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Here we discuss phenomenological aspects of heterotic string models and intersecting D-

brane models. In particular, we consider the structure of Yukawa matrices in heterotic
orbifold models and intersecting D-brane models.

1 Introduction

Superstring theory is a promising candidate for unified theory including gravity. Thus, it is
very important to derive the standard model from superstring theory, including values of gauge
couplings, fermion masses and other phenomenological aspects.

For such purpose, several types of 4D string models have been constructed so far. Recently,
much attention has been paid in intersecting D-brane models [1, 2, 3, 4]. Actually, many
intersecting D-brane models have been constructed and their phenomenological aspects have
been studied.

On the other hand, before discovery of D-branes, heterotic string models have been almost
a unique target of phenomenological studies. Indeed, a number of 4D heterotic models have
been constructed and several phenomenological studies have been done. As one of recent topics,
heterotic orbifold models [5] have been studied to realize interesting field-theoretical orbifold
models [6, 7]. In heterotic orbifold models, some modes live in the 10D bulk, and other modes live
in the 6D and 4D space-time. Thus, field-theoretical brane-world scenario can be realized within
the framework of heterotic orbifold models as well as D-brane models. Hence heterotic orbifold
models and intersecting D-brane models have the similarity that string modes corresponding to
matter fields are localized in the compact space.

In this talk, we discuss phenomenological aspects of heterotic orbifold models and intersecting
D-brane models, comparing each other. In particular, we consider the structure of Yukawa
coupling matrices in heterotic orbifold models and intersecting D-brane models. Those are very
important to understand fermion masses and mixing angles. Here we concentrate mainly to
Dé6-branes on the T°/(Zy x Zy) with T® = T2 x T? x T?, although some comments hold true for
other types of intersecting D-brane models.

2 4D effective field theory and gauge couplings

In general, massless spectra of 4D string models include gravitons, gauge bosons, matter
fermions, Higgs scalars and moduli fields. Their action, i.e. gauge couplings, Yukawa couplings,
Kahler potential and so on, can be obtained by the dimensional reduction and CFT calculations,
and it is also constrained by (stringy) symmetries. The above couplings as well as kinetic terms
depend on vacuum expectation values of dilaton and moduli fields.

Here, we briefly give comments on gauge kinetic functions in heterotic orbifold models and
intersecting D-brane models. The experimental values of three gauge couplings of the standard



gauge group meet around 2 x 10'6 GeV, when the field content above the weak scale is the
same as one in the minimal supersymmetric standard model. In Fg x FEg heterotic models,
gauge bosons are originated from the 10D bulk modes. Thus, gauge couplings as well as gauge
kinetic functions are the same in 4D effective theory, even if the standard gauge group, but not
a unified gauge group is obtained directly at the compactification scale. That is consistent with
the experimental values at the first level. At the next precise level, we must consider the reason
of the difference between the string scale and 2 x 1016 GeV.

On the other hand, in intersecting D-brane models, the SU(3) and SU(2) of the standard
gauge group can correspond to different D-branes, while U(1)y is a linear combination of U(1)’s
corresponding to several D-branes. In this case, the gauge couplings are obtained as g2 = g%ﬁ /Va,
where V, is the volume of D6-brane in the compact space. Thus, there is no prediction on
gauge couplings in generic model. To realize the gauge coupling unification, we have to require
Vsue) = Vsue)-

Whether the gauge kinetic functions are the same or different between SU(3), SU(2) and
U(1)y is also significant for low-energy supersymmetric models. Different gauge kinetic func-
tions, in general, means non-universal gaugino masses including their CP phases, when moduli
fields appearing in gauge kinetic functions contribute to supersymmetry breaking. When gaug-
ino masses are of O(100) GeV, such non-universal CP phases affect significantly experiments
concerned about CP violations like electric dipole moments of electron and neutron.

3 Yukawa matrices in heterotic orbifold models

What is the origin of fermion masses and mixing angles is one of important issues in particle
physics. They are determined by Yukawa couplings within the framework of the standard model
as well as its extension. In a sense, O(1) of Yukawa couplings seem natural. From this viewpoint,
how to derive hierarchically suppressed Yukawa couplings is a key-point in understanding the
hierarchy of fermion masses and mixing angles.

Yukawa couplings have been studied in several types of 4D string models, that is, selection
rules have been investigated and O(1) of Yukawa couplings have been calculated explicitly in
many 4D string models. Among them, heterotic orbifold models as well as intersecting D-brane
models are interesting, because they lead to suppressed Yukawa couplings depending on moduli.
Calculations of such moduli-dependent Yukawa couplings are possible in orbifold models [8, 9],
since string theory can be solved on orbifolds. Calculations of Yukawa couplings in intersecting
D-brane models are similar to those in heterotic orbifold models [10, 11, 12]. Furthermore, the
selection rule due to space group invariance in orbifold models seems unique [8, 13, 14], e.g.
compared with Zy discrete symmetries. It allows non-trivially off-diagonal couplings. Hence,
orbifold models have a possibility for leading to realistic mixing angles as well as fermion masses.
Therefore, it is important to study systematically the possibility for leading to realistic fermion
masses and mixing angles in heterotic orbifold models.

In this talk we study the possibility for predicting a realistic mixing angle as well as mass
ratios. We concentrate ourselves mainly to (2 x 2) sub-matrices of the second and third quark
families. We study systematically the possibility for obtaining realistic values of V,; and mass
ratios m./m; and mg/my. Then, we will show examples to lead to them. To our knowledge, our
result is the first examples, which show explicitly the possibility for predicting realistic values



of mixing angles by use of only renormalizable couplings in string models, when we consider a
pair of up and down Higgs fields, although already there are proposals to introduce more Higgs
fields to lead to realistic Yukawa matrices.

A 6D orbifold is defined as a division of a 6D torus by a discrete twist §. The 6D Zz — I
orbifold is a direct product of two 2D Zg orbifolds and a 2D Z3 orbifold. On an orbifold, there
are twisted strings, which satisfy the following condition,

Xi(o = 21) = (0°X)i(0 = 0) + nael,, (1)

where ¢, is the lattice vector defining the 6D torus and n, are integers. This twisted string
belongs to the T}, sector. Its center of mass corresponds to the fixed point f on the orbifold,
satisfying f* = (0% f) + nnel,. This fixed point f is presented by the corresponding space group
element (0% nqe?). The fixed points are defined up to the conjugacy class, that is, two fixed
points (0%, nyel)) and (6%, 7/ el ) are equivalent when nyel, —nlel, = (1 —60%)A, where A denotes
the lattice spanned by e’,. The number of fixed points, that is, the number of twisted ground
states, is determined when we fix an orbifold. For example, the Ty of the 2D Zg orbifold has a
single fixed point, while the Ty and T4 sectors have three and four fixed points, respectively. All of
them are not fixed points under 8, and we have to take linear combinations of the corresponding
states.

Next we consider the selection rule for allowed Yukawa couplings. Three states corresponding
to three fixed points (9%, (1 — %) f;) for i = 1,2, 3 can couple if the product of their space group
elements [[;(0%, (1 — 6%)f;) is equivalent to identity, up to conjugacy class. For example, the
selection rule in Z3 orbifold models allow only diagonal couplings. On the other hand, non-prime
order orbifold models allow off-diagonal Yukawa couplings.

The strength of Yukawa couplings has been calculated by use of 2D conformal field theory. It
depends on locations of fixed points. The Yukawa coupling strength of the Ty75T5 coupling in
Zg-1 orbifold models is obtained for the Gy x Go part as [8, 9, 14]

V3
Y = > eXp[_EfQZI;%MfZS]a (2)
fos=fa—fs+A
up to an overall normalization factor, where
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in the G x G5 root basis. Here, fo and f3 denote fixed points of Ty and T5 sectors, respectively,
and R; corresponds to the radius of the i-th torus, which can be written as a real part of the i-th
Kahler moduli T; up to a constant factor. The states with fixed points in the same conjugacy class
contribute to the Yukawa coupling. Thus, we take summation of those contributions in eq. (2).
However, the states corresponding to the nearest fixed points (fa, f3) contribute dominantly to
the Yukawa coupling for a large value of R;. Hence, we calculate Yukawa couplings for the
nearest fixed points (fo, f3). Similarly, the strength of ToT5Ts Yukawa couplings is obtained as

V3
Y = Z eXP[—EfQJ:;Mf%]a (4)
faz=fa—fa+A



Class ‘Q‘u‘d‘Hu‘Hd
Assignment 1 | Ty | 13 |15 | T1 | T}
Assignment 2 | T3 | T | Ty | T1 | T}
Assignment 3 | Ty | 15 | To | 11 | T
Assignment 4 | Ty | 1n | 15 | Ty | T}
Assignment 5 | Ty | 1o | Ty | 1o | T

# 1: Five classes of Assignments

| Class | Q2,03 U, U3 do, ds3 H, Hy | (Ry)? | (R2)? | e | o | Vb |
1 |27 791D WS p f | 278 | 107 | 0.0038 | 0.029 | 0.041
2 |10 10 7P W1 7 7y, | 240 | 150 | 0.0038 | 0.032 | 0.041
3 [T 1 1P 1® @ W 7™ 196 | 316 | 0.0038 | 0.019 | 0.042
a4 [P 1 1P 1® O 0 7™ fy | 416 | 226 | 0.0040 | 0.035 | 0.035
5 | 1010 P70 81 7 W 368 | 400 | 0.0038 | 0.029 | 0.041

| Central values from experiments | 0.0038 | 0.025 | 0.041

3 2: Realistic examples

where fo and f3 denote two of three fixed points in 75 sectors.

Here we study systematically the possibilities for leading to realistic quark masses and the
mixing angle for the second and third families in Zg-I orbifold models by use of the structure
of fixed points and the strength of Yukawa couplings explained above. We assume the minimal
number of up and down Higgs fields. We concentrate to the mass ratios, m./m; and mg/my,
and the mixing angle V.

The T} sector has a single relevant state for the Go x G5 part, that is, there is no variety for
families. That implies that we have to assign matter fields with Ts and T5. Hence, we have five
classes of assignments, which are shown in Table 1.

We investigate systematically all of these possibilities,varying two independent parameters Ry
and Ry. We find many configurations leading to realistic values of m./my, ms/my and V,, which
are consistent with experimental values up to O(1) factor. In particular, the numbers of realistic
examples in Assignments 1 and 2 are larger than those in other assignments. Here we show one
of the best fitting examples in each class of Assignment. Table 2 shows examples leading to
realistic values of m./m;, mg/my, and V. The first column shows the class of Assignments.
The second column shows assignments of quarks and Higgs fields with twisted states. The
third and fourth columns show the values of R and R3 corresponding to the best fit with the
experimental values. The last three columns show predicted values of m./m¢, ms/m; and V.

As results, we have found many examples of assignments leading to realistic values of the mass
ratios m./m; and mg/my, and the mixing angle V. (See for detail Ref. [16].)

4 Yukawa matrices in intersecting D-brane models

In intersecting D-brane models, bi-fundamental matter fields appear as open strings stretching
D-branes, which intersect each other. Thus, such massless modes are localized at intersecting



points of D-branes in the compact space. For example, the quark doublets are localized at
intersecting points between SU(3) D-brane and SU(2) D-brane. Furthermore, the family number
is obtained as the intersecting number.

Calculation of yukawa couplings in intersecting D-brane models is quite similar to one in
heterotic orbifold models. However, the structure of Yukawa matrices depends on D-brane con-
figurations, that is, it is model-dependent. Most of explicit models, which have been constructed
so far, seem to lead to the factorizable form, Y;; = a;b;. That is not realistic, because that is
a rank-one matrix, that is, it can derive only non-vanishing mass for the third family, but not
non-vanishing values of lighter family masses and mixing angles. We may need alternative flavor
structure other than the intersecting number.

A new type of origin for the flavor structure has been proposed in Ref. [17]. In the model, the
dynamically generated flavor structure has been studied. For example, its gauge group includes
SU(3) x SU(2) x USp(2)%, the matter content includes C,, and D,, where C, and D, have
(3,1,2) and (1,2,2) representations under SU(3) x SU(2) x USp(2),, respectively, and those
are singlets under USp(2)s for § # a. The USp(2), gauge coupling is stronger, because the
corresponding D-branes have smaller volume than SU(3) and SU(2), and the dynamical scale
of USp(2), is expected just below the string scale. Then the matter fields C, and D, confine,
so as to give six generations of quark doublets, Qo ~ CyD, (@ = 1,---,6). The model has
two anti-generations, and they have mass terms with Q,, such that two of six @), become quite
heavy and four generations remain massless at this level.

Yukawa matrices of the model has been analyzed in Ref. [18]. The detailed analysis of the
full Yukawa matrices is rather complicated. For simplicity, we show the (2 x 2) sub-matrices
corresponding to two families of heavier quarks. Those Yukawa matrices are obtained as

1 0
oo () ®
E1€3 €1€3

N A (6)
E1€3 €3

for the down sector. Here, ¢; denotes the suppression factor estimated as e~%¢, where A; is the
area which string sweep on the i-th torus.

for the up sector,

Now we can calculate mass eigenvalues of two heavy modes among four generations, i.e. 7,3
and my, 4 for the up sector and mg3 and mg4 for the down sector, and their mixing angle V34.
The mass ratios and the mixing angle is obtained as

My,3 mg3 €3

N €1€3, —= & —, Va4 = €3, (7)
My 4 Ma4 €1

that is, we have the following relation,

at the composite scale.



It is interesting to compare these results with the experimental values of quark mass ratios,

e and E—Z, and the mixing angle V5. At the weak scale, the experimental values of mass ratios,
Z—j = 0.0038 and Z—Z = 0.025, lead to
Me™s — .01, 9)
mg My
and the mixing angle is
Vi = 0.04. (10)

We find that the values of parameters 1 ~ 0.5 and &3 ~ 0.01 lead to almost realistic structure
of quark Yukawa coupling matrices.

We have shown non-vanishing mixing angles are obtained, and in particular we can derive re-
alistic values of mixing angles and mass ratios when we take suitable values of radius parameters.
Further detailed study including the lepton sector is interesting.

5 Conclusion

We have discussed some phenomenological aspects in heterotic models and intersecting D-
brane models.

Concerned with Yukawa couplings in heterotic orbifold models, we have systematically studied
the possibility for leading to realistic values of m./m;, ms/m; and Vg, in Zg-1 orbifold models.
We have found realistic examples of Yukawa matrices. In particular, the classes of Assignments
1 and 2 have many realistic Yukawa matrices. Our result is the first examples to show the
possibility for deriving the realistic mixing angle by renormalizable couplings in string models
with one pair of H, and H,.

To realize our results, the moduli R; and R must be stabilized at proper values. How to
stabilize these moduli is an important issue to study further.

One can extend our analysis to other non-prime order Zy orbifold models. Similarly we can
discuss Zn x Zpr orbifold models. Another important extension is to study the lepton sector.
The situation would change for realizing large mixing angles. It is interesting to investigate sys-
tematically whether one can obtain realistic lepton masses and mixing angles by renormalizable
couplings derived from string models. Such systematical analysis will also be done elsewhere.

Concerned about Yukawa matrices in intersecting D-brane models, there is a serious difficulty
to have a realistic Yukawa coupling matrices in the models in which the generation structure
of quarks and leptons is originated from the multiple intersection of D-branes. On the other
hand, it has been shown that the structure of Yukawa coupling matrices in the models with
dynamical generation of Yukawa coupling matrices can be realistic. Indeed, realistic values of
the mixing angles V,;, and mass ratios m./m; and ms/my can be realized. The most relevant
fact is the different origin of the generation. The origin of the generation is not the multiple
intersection of D-branes, but many different D-branes with the same multiplicity and the same
winding numbers.

Recently, many intersecting D-brane models have been constructed. It is the time to study
their phenomenological aspects, e.g. gauge couplings, Yukawa couplings and supersymmetry
breaking.

Another recent topic on moduli stabilization and supersymmetry breaking is concerned about
string models with flux. That would open a new possibility in string phenomenology.
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