Noncommutative Geometry and Vacuum String Field Theory

Y. Matsuo
Univ. Tokyo
July 2002, YITP WS on QFT
1. Introduction and Motivation
A Brief History of VSFT

- Purely Cubic Theory
 - Witten’s OSFT
 - OSFT = Noncommutative Geometry
 - ‘85

- Noncommutative Geometry
 - D-brane as NC Soliton
 - D-brane Charge = K-theory
 - ‘00

- Tachyon Condensation
 - ‘99

- VSFT
 - ‘01~
Motivation: What is D-brane?

- In effective field theory
 - D-brane = Soliton of closed string
 - Black hole like object
- In (full) string theory
 - D-brane = Boundary condition for open string
 - Described by (abstract) Boundary state
 \[(L_n - \bar{L}_{-n}) |B\rangle = 0 \]

They should be understood as “Solution”
To the second quantized field theory
Why Noncommutative Geometry is relevant to understand D-brane?

Open string has Chan-Paton index

\[\Phi_{ij} \]

: i,j : Chan-Paton Index

Composition of two open strings

\[\sum_k \Phi_{ij} \Phi_{jk} = \Phi_{ik} \]

= Multiplication of matrices
To pick up one D-brane, we use Projector to one specific Chan-Paton Index

\[P^2 = P \]
\[\text{rank}(P) = k \]

Matrix \(\to \) Noncommutative Geometry
Projector \(\to \) Noncommutative Soliton
D-(p-2) brane out of D-p brane

Idea: Use D-p brane world volume instead of Chan-Paton factor

Start from D-p brane with *non-zero B-field*

Zero mode of open string becomes noncommutative

\[
(f \ast g)(x) = e^{\frac{i}{2} \theta_{ij}(\partial_i \partial'_{j} - \partial_j \partial'_{i})} f(x) g(x') \bigg|_{x' = x}
\]

Moyal Product

Moyal plane is the simplest example of NC geometry

Projector equation \(f \ast f = f \Rightarrow f = \exp \left(-\frac{1}{2\theta}(x_1^2 + x_2^2) \right) \)

Blob with size \(\Box \) is interpreted as D-(p-2) brane
Open string as a whole as Matrix

Witten’s star product

\[\Psi_1 \ast \Psi_2 \]

\[\Psi_1 \quad \Psi_2 \]

\[(\Psi_1 \ast \Psi_2)(X) = \int DYZ \left(\prod_{\sigma=0}^{\pi/2} \delta(X(\sigma) - Y(\sigma)) \delta(Y(\pi - \sigma) - Z(\sigma)) \delta(Z(\pi - \sigma) - X(\pi - \sigma)) \right) \Psi_1(Y)\Psi_2(Z) \]

Path Integral for the overlap looks like matrix multiplication

Witten’s argument

1. \(\ast \)-product::noncommutative and Associative
2. Q: BRST operator : \(Q^2=0 \)
3. Integration

Triplet \((\ast, Q, \int) \)
defines
Noncommutative Geometry
D-brane is NC soliton for Witten’s star product

\[\Psi \ast \Psi = \Psi \]

Matrix equation

Conformal Invariance

One to one correspondence between solutions?

Matrix = \text{gl}(\mathfrak{g})

Virasoro

Open string

Closed String

Progress until 2002/7

A: Witten’s OSFT

\[
S = \int \left(\frac{1}{2} \Psi \ast Q \Psi + \frac{1}{3} \Psi^3 \right)
\]

= D25 brane background

B: Tachyon Vacuum \(\Psi_0\)

solution by level truncation

\[
\frac{|S[\Psi_0] - S[0]|}{\tau_{25}} = 0.9999....
\]

\[Sen, RSZ, Berkovits, Taylor...\]

B should be universal for any D-brane

We want re-expand the theory from point B

No analytic solution known for \(\Psi_0\)
Ansatz of the theory at $B = \text{VSFT}$

- $Q \square Q^{\text{VSFT}}$: Pure ghost BRST operator
 - *NO COHOMOLOGY*
- Splitting of variable in wave function
 \[
 \Psi = \Psi^{\text{matter}} \otimes \Psi^{\text{ghost}} \\
 \Downarrow
 \\
 Q^{\text{VSFT}} \Psi^{\text{ghost}} + \Psi^{\text{ghost}} \ast \Psi^{\text{ghost}} = 0
 \\
 \Psi^{\text{matter}} \ast \Psi^{\text{matter}} = \Psi^{\text{matter}}
 \]
 Exactly solvable!
Candidate of D-brane = Sliver state

Kostelecky-Potting solution

\[|\Xi\rangle \propto e^{\frac{1}{2}a^+CTa^+} |0\rangle \]

\[T = \frac{1}{2M_0} \left(1 + M_0 \pm \sqrt{(1 + M_0)(1 - 3M_0)} \right) \]

Wedge state and Sliver state

\[|n\rangle = |0\rangle^n \quad |n\rangle \ast |m\rangle = |n + m\rangle \]

\[|\Xi\rangle = \lim_{n \to \infty} (|n\rangle) \]

Use of square root
And infinite product
Is the origin of Trouble
2. Recent developments of VSFT
Topics

• Explicit correspondence with NC Geometry
 – Half string Formulation
 – Mapping Witten’s star product to Moyal product

• Appearance of Closed string

• Construction of Physical State
 – Can variation around sliver reproduces open string spectrum?
 – Hata-Kawano state, Okawa state, …
2.1 Explicit correspondence with NC Geometry

Witten’s argument uses the path integral formally.

For explicit correspondence, we need to use mode expansion.

1. Split string formulation

\[
\begin{aligned}
X(\sigma) &= X(\pi - \sigma) \\
l(\sigma) &= X(\sigma) \\
r(\sigma) &= X(\pi - \sigma)
\end{aligned}
\]

\[
\Psi(X) \rightarrow \Psi(l, r)
\]

\[
(\Psi_1 * \Psi_2)(l, r) = \int dt \Psi_1(l, t) * \Psi_2(t, r)
\]

Except for the path integral, * product looks like matrix multiplication.

\[\text{Bordes et. al., RSZ, Gross-Taylor}\]
Subtlety in split string

Boundary condition at the midpoint?

Neumann at M

\[l(\sigma) = l_0 + \sqrt{2} \sum_{\text{even}} l_e \cos(e \sigma) \quad (e \text{ even, positive}) \]

\[r(\sigma) = r_0 + \sqrt{2} \sum_{\text{even}} r_e \cos(e \sigma) \]

Dirichlet at M

\[l(\sigma) = \sqrt{2} \sum_{\text{odd}} l_o \cos(o \sigma) \quad (o \text{ even, positive}) \]

\[r(\sigma) = \sqrt{2} \sum_{\text{odd}} r_o \cos(o \sigma) \]

Original Variable

\[X(\sigma) = x_0 + \sqrt{2} \sum_{n \geq 0} x_n \cos(n \sigma) \]
Translation between even and odd mode

\[T_{eo} = \frac{\pi}{4} \int_{0}^{\pi/2} d\sigma \cos(e\sigma)\cos(o\sigma) = \frac{2(-1)^{(e+o-1)/2}}{\pi} \left(\frac{1}{o+e} + \frac{1}{o-e} \right) \]

\[R_{oe} = (\overline{T})_{oe} - (-1)^{e/2} T_{0e} \]

“X” in Gross-Jevicki, Gross-Taylor

\[\begin{array}{ccl}
H^{odd} & T & H^{even} \\
R & \nearrow & \searrow \\
\end{array} \]

TR = RT = 1

Zero mode part

\[v_o = \frac{1}{\sqrt{2}} T_{0,o} \in H^{odd}, \quad w_e = \sqrt{2}(-1)^{e/2+1} \in H^{even} \]

with \(Tv = 0, \ v = \overline{T}w, \ TT = 1, \overline{TT} = 1 - v\overline{v} \)
These relation breaks associativity…

\[(RT)v = v \quad \text{but} \quad R(Tv) = 0\]

\[(TT^\dagger)w = w \quad \text{but} \quad T(T^\dagger w) = Tv = 0\]

• It is not very clear that this anomaly produces the associativity anomaly of * product itself.

• As we see later, any string amplitude can be written in terms of only one matrix written in terms of \(T\) and vector by \(w\).

• In the following discussion, we will use the finite dimensional regularization and use ordinary multiplication rule of matrix everywhere.
Associativity anomaly in purely cubic theory

Purely cubic theory \((Yoneya, Friedan, Witten) \)

\[
S^{cubic} = \frac{1}{3} \int \Psi^3 \quad \Rightarrow \text{e.o.m} \quad \Psi^2 = 0
\]

Solution \((Horowitz, Lykken, Rohm, Strominger) \)

\[
\Psi_0 = Q_L I
\]

\(I \) : Identity operator

\(Q_L \) : half BRST operator \(Q_L = \int_0^{\pi/2} j_{BRS}(\sigma) d\sigma \)

Expansion around \(\Psi_0 \) Reproduces Witten’s action

\[
S^{cubic} [\Psi_0 + \Psi_1] = S^{Witten} [\Psi_1]
\]

It reproduce correct
Open string spectrum!
Closed string sector in (old) VSFT

How to write space-time reparametrization by open string degree of freedom?

Space-Time translation *(Horowitz, Strominger)*

\[\Lambda = P_L |I\rangle , \quad [\Lambda, \Psi[X]]_* = \frac{\partial}{\partial \epsilon} \Psi[X + \epsilon] \]

It breaks associativity explicitly.

\[
\begin{align*}
(P_{1L} + P_{2L})|V_4\rangle &= 0, \quad (\bar{x}_1 - \bar{x}_3)|V_4\rangle = 0 \\
\text{but } \left[P_{1L} + P_{2L}, \bar{x}_1 - \bar{x}_3 \right] &= -\frac{i}{2}
\end{align*}
\]

Closed string sector breaks associativity?

In terms of split string variables,

\[P_L = \sum_o \nu_o \partial_{l_o}, P_R = \sum_o \nu_o \partial_{r_o} \]

Anomaly of T, R, v, w \quad ↔ \quad Anomaly from closed string
Moyal Formulation \((Bars, Bars-Matsuo)\)

Split string

\[
(\Psi_1 \ast \Psi_2)(l, r) = \int_{-\infty}^{\infty} \Psi_1(l, t) \Psi_2(t, r) dt
\]

Fourier Transformation

\[
A(x, p) = \int_{-\infty}^{\infty} \Psi \left(\frac{x+y}{2}, \frac{x-y}{2} \right) e^{-ipy} dy \equiv F(\Psi)(x, p)
\]

\[
F(\Psi_1) \ast F(\Psi_2) = F(\Psi_1 \ast \Psi_2)
\]

\[
(A_1 \ast A_2)(x, p) = e^{\frac{i}{2}(\partial_x p', -\partial_p x') } A_1(x, p) A_2(x', p') \bigg|_{x=x', \ p=p'}
\]
Extension to OSFT

\[A(x_{\text{even}}, x_{\text{odd}}) = \int \prod_o dx_o e^{-2i\Sigma_{e,o}p_{Teo}x_o} \Psi(x_0, x_e, x_o) \]

1. Matrix T is needed to translate \(p_{\text{odd}} \) to \(p_{\text{even}} \)

2. On LHS, we do not need split string wave function but original wave function

3. Witten’s star product is now realized infinite direct product of Moyal planes with same □ for all the planes…
Note

Associativity breaking mode

\[\text{Kink at the midpoint} \]
\[= \text{zero mode of } K_1 \text{ (RSZ)} \]
\[= \text{generator of space-time translation} \]

Closed string vertex

\[\delta S = \int V \left(\pi / 2 \right) \Psi \]

\(V : \text{closed string vertex} \)

\(\text{Gauge invariant form} \)
Another formulation of MSFT

Liu, Douglas, Moore, Zwiebach

\[[x(\kappa), y(\kappa')] = i\theta(\kappa)\delta(\kappa - \kappa') \]

\[\theta(\kappa) = 2\tanh\left(\frac{\pi\kappa}{4}\right), \quad \kappa \geq 0 \), Continuous parameter \]

\[x(\kappa) = \sqrt{2}\sum_{e=2}^{\infty} v_e(\kappa)\sqrt{e} x_e, \quad y(\kappa) = -\sqrt{2}\sum_{o>0} \frac{v_o(\kappa)}{\sqrt{o}} p_o \]

In terms of discrete variable \(x, p \),

\[[x_e, p_o] = i\Theta^{e,o}, \quad n, m \geq 1 \]

\[\Theta^{e,o} = 2T^{e,o} \]

Comparison with Bars’ : Fourier transformation without \(T \)
Explicit computation in MSFT

Bars, Matsuo

Any SFT computation is drastically simplified in MSFT

Operator Formalism

Identity:
\[e^{\sum n a_n^+ (-1)^n a_n^+} |0\rangle \iff 1 \]

Projector:
\[\psi = e^{-a^+ c T a^+} |0\rangle \]
\[MT^2 - (1 + M)T + M = 0 \]
\[M = C V_{3}^{[rr]} \]

Nontrivial Neumann

Building block Coefficients

MSFT

\[A = e^{-\xi M \xi}, \quad \xi = \left(\begin{array}{c} x_e \\ p_e \end{array} \right) \]
\[m^2 = 1, \quad (m = M \sigma) \]
\[\sigma = \left(\begin{array}{cc} 0 & i \\ -i & 0 \end{array} \right) \]

Perturbative vacuum
Wedge state and sliver in MSFT

Wedge state

\[|0\rangle \iff A_0 = N_0 \exp(-\xi M_0 \xi), \quad M_0 = \begin{pmatrix} \kappa_e & 0 \\ 0 & Z \end{pmatrix}, \quad Z = T \kappa_o^{-1} T \]

\[(A_0)^n = N_n \exp(-\xi M_n \xi) \quad M_n \sigma = \frac{(1 + m_0)^n - (1 - m_0)^n}{(1 + m_0)^n + (1 - m_0)^n}, \quad m_0 = M_0 \sigma \]

Sliver state

\[m_s = M_s \sigma = \lim_{n \to \infty} M_n \sigma = m_0 \sqrt{m_0^2}, \quad m_s^2 = 1 \]

\[m_0 v^{(\kappa)} = \tanh(\frac{\pi}{4} \kappa)v^{(\kappa)} \iff m_s v^{(\kappa)} = \varepsilon(\kappa)v^{(\kappa)} \]

\[-\infty < \kappa < \infty, \text{ at } \kappa = 0 \text{ indefinite} \]

Singularity at \(\Box = 0! \)
Relation between OSFT and MSFT

Every Neumann coeffs are expressed in terms of M_0 and w

$$\langle V_n | \Psi_1 \rangle \otimes \cdots \otimes | \Psi_n \rangle = \text{Tr}(A_1 \cdots A_n)$$

$$A_i = F(\langle \Psi_i \rangle)$$

For example, 3-string vertices are expressed as

$$M_0 = \frac{m_0^2 - 1}{m_0^2 + 3}, \quad M_+ = 2 \frac{m_0 + 1}{m_0^2 + 3}, \quad M_- = 2 \frac{1 - m_0}{m_0^2 + 3}$$

$$V_0 = \frac{4m_0^2}{3(m_0^2 + 3)} W, \quad V_+ =$$

$$V_{00} = W \frac{4m_0^2}{m_0^2 + 3} W$$

Which satisfies all Gross-Jevicki’s nonlinear identities.
Spectroscopy of Neumann coefficients

$M_0, M_{+/−}$ are simultaneously diagonalized

$$K_1 = L_1 + L_{−1}, \quad K_1 v_1(κ) = κv_1(κ), \quad κ ≥ 0$$

$$\sum_{n=1}^{∞} \frac{z^n}{n^{1/2}} v_n^{(κ)} = \frac{1}{κ} \left(1 − \exp\left[−κ tan^{-1}z\right]\right)$$

$$M_0 v_n^{(κ)} = -\frac{1}{1 + 2 \cosh(πκ/2)} v_n^{(κ)}, M_{±} v_n^{(κ)} = \frac{1 + e^{±πκ/2}}{1 + 2 \cosh(πκ/2)} v_n^{(κ)}$$

In Moyal language, this is automatic

Every Neumann coefficients are written by single matrix m_0

$$m_0 = \tanh\left(\frac{π}{4} K_1\right)$$
2.3 Physical States

Expansion around Sliver state should reproduce open string living on corresponding D-brane (up to gauge transformation)

Variation around Ψ_0 ($\Psi_0^2 = \Psi_0$)

$\Psi' = \Psi_0 + \Psi_1$, $\Psi'^2 = \Psi'$

$\Psi_1 = \Psi_0 * \Psi_1 + \Psi_1 * \Psi_0$

Very simple!
The Issue

• For finite dim noncommutative geometry (=finite matrix), any such variation becomes pure gauge

• Naively, there is no matter Virasoro in E.O.M. How can it reproduce every physical state correctly?
Possible Solutions

- Midpoint subtlety
- Infinite dimensionality
- Infinite conformal transformation associated with sliver state
 - Hata-Kawano tachyon state
 - Okawa state
Hata-Kawano state

Ansatz

\[|T\rangle = e^{\sum_n t_n a_n^+ a_0} e^{ipx_0} |\Xi\rangle \]

By tuning \(t_n \), tachyon state satisfies e.o.m.

If we expand, roughly speaking. We need delicate deviation from that to reproduce correct mass-shell condition.

Parameters \(\{t\} \) are tuned in such way to cancel \(xe \) dependence of \(ipx_0 \).

\[x_0 = \pi \frac{2}{(\cdots)} \]

With this form, e.o.m follows directly.
Pathology from infinite product

\[\langle \phi | e.o.m \rangle = 0 \quad \text{for } \phi \text{ in Fock space} \]

but

\[\langle \phi | e.o.m \rangle = 0 \quad \text{for } \phi \text{ in sliver state} \]

We have to be very careful to define the definition of Hilbert space where e.o.m. is imposed.
Okawa’s state

BCFT consideration (Abstract argument)

D-brane \leftrightarrow Boundary state $(L_n - \overline{L}_n)|B\rangle = 0$

Physical open string states on D-brane $\delta|B\rangle = \oint d\sigma j(\sigma)|B\rangle$

$(L_n - \overline{L}_n)\delta|B\rangle = 0$

Solution in closed string sector
Mapping from boundary state to sliver

Closed string $|B\rangle$ \quad \rightarrow \quad $|B\rangle + \delta|B\rangle$

Open string Hilbert space $|0\rangle_{BB} \in H_{BB}$

Sliver $\left|\Xi\right\rangle_{BB} = \left(\left|0\right\rangle_{BB}\right)_{\infty}$ \quad \rightarrow \quad Okawa’s state
Some features of Okawa state

• It correctly reproduces *mass-shell condition* for any vertex operator
 – Conformal invariance requires the vertex operator to have dimension one

• *The brane tension* computed from three tachyon coupling gives correct value.
Remaining questions

• Both HK and Okawa states solve e.o.m. It seems that there are *too many solutions*. We need to re-examine the definition of Hilbert space more carefully.

• So far only (infinite) conformal transformation associated with sliver gives the right mass-shell conditions. Only conformal dimension gives on-shell condition. Does it also describe gauge degree of freedom correctly?
Conclusion

• Noncommutative geometry
 – MSFT gives handy description of OSFT
 – Now we do not need Neumann coefficients!
• Correct description of physical state on D-brane seems to be given.
• Many problems remain
 – Associativity anomaly
 – Extra (unphysical) solutions
 – Closed string sector
 – Supersymmetric extension