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1. Twistor space

A brief introduction to twistor theory
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1.1 Plane waves

One vector index = a pair of undotted and dotted spinor indices
.Ir"IH = .I”'rru — f‘l,r-'[n-ﬁ _]llrrr;

Spin s massless fields have 2s syinmetric spinor indices.

Weyl fermion Irreducible decomposition
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Maxwel field strength Frow = F i = Fav€aj + Flj€ab
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positive helicity (h = +s) negative helicity h = —s

— dotted indices — undotted indices



Equation of motion

i Wy igeendia, (z) =0 (h = +5) HF}“I"1.-""r']u:3"'”::-- {_*I'.] =1 (h = _*5}

These can be solved as follows

(1) Decompose the wave function into a spin part (polarization)
and orbital part like tgp...c(x) = Cap...o f ()

(2) Take a plane wave f(x) = ¢'"* for the orbital part.

(3) Represent the null vector p as a product of two spinors.

Dai = %o Az A and A are bosonic spinors.
AaA® = N A’ =0

(4) Solutions of the equations of motion are
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Another way to solve the equation

Let’s change the order in solving equations of motion

(1) Decompose the wave function into a spin part (polarization)
and orbital part like ¥up....(x) = Cap...o f(T)

(2) Instead of taking plane wave for orbital part,
we Iix the spin part first as follows.
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(3) The equation of motion (transversality equation) gives
A%uaflz) =0
(4) This can be solvedby f(z) = g(A\,2"")

_ . expanded by functions [(1 0 () = 67 (A, 4 p7)



1.2 Twistor space

Expansion with Expansion with _
fo() = eive Fiay (@) = 2 (Aaa® + i)

— momentum space {py } — T'wistor space {{«:’t”}ﬁﬁﬂ)}

The rescaling (A, 1) — (A, ap) does not give independent functions.

. . ‘e 9
The twistor space is a projective space CP".
A" and p® are homogeneous coordinates.



The transformation between the coordinate space 2
and the twistor space (A, i) is an integral transformation
with the kernel 6% ( Az + p).

{r-'."”}l”r{;.i'_'} = / flﬁg(}n“.ﬂ”ﬁ + j.,r!.d}}kﬂ .:\.h e )‘:‘;{}L II”}
JCP3

(! 1s the invariant measure in the projective space CcpP?
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momentum p" is transtormed as p ; = A\ = - ) A
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Twistor space -« »  Momentum space

Fourier tr.




Comments

o We treat momenta as complex variables.

A% and \® are independent complex variables.

e Twistors are powerful tool to construct multi instanton solutions.
Actually, the method known as “ADHM construction” is a

byproduct of twistors.

e The (complexified) conformal symmetry SL(4, C) is realized
as the isometry of the twistor space CP”,

e Super(conformal) symmetries can easily be incorporated with
twistors. N fermionic coordinates are added to the twistor

coordinates (A, it). The supertwistor space is a supermanifold CPEY.



2. Scattering amplitudes

A holomorphic structure n tree level
gluon scattering amplitudes
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2.1 Color ordering

External lines are labeled in color-ordenng

i 1

We consider tree level scattering amplitudes of U(N) adjoint particles.

7 = ,u_:,rf]’,-gig'rr{ﬂ“ﬂ,,_, e T VO (3 ) A(N )
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In what follows, we focus on only the 6 (> p)A

) part.



2.2 3 and 4-particle amplitudes

Due to the momentum conservation,

(A1, A3) [Nz, Aa] = XS (Zﬁm) Ap =
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If (A1, A3) =0, If [As, As] = 0,
(Xis X)) =0 iy A] =0
A(N, E} cannot depend on A; A(A, '):} cannot depend on I,—
(*anti-holomorphic®) (" holomorphic’’)
Amp.=§(3" pi). H}: ) Amp.= () pi)A(A;)




4-particle amplitudes

+1 +1 41 +1

+1 +1 —] 1

3 +1
Amplitudes vanish unless total helicity = 0 (helicity conservation)

(Problem 17.3 (b) in Peskin & Schroeder)



2.3 Holomorphy

In general, the holomorphy of an n-particle amplitude depends on
its total helicity higia1 = Ay + -+ + Ay,

hiotal 18 Often referred to as “helicity violation”.

A(A, E} is “holomorphic” when Ayt =n —4. (two h = —1)

Such amplitudes are called Maximally Helicity Violating amplitudes.

If all or all but one helicities are the same, the amplitude vanmishes.
(The three particle amplitudes are exceptions. )




Helicity violation
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Explicit form of MHV amplitudes is known.
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MHV amplitudes are the “conjugate” of the MHV amplitudes.
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3. Twistor amplitudes

Duality between supersymumetric Yang-Mills
and string theory in the twistor space
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3.1 Fourier transformation

Twistor amplitudes are obtained from spinor amplitudes
by the Fourier tr. A — p.

Let us start by three-particle interaction with h, i = +1

_I_

5 p)AN)
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In this case, (A;, A;) = 0 and A()\;) depend only on A;,

Three A; are the same (up to rescaling).
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With this in mind, let us carry out the Fourier tr.



Amp. = fd'ﬁe*' ff*-”ﬁ‘(er)A(A)

[dqx\/‘dﬁ)iﬂ( ; )Eizi“‘nmﬂu'I'ﬁi ]-:"-:'.i
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d(Ax+pu) — three points ();, u;) € CP? are on the same line.

i are the same — three points ()\;, it;) € CP? coincide

|

This is a local interaction in CP?

Even though A()) is a rational function and A(8/8y) is non-local
operator, the result is correct for 3-particle amplitudes.



Yang-Mills with only interactions _ _
with hega = <+1 A local theory 1n the twistor space

(Self-dual Yang-Mills) (helemorphic Chern-Simons)
duality

Full Yang-Mills - 777 1 the twistor space



Fourier tr. of the MHV amplitude

= (Ar, A )
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This i1s a non-local interaction in the twistor space.

All the points (A;, jt;) are on the same line.
(not at the same point)

Witten proposed an interpretation of this amplitude.



3.2 Witten’s proposal (rull M= B-model in the twistor space)
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M“d“h D1-brane Corr. func. on D3
inte gral
Interaction pt.
propagator of (Xi, i)
target space D1-D5 strings
= twistor space ~ (Aiy Aigr) ™

filled by D5

Dl-brane |
Ax+ p=10

external lines

*— = bkg. fields
(D5-D5 strings)



Commenits

e The B-model is defined only in Calabi-Yau spaces.
CP*™ is CY only when A = 4.
— AN =4 8YM.

o It seems impossible to decouple the conformal gravity,
which arises in the closed string sector of the B-model

because the conformal gravity has dimensionless coupling ~ gvur-

e It is not known how to choose integration contour of the moduli integral.



4. MHV diagrams

A new method for computation of
scattering amplitudes
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4.1 MHV diagrams

If 6( Az + p) represents a physical D1-brane,

there must also be multi-D-brane contributions to amplitudes.

This gives new ~ Feynman rules”.

propagator: 1/p® T+

vertex: MHV amplitude

In order to use the MHV amplitudes as vertices, we have to define a rule to
give spinor variables for arbitrary (off-shell) momenta.

Aa = Paat) g1ves correct amplitudes.
(77 is an arbitrary spinor)



Example
# of vertices = # of “—"—1
+ — —— amplitude

(Ag,A0)° 1 (Mg, Ag)° (A3, Ag)? 1 AdAg)®
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= e correct answer



The # of MHV diagrams contributing an amplitude 1s much smaller
than the # of Feynman diagrams.

# of Feynman diagrams ~ @n n # of external lines

# of MHV diagrams x pp2k— k& # of negatrve helicities

MHV diagrams are efficient especially for small k.
Even for k~1/2, the number of MHV diag, 1s much smaller than that of
Feynman diag.

MHY diagrams drastically simplify the computation of
scattering amplitndes.




4.2 pole structure

An amplitude becomes singular when a propagator in a Feynmnan
diagram becomes on-shell.

Pij =PitPigrt - "+pji-1+p; — 0
i— 1
JH..'_','

Feynman diagram

b s 5

The residue for the pole is the product of two amplitudes connected by
the on-shell propagator.

Factorization formula



This structure 1s reproduced by the MHV diagrams correctly.

There are two kinds of singularities in MHV diagrams.

8 Ci’ i

i+ 1

Singularities in MHV propagators Singularities in MHV vertices

These singularities correctly reproduce the physical singularities in
Feynman diagrams.




4.3 BCF recursion relation

Choose two external lines r and s

" (Feynman diag.)

and shift their momenta by :i:.-';)tfif,
Py — }"r‘xr = Pr{:’:} = P-a"";}"rzx = Ay {Er + -'-'r')'“r}
pf‘ — A-‘FES = pﬁ{z} = .nﬁ_:’:]'l;l"is — {}53 — E)t,-}:{.,-

Regardress of the variable z, the momenta are on-shell.

The amplitude A(z) is a rational function of z.



pole of A(z) ¢ pole of propagator

(Feynman diag.)

Pij(2) = pij+2ArAs

All residues can be determined by the factorization formula

. 1 hy
A(z) ~ A" (Dinas - - Di-1: Bigk2i7)) ——5 4 (Pis - =42 05, =Dij(2))

Pij(zij)*

near z = z;;, where z;; is the solution of p;;(z) = 0.

We can also showthat  1lm A(z) =0

5 e



Given all the residue and the asymptotic value of A(z),
we can uniquely determine the function A(z).

BCF recursive relation:

|
A(2) =3 A" (Binr, s Pi1sBis26d)) g A (Bis - o 2y =P (255)
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If we have 3-pt amplitudes, we can construct an arbitrary tree amplitude
using this relation recursively.




4.4 Proof of the MHV formula

BCF recursion relation shows that
the on-shell amplitudes are uniquely determined by the pole sbucture.

In order to prove the MHV formula, we have only to show that
the MHV formula gives the correct pole stucture.

We have already shown that MHV diagrams correctly reproduce the
pole structure of tree-level amplitudes.

MHYV formula is proven!



5. Conclusions

Although the twistor string theory itself has not been established,
it inspired the new method to compute scattering amplitudes.

MHV diagrams drastically simplify the computation of
scattering amplitudes.

At the tree level, it was proven that the MHV diagrams give
correct scattering amplitudes.

The proof i1s based on the BCF recursion relation, which does not
depend on string theory.



Generalization
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