.008

-0.004

0.000

0.004

 0  0.5  1  1.5  2

r

e / /

(`, L) = (12, 10)

nonpunctured L = 10
nonpunctured L A '
punctured

-0.016

-0.012

-0.008

-0.004

0.000

0.004

 0  0.5  1  1.5  2

r

e / /

(`, L) = (12, 20)

nonpunctured L = 20
nonpunctured L A '
punctured

-0.010

-0.005

0.000

0.005

0.010

0.015

 0  0.5  1  1.5  2

Im
 � 
Q

lo
g 
� /

 V

e / /

(`, L) = (12, 10)

nonpunctured L = 10
nonpunctured L A '
punctured

-0.010

-0.005

0.000

0.005

0.010

0.015

 0  0.5  1  1.5  2

Im
 � 
Q

lo
g 
� /

 V

e / /

(`, L) = (12, 20)

nonpunctured L = 20
nonpunctured L A '
punctured



30

J
H
E
P
0
9
(
2
0
2
0
)
0
2
3

any case, one can obtain exact results for a finite lattice as we explain in appendix A, and

using them, one can demonstrate explicitly that the punctured model is equivalent to the

original non-punctured model in the infinite volume limit for |θ| < π.

4.2 Equivalence in the infinite volume limit

In this section, we show the equivalence of the non-punctured model and the punctured

model in the infinite volume limit. Here we use the log definition of the topological charge,

but a similar statement holds as far as the same definition is used for the two models.2

The partition function for the non-punctured model is given by (See appendix A.2 for

derivation.)

Znonpunc =
+∞∑

n=−∞
[I(n, θ,β)]V (4.1)

for finite V = L2, where the function I(n, θ,β) is defined by

I(n, θ,β) = 1

2π

∫ π

−π
dφ eβ cosφ+i( θ

2π−n)φ . (4.2)

Let us take the infinite volume limit V → ∞, in which the sum over n in (4.1) is dominated

by the term that gives the largest absolute value |I(n, θ,β)|. This corresponds to the n

that minimizes | θ
2π − n|. Thus in the infinite volume limit, the free energy is obtained as

lim
V→∞

1

V
logZnonpunc = log I(0, θ̃,β) , (4.3)

where θ̃ is defined by θ̃ = θ − 2πk with the integer k chosen so that −π < θ̃ ≤ π.

On the other hand, the partition function for the punctured model is given by (See

appendix A.3 for derivation.)

Zpunc = [I (0, θ,β)]V (4.4)

for finite V = L2 − 1, which implies that the free energy

1

V
logZpunc = log [I (0, θ,β)] (4.5)

is actually V independent. Hence all the observables that can be derived from it has no

finite size effects. Note also that this model does not have the 2π periodicity in θ. By

comparing (4.3) and (4.5), one can see that the two models are equivalent in the infinite

volume limit for |θ| < π.

The observables defined in section 3.4 can be calculated for the two models using (4.1)

and (4.4) by numerical integration (See appendix A.4 for the details.). In figure 5, we plot

the average plaquette (Top) defined by (3.14), the imaginary part of the topological charge

density (Middle) defined by (3.15) and the topological susceptibility (Bottom) defined

2In the case of the sine definition, the equivalence of the two models in the infinite volume limit holds

for |θ| < θc(β), where θc(β) ∼ π{1 + 1/(2β)} for large β.

– 14 –



Appearance of large drift and topology change 
• Each configuration can be classified into topological sectors

by measuring Qlog.
• transition among topological sectors = change of Qlog
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Strategy to recover “topology on the lattice”
• gradient flow / cooling

→ may not be justified for CLM (θ≠0)

• approach the continuum limit (increase V and β)
→ We increased V to 324 but Qclov is still not close to an integer.

• improve the action by introducing
1×2 and 2×1 Wilson loops
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[L. Bongiovanni, G. Aarts, E. Seiler, D. Sexty (2014)]

[Y. Iwasaki (1983)] [P. Weisz (1983)]


