Gauged Linear Sigma Model on Supermanifold

Kyoto University Shigenori Seki E-mail: seki@gauge.scphys.kyoto-u.ac.jp

The correspondence between a topological string in a super twistor space $\mathbb{CP}^{3|4}$, which is a Calabi-Yau supermanifold, and an $\mathcal{N} = 4$ super Yang-Mills theory was pointed out by [1], and a lot of related works have been done. We shall consider a gauged linear sigma model (GLSM) on a supermanifold. This talk is based on the work [2].

First we construct an $\mathcal{N} = (2,2) U(1)$ GLSM on a target space $\mathbb{CP}^{m-1|n}$, which is a supermanifold with *m* Grassmann even homogeneous coordinates and *n* Grassmann odd ones. It is characteristic that two types of chiral superfields are introduced. They are usual Grassmann even chiral superfields Φ^I $(I = 1, 2, \dots, m)$ and new Grassmann odd chiral superfields

$$\Xi^{A} = \xi^{A} + \sqrt{2}(\theta^{+}b^{A}_{+} + \theta^{-}b^{A}_{-}) + 2\theta^{+}\theta^{-}\chi^{A} + \cdots \quad (A = 1, 2, \cdots, n),$$

where ξ^A and χ^A are Grassmann odd and b^A_{\pm} are Grassmann even. U(1) charges Q_I and q_A are assigned to Φ^I and Ξ^A respectively.

Next we study the structure of classical vacua. When a superpotential $W(\Phi, \Xi)$ is factorised as $W_b(\Phi)W_f(\Xi)$, the vacuum manifold is reduced to three typical phases: (1) the hypersurface $W_b = 0 = W_f$ in the weighted projective space $\mathbb{WCP}_{(Q_1,Q_2,\cdots,Q_m|q_1,q_2,\cdots,q_n)}^{m-1|n}$; (2) the bosonic \mathbb{Z}_q orbifold with only Grassmann even coordinates, if $\forall q_A \equiv q$; (3) the fermionic \mathbb{Z}_Q orbifold with only Grassmann odd coordinates, if $\forall Q_I \equiv Q$. From (2) and (3), we conjecture that there might exist a transition between bosonic and fermionic manifolds.

We also calculate the one-loop correction to a D-field. Then we can confirm that the condition for vanishing of the one-loop divergence agrees with the Ricci flatness (naively Calabi-Yau) condition of supermanifold shown in [3].

Taking the two-dimensional worldsheet with a boundary, we consider A-type and B-type supersymmetric boundary conditions. For the A-type condition, we find a A-brane wrapped on a real (m|n)-dimensional subsupermanifold embedded in the target space $\mathbb{C}^{m|n}$. For the B-type condition, we obtain a real-even-dimensional B-brane wrapped on a complex subsupermanifold.

As an extension, we can also construct an $\mathcal{N} = (0, 2)$ GLSM on a supermanifold.

References

- E. Witten, "Perturbative Gauge Theory as a String Theory in Twistor Space," Commun. Math. Phys. 252 (2004) 189, hep-th/0312171.
- [2] S. Seki and K. Sugiyama, "Gauged Linear Sigma Model on Supermanifold," hep-th/0503074.
- [3] S. Sethi, "Supermanifolds, Rigid Manifolds and Mirror Symmetry," Nucl. Phys. B430 (1994) 31, hep-th/9404186.